
Requirements on the Use of
Rocq in the Context of Common
Criteria Evaluations

French National Cybersecurity Agency (ANSSI)
INRIA

v1.2 14/04/2025

Versions Date Modifications
1.2 14/04/2025 Updating the document to take into account the

renaming from “The Coq Proof Assistant” to
“The Rocq Prover” as of the release of 9.0.

1.1 09/12/2021 Fixing some typographical errors and adding de-
velopers rules 4.14, 4.15 and 4.16.

1.0 23/09/2020 Creation

2

Contents

1 Introduction 4

2 Rocq Architecture 5

3 Rocq Standard Distribution 8
3.1 Version Accountability . 8
3.2 rocqchk . 9
3.3 Features Restrictions . 9

4 Development Recommendations 12
4.1 Axioms and Hypotheses . 12
4.2 Empty Types . 14
4.3 Coding Style . 15
4.4 Code Structure . 24

3

Chapter 1

Introduction

The Rocq prover1 is a formal system which provides both a pure, functional programming language
with dependent types, and an environment to write machine-checked proofs. Using Rocq, it is
possible to model a system, to formalize properties this system is expected to satisfy, and to prove
the correctness of the model with respect to these properties. Rocq has already been leveraged for
Common Criteria evaluations with formal developments in the context of the French scheme. The
present document assumes readers are already familiar with Rocq2, and introduces requirements
to write formal developments suitable to take part in CC evaluations. Evaluators are expected to
assert that the developers’ requirements have been satisfied during the evaluation process. In
addition, this document also introduces requirements specifically for evaluators.

This document proceeds as follows. First, we give a quick introduction on the Rocq prover
architecture, to distinguish between the system kernel —which has to be trusted— and the system
“extensions” —which should be used only in ways that cannot endanger the system consistency
(Chapter 2). Then, we detail how the Rocq distribution (i.e., Rocq, and its standard library) shall be
configured in order for its kernel to remain consistent (Chapter 3). Lastly, we provide development
requirements which focus on writing readable and reviewable formal developments using Rocq
(Chapter 4).

1Formerly known as the Coq Proof Assistant. See https://rocq-prover.org/doc/V9.0.0/refman/changes.
html#summary-of-changes for more details.2The reader willing to learn Rocq can refer to more appropriate resources, such as The Software Foundations series byBenjamin C. Pierce et al. or the Coq’Art by Yves Bertot and Pierre Castéran.

4

https://rocq-prover.org/doc/V9.0.0/refman/changes.html#summary-of-changes
https://rocq-prover.org/doc/V9.0.0/refman/changes.html#summary-of-changes

Chapter 2

Rocq Architecture

The central idea of the Rocq system is that the correctness of proofs is guaranteed by a type-
checking algorithm. A corollary of this central idea is that proof search and proof verification are
two separate tasks, where only proof verification is crucial for trustworthiness. When a proof
search procedure produces a result, this result is transferred to the proof verification algorithm
which checks it for consistency. Following this principle, an error in a clever proof search procedure
should not endanger the validity of its results, because the latter are going to be checked again by
the type-checking algorithm.

As a consequence, the type-checking algorithm is placed at the heart of all trust questions, and
is therefore often referred to as the kernel of Rocq. However, the trustworthiness of Rocq cannot
be reduced to the trustworthiness of its kernel. We should also add considerations about the data
paths between the human user and the type-checking algorithm. When a piece of data is displayed
by the Rocq system, what part of this data was actually checked by the kernel? When the user
submits a question to the proof system, which part of the question is submitted to the kernel? This
section attempts to clarify these questions.

We must distinguish between 5 kinds of data: (1) vernacular commands, (2) programs and
formulas, (3) proofs steps, also sometimes referred to as tactics, (4) Rocq extensions given in the
form of OCaml sources, compiled as plugins and loaded into the Rocq program, and (5) precompiled
libraries. Except for precompiled libraries, these data are inputs submitted by human users in text
form.
Vernacular commands. Rocq provides many vernacular commands for various purposes, nature,
and criticality. Some commands modify the way data will be understood (e.g., adding parsing
directives, defining new tactics, storing theorems into so-called hint databases used in proofs
search automation procedures. . .). These commands do not interact with the type-checker. Other
commands really imply verification by the type-checker. Usually, these directives are related to
adding a new definition or a new theorem in Rocq’s internal database. At this moment, the new
definition or theorem is verified by the kernel. For a theorem in particular, it means that the
whole proof of the theorem is verified for consistency, including the adequation with the claimed
statement. Finally, several commands can be used to query the current state of the kernel, without
modifying it, such as About, or Print. These queries are usually not recorded in Rocq source

5

files, simply because their presence is not needed. However, they can be useful to help better
understanding the contents of a formal development.
Programs and formulas. Text representing programs or formulas is written in a language called
Gallina, and is usually part of a vernacular command whose purpose is to add a new definition
to the Rocq kernel (e.g., Definition, Lemma, etc.). Most of the time, the text is not complete to
the level accepted by the kernel, so a phase of elaboration is performed, to fill in some blanks that
would be too cumbersome to require from users. Once this elaboration is performed, the program
or formula is usually passed through the kernel before exploitation by the encapsulating command.

The degree of transformation performed by the elaboration phase is really dependent on the
vernacular command used by developers. The Russel framework (enabled by the Program com-
mand, or the program attribute in recent Rocq versions) and the Function command are two
good examples of heavy elaboration phases. Since the kernel verifies the correctness of a term
with respect to a type, it is important to verify the exact type of newly introduced definitions (for
instance with About), to ensure they correspond to the developers’ intents.
Proof steps. The third category of input from users consists in the text of goal-directed proofs.
This is usually organized as a semi-structured text, containing steps that transform an initial
question (a theorem statement) into simpler questions (sub-goals), until all goals have been
solved. In a Rocq source file, users only record the steps that are sent to the Rocq system to modify
the goal state, but this script can usually only be understood fully by observing in lock step the
commands sent by the user (and recorded in the Rocq source) and the answers given at each step
by the proof system. From a trust point of view, the steps taken by each tactic may or may not
involve verification by the kernel. It is not crucial, because the operations performed at each step
are gathered in a proof term that is verified by the type-checker at the end of the proof of each
given theorem, when the command Qed or Defined is called. The artifact “remembered” by Rocq
is this proof term, not the proof scripts used to generate it.
Rocq plugins. The fourth category of input from users consists of extensions to the Rocq system
that can be imported in the form of plugins. This category of inputs is usually chosen by expert
users who wish to add powerful proof search capabilities to the system. Most of the time, the
objective is to add new tactics that can be used for the third category of inputs. A few of the plugins
are provided in the Rocq sources: btauto, cc, firstorder, fourier, micromega, nsatz, omega,
setoid_ring, ssr and ssrmatching are mostly concerned with adding new tactics; funind is
concerned with generating new proofs automatically (and these proofs, of course, go through
verification by the type-checker), syntax is concerned with providing comfortable notations for
numbers, and extraction is concerned with producing code for outside use.

From a trust point of view, code written in OCaml is sensitive. The various APIs provided by
Rocq at the level of OCaml are not protective enough to avoid a malicious code writer modifies data
after it has been verified. In other words, it is possible for a Rocq plugin implemented in OCaml to
trick the kernel into accepting ill-formed terms. For this reason, only trusted plugins should be
used in developments where trust is important.

6

Precompiled libraries. The fifth category of data consumed by the Rocq system is made of pre-
compiled libraries. Every time users call the rocq compile or rocq c command, a precompiled
file (with the suffix .vo) is produced from a source file (with the suffix .v) file. In its current way
of operation, the Rocq system produces .vo files by applying its full verification criteria. In other
words, the type-checking algorithm validates the content of a .vo file before it is produced. When
loading a .vo file is requested by a user (usually by calling the Require command), the rocq c
and rocq top commands trust the content of this file blindly. One could envision a scenario where
.vo files are tampered with between production by Rocq and consumption by Rocq in return, in
such a way that logical consistency could be compromised.

The Rocq system provides a tool called rocqchk that verifies the .vo files. Contrary to the
process described in the previous paragraph, this tool reloads all pre-existing libraries and verifies
them using the type-checker. Besides, rocqchk does not load any plugins to verify its inputs, and
therefore shall uncover inconsistencies introduced by incorrect plugins. For trust purposes, this
tool is important.

7

Chapter 3

Rocq Standard Distribution

In Section 2, we have described the architecture of Rocq, and we have identified its kernel. In this
section, we provide recommendations whose purpose is to correctly configure and use this kernel
in a trustworthy manner.

3.1 Version Accountability

Rocq is actively developed by a large team of contributors. A new version is released every six
months, and (significant) features are regularly introduced (e.g., cumulative inductive types in
8.7, mutually recursive records in 8.9, SProp and primitive types in 8.10). In addition to these new
features, the Rocq development team is engaged in a significant effort to improve the overall quality
of the Rocq code base. The Rocq development team has significantly increased their infrastructure
and continuous integration efforts in order to provide a reliable tool with a strong foundation and
good development practices.
Developers Rule 3.1. When starting a new Rocq project, developers shall always use the latest
release of Rocq.

The Rocq development team maintains a (partial) list of critical bugs, which is available in the
Rocq repository. It is their commitment that this list becomes, over time, a reliable source for Rocq
versions accountability.
Developers Rule 3.2. Developers shall clearly identify which version of Rocq they have used.

Evaluators Rule 3.1. Evaluators shall verify that the version of Rocq used in the evaluated formal
development is either not subject to known critical bugs or that the formal development does not
use features impacted by said critical bugs.

Rocq is a mature theorem prover, and comes with a significant number of third-party libraries.

8

https://github.com/rocq-prover/rocq/blob/master/dev/doc/critical-bugs.md

Developers Rule 3.3. Developers shall clearly identify which third-party libraries they use, and
shall provide them as part of their formal development project.

The French Certification Body keeps records of Rocq third-party libraries which can be used
within the French scheme, optionally with certain usage restrictions.
Evaluators Rule 3.2. For third-party libraries unknown to the French Certification Body, Evalua-
tors shall review them with respect to the requirements of this document, with the exceptions of
Section 4.3.

This additional evaluation task is based on one of the following approaches:
• Evaluators review the subsets of third-party libraries which are effectively used in the formal

development. As a consequence, the result of this analysis may not be reusable in the context
of future evaluations.

• Evaluators review the third-party libraries in their entirety. As a consequence, the result of
this analysis is reusable in the context of future evaluations.

3.2 rocqchk

Although the Rocq kernel is advertised as small, Rocq as a formal system comes with a lot of
extensions whose degree of stability and maturity may vary.

By means of plugins, Rocq can gain convenient new functionalities, but it can be at the cost of
trust. Most plugins will provide new ways to construct Rocq terms during the compilation process.
These terms are then stored in .vo files. rocqchk is a tool distributed with Rocq, whose purpose
is to provide a small checker (small by comparison with rocq c) for those files.
Evaluators Rule 3.3. Evaluators shall use rocqchk to recursively verify Rocq build artifacts (.vo),
with the following criteria:
• The output of rocqchk shall be examined to assert the main theorems have effectively been

checked.
• The -norec command-line argument of rocqchk shall not be used
• If rocqchk finds an inconsistency, evaluators shall consider the work units related to the

affected model as failed.
• If rocqchk fails to return a result (i.e., exhibits a divergent behavior), evaluators shall report

it in the Evaluation Technical Report.

3.3 Features Restrictions

Rocq architecture is highly modular and extensible, and as a consequence provide several interfaces
to experts in order to increase its capabilities. Although these interfaces are not supposed to call

9

Rocq kernel trustworthiness into question, Rocq definitely is a highly complex system, and the
impact of changes is often difficult to measure for non-experts.
Typing Rules Rocq’s formal system is based on a sound higher-order logic, meaning it is not
possible to create a proof of False without contradictory hypotheses. However, Rocq also provides
several arguments and options which may endanger this key property.

Since at least Rocq 8.0, the Set sort is predicative by default. Rocq provides an option to change
this behavior (-impredicative-set), making Set impredicative again. This option notably
introduces inconsistencies with respect to certain axioms provided by the standard library.
Developers Rule 3.4. Developers shall not use the -impredicative-set command-line argu-
ment.

-type-in-type is another command-line argument known to make Rocq logic inconsistent.
Its purpose is to collapse the universe hierarchy, meaning Type becomes impredicative.
Developers Rule 3.5. Developers shall not use the -type-in-type command-line argument.

Recent Rocq versions (starting from 8.11) provide vernacular commands to locally disable guard
checking, positivity checking and universes checking (by unsetting related flags). Constants
defined when these flags are unset are advertised as axioms by Rocq’s kernel, but are evaluated
nonetheless.
Developers Rule 3.6. Developers shall not unset the type-checking flags Guard Checking,
Positivity Checking, and Universe Checking.

Plugins. Rocq extensibility notably relies on a plugin framework to dynamically load external
OCaml code. By means of plugins, experts can provide advanced features without the need to
patch and build Rocq from source. Many features of Rocq are implemented as external plugins
(e.g., extraction, tactic language, decision procedures, etc.). Implementing and reviewing a Rocq
plugin quickly requires an important knowledge of the Rocq codebase.
Developers Rule 3.7. Developers can use plugins which are part of the Rocq standard library
without any restrictions.

Many well-established third-party libraries implement their core features by means of plugins.
In particular, the Rocq installer distributed for Windows (version 8.8.2 and later) contains several
well established, actively maintained packages.
Evaluators Rule 3.4. OCaml code provided by third-party libraries shall be considered as actively
used by a formal development as soon as they are loaded by Rocq. As a consequence, evaluators
shall review them.

10

Developers Rule 3.8. If rocqchk exhibits a divergent behavior, then developers shall not use
plugins which are not part of the standard library.

Goal Admissions. The tactic admit and the vernacular command Admitted allow discarding
goals automatically, without the need to actually provide a proof.
Developers Rule 3.9. Developers shall not use the tactic admit, and the vernacular command
Admitted to conclude their proofs.

Feature Conservatism. Not all Rocq features have the same degree of maturity. We favor stable,
battle-tested features over experimental and deprecated ones.
Developers Rule 3.10. Developers shall not use features explicitly flagged as experimental in the
Rocq user manual.

Developers Rule 3.11. Developers shall avoid using features explicitly flagged as deprecated in the
Rocq user manual.

11

Chapter 4

Development Recommendations

In this chapter, we give a set of rules to write Rocq specifications and proof scripts. Their purpose
is to make a Rocq formal development less subject to inadvertent inconsistencies, and easier to
evaluate.

4.1 Axioms and Hypotheses

Rocq allows for introducing opaque, well-typed constants which lack a body, that is a term of
the expected type. One notable way to achieve this is the Parameter vernacular command (or its
synonyms, e.g., Variable, Hypothesis, etc.).
Evaluators Rule 4.1. Starting from version 8.5, the Print Assumptions command shall be used
in order to determine which constants lacking a definition body have been used to prove key
theorems.

We distinguish two use cases for this feature: introducing logical statements which cannot be
proven using Rocq’s logic, and introducing statements which could be proven or defined using
Rocq’s logic, but are identified as out of the scope of the model (e.g., environment assumptions,
axiomatized operations, etc.). In the rest of this document, logical statements which cannot
be proven using Rocq’s logic are referred to as axioms, and statements identified as out of the
scope of the model as hypotheses. Vernacular commands like Parameter and its synonyms do not
differentiate axioms and hypotheses, but they are treated differently nonetheless in the context of
Common Criteria evaluations.
Axioms. The introduction of an axiom is delicate, as it may result in making the Rocq logic
inconsistent. Besides, certain “standard axioms” are known to be inconsistent with Rocq logic
(e.g., the axiom of description together with the excluded middle). However, the standard library
of Rocq provides several axioms that can be safely added to Rocq, according to the Rocq FAQ.

That being said, the standard library provides the means to avoid using most of these axioms.
For instance, e.g., generalized rewriting can be leveraged in place of relying on the proof irrelevance
and functional extensionality axioms.

12

https://github.com/rocq-prover/rocq/wiki/The-Rocq-FAQ
https://rocq-prover.org/doc/V9.0.0/refman/addendum/generalized-rewriting.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Logic.ProofIrrelevance.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Logic.FunctionalExtensionality.html

Developers Rule 4.1. Developers are only allowed to use the logical axioms defined in the
Stdlib.Logic.* modules of the Rocq standard library. Besides, they shall list the logical axioms
they use in their formal development.

Hypotheses. Hypotheses are a necessary concept to model the environment of the Target of
Evaluation. Because they are assumed (rather than defined or proven), hypotheses can pose a
threat to the consistency of a model. We say hypotheses are contradictory when they can be used to
create a proof of False, which then can be used to prove anything. Furthermore, the automation
features of Rocq can make the use of contradictory hypotheses more difficult to uncover.

One approach to prevent the introduction of inconsistent hypotheses is to prove that there
exists at least one model (potentially trivial) which satisfies them. The purpose of this model is
only to demonstrate the hypotheses are not contradictory. From this perspective, the model does
not need to be similar to the product implementation.
Developers Rule 4.2. Developers shall provide a model —potentially trivial— which satisfies
the hypotheses they introduce. They can use a different formal method to that end (e.g., a fully
automated one), but in this case the consistency between the statements in Rocq logic and their
model shall be justified.

We consider a capability system, where capability objects of type Cap grant authorization to
perform certain actions of type Act. The capability system provides two operations:
• merge : Cap→ Cap→ Cap

• grant : Cap→ Act→ Prop

The capability system is assumed to provide the following guarantees:
• merge is symmetric, and associative
• If one of the operands of merge authorizes an action, then the result of merge authorizes this

action
• If none of the operands of merge authorizes an action, then the result of merge does not

authorize this action
The actual implementation of the capability system is likely to be complex, but we can assume

there exists one by introducing a set of hypotheses. One possible approach to group a set of
hypotheses together is to define them within a dedicated typeclass.
Class AccessControl (Cap Act : Type) :=

{
merge : Cap→ Cap→ Cap;
grant : Cap→ Act→ Prop;
merge_sym : forall (c1 c2 : Cap),

merge c1 c2 = merge c2 c1;

13

merge_assoc : forall (c1 c2 c3 : Cap),
merge c1 (merge c2 c3)
= merge (merge c1 c2) c3;

merge_rule_1 : forall (c1 c2 : Cap)
(act : Act),

(grant c1 act ∨ grant c2 act)
→ grant (merge c1 c2) act;

merge_rule_2 : forall (c1 c2 : Cap)
(act : Act),

(∼ grant c1 act ∧ ∼grant c2 act)
→ ∼grant (merge c1 c2) act

}.
To show the hypotheses we have introduced are not contradictory with the following model,

we provide a minimal model. For instance,
• Cap := nat and Act := nat

• merge := max and grant := (>=)
• We prove max is symmetric and associative
• We prove (c1 >= act \/ c2 >= act) -> max c1 c2 >= act

• We prove (c1 < act /\ c2 < act) -> max c1 c2 < act

Rocq provides several approaches to introduce and manipulate hypotheses in a clean way,
namely by:
• Using the Class vernacular command to aggregate them inside a dedicated typeclass.
• Using the Hypothesis vernacular command (or its plural form Hypotheses) within a
Section environment.

• Using the Parameter vernacular command (or its plural form Parameters) within a
Module Sig environment to be used with functor modules.

Developers can also use the Parameter vernacular command (and its synonyms) outside of
a module signature in order to introduce their hypotheses. We warn against this practice, since
there is no way for Rocq to assert the compatibility between the hypotheses and a model which
satisfies these hypotheses in this case. On the contrary, Rocq provides the means to assert such
compatibility for the three approaches previously listed.

4.2 Empty Types

In Rocq, nothing prevents developers from defining types which, contrary to their intent, are
empty. Consider the following definition of binary trees:
Inductive tree (a : Type) : Type :=
| node : a→ tree a→ tree a→ tree a.

14

This definition of tree lacks a base case constructor. It is therefore not possible to construct a valid
term of type tree a. The following type happens to be empty as well, but for a different reason:
Definition max_nat := { n : nat | n = S n }.
The property n = S n is contradictory: there is no such Peano number. Less obvious uninhabited
types can remain undetected if they are only manipulated through the forall quantifier. In
practice, empty types pose a threat similar to contradictory hypotheses.
Developers Rule 4.3. For user-defined types, developers shall prove the existence of at least one
inhabitant, or shall justify in depth their reasons not to provide such a proof. We recommend
introducing an Inhabited typeclass in the first case.

The Inhabited typeclass can be defined and used as follows.
Class Inhabited (A: Type): Type := inhabit { inhabitant: A }.
Inductive Foo: Type := Bar: nat→ Foo.
Instance Foo_inhabited: Inhabited Foo := inhabit _ (Bar O).

Evaluators Rule 4.2. Evaluators shall ensure main theorems do not use logical quantifiers with
user-defined types which lack a proof of the existence of at least one inhabitant.

4.3 Coding Style

There is no well-established coding style for Rocq development. The present document does not
attempt to fill this gap, but rather to identify and discourage known bad practices.
Standard Library Precedence The standard library is a collection of Rocq library which is dis-
tributed with the formal system. By default, the Init libraries are loaded automatically by Rocq.
The use of the standard library is ubiquitous in the Rocq community.
Developers Rule 4.4. Developers shall take care not to reuse terminology already used by the
standard library, to avoid any confusion.

Redefining a custom data-type named list is likely to confuse evaluators.
Inductive list (a : Type) :=
| Push (l : list a) (x : a)
| Empty.

15

Command Recommended usages
Lemma Proven formal statements
Hypothesis Logical statements which can be proven using

Rocq logic, but are hypotheses of the model
Table 4.1: Example of restricted use of vernacular commands

To avoid confusion, use a different name.
Inductive sequence (a : Type) :=
| Push (l : sequence a) (x : a)
| Empty.

Vernacular Commands Rocq provides many redundant keywords and commands, e.g., Remark,
Fact, Lemma, Theorem, Corollary, Definition can be used to prove statements.
Developers Rule 4.5. Developers shall take extra care to use as few vernacular commands as
possible. Their use shall remain consistent throughout their formal developments, in order to
facilitate understanding of their development (see Table 4.1 for an example).

Sections. Rocq provides a convenient factoring mechanism to avoid code duplication and boiler-
plate. Within a Section, developers can declare local constants (using various keywords, such as
Hypotheses or Variable). If a definition introduced inside the section uses such a constant, the
latter becomes a parameter of the former once the Section has been closed. We can illustrate this
mechanism with the lmap function, as defined in the following snippet:
Section lmap.
Variables (a b : Type) (f : a→ b).
Fixpoint lmap (l : list a) : list b :=
match l with
| x::rst⇒ cons (f x) (lmap rst)
| nil⇒ nil
end.

End lmap.
The output of the Print command within the section is as follows:

lmap =
fix lmap (l : list a) : list b :=

match l with
| nil => nil
| (x :: rst)%list => (f x :: lmap rst)%list

16

end
: list a -> list b

Both the type and the body of lmap are identical to our definition. However, using the same
command outside of the section gives a slightly different result. Because lmap makes use of the
variable f, lmap now requires additional arguments.
lmap =
fun (a b : Type) (f : a -> b) =>
fix lmap (l : list a) : list b :=

match l with
| nil => nil
| (x :: rst)%list => (f x :: lmap rst)%list
end

: forall a b : Type, (a -> b) -> list a -> list b

Sections allow for organizing Rocq developments similarly to pencil proofs. By default, long
Sections can make predicting the exact type of a definition harder, because the type written
by the developer is extended when the Section is closed. However, there exists a variant of the
Proof vernacular command which can be used to list Section’s variables used to prove a given
statement. For instance, given following snippet:
Section test.
Variable exfalso : False.
Lemma use_exfalso : ∼True.
Proof using.
destruct exfalso.

Qed.
End test.

Rocq will output the following error message when processing the Qed command.
Error:
The following section variable is used but not declared:
exfalso.

You can either update your proof not to depend on exfalso, or you can
update your Proof line from
Proof using
to
Proof using exfalso

Developers Rule 4.6. When using the section mechanism to formulate the statement of their
main theorems, developers shall make the list of hypotheses used in the proof explicit with the

17

Proof using feature.

Rocq Syntax Extensibility. Rocq provides several features which aim to make writing code easier.
The most famous feature is probably the Notation vernacular command. Notation allows for
extending the Rocq parser on-the-fly. Correctly leveraged, this feature can help make formal
developments more concise and readable. However, overused, it can have the opposite effect, and
it can make a Rocq codebase harder to read or modify. Evaluators of formal developments may
want to edit the codebase, e.g., in order to find hypotheses inconsistencies.
Developers Rule 4.7. Notations shall favor regular ASCII characters over Unicode characters, so
that they do not require a particular IDE setup to use them.

The Notation command allows for fine-tuning in terms of associativity and precedence. In
theory, this allows improving the readability of a development, by removing dispensable paren-
theses. In practice, leaning on notation’s precedence and associativity can quickly introduce major
ambiguity for the evaluators.
Developers Rule 4.8. Developers shall use parentheses to explicit notations precedence in the
following cases:
• The statement of the main theorems, especially if they mix several logical operators (e.g.,

universal quantifiers, implications, and equivalences).
• Any notations introduced by developers.

Do not assume evaluators know by heart the precedence and associativity level of each notation.
Lemma p_and_q_or_q_and_p : P ∧ Q ∨ Q ∧ P.

Instead, make them explicit using parentheses.
Lemma p_and_q_or_q_and_p : (P ∧ Q) ∨ (Q ∧ P).

There is another convenient feature that Rocq provides for developers to reduce the verbosity
of their development: implicit coercions. A coercion is a function of type A → B that Rocq will be
able to insert automatically and implicitly in Gallina terms where a term of type A is used in place
of an expected term of type B.

We consider the function of_nat, which maps 0 to false and any other natural number to
true.
Definition of_nat : nat→ bool :=
fun x⇒ negb (Nat.eqb x 0).

We can tell Rocq to use this function as a coercion from nat to bool, using the Coercion
command.

18

Coercion of_nat : nat↣ bool.
Afterwards, we can use nat terms wherever we would have to use bool.

Definition nat_neg : nat→ bool := negb.
Coercions are implicit by default, meaning that we will not be able to see them when we inspect

the model (e.g., using the Print command):
Print nat_neg.
nat_neg = fun b : nat => negb b

: nat -> bool

Fortunately, it is possible to tell Rocq we want coercions to be explicit:
Set Printing Coercions.

Printing nat_neg this time gives the following output:
nat_neg = fun b : nat => negb (of_nat b)

: nat -> bool

Developers Rule 4.9. Developers shall justify their uses of implicit coercions, in particular with
respect to their impact on the readability of statements of the main theorems.

Evaluators Rule 4.3. Evaluators shall use the Set Printing Coercions vernacular command
when they review the model.

Proof Handling A key concept of Rocq is that proofs are regular terms that happen to live in a
particular sort (Prop). To ease the definition of such terms, Rocq provides an interactive environ-
ment along with a dedicated language called Ltac. Ltac’s so-called proof scripts are translated into
Gallina terms and then type checked. For instance, the induction tactic is translated into the
application of the proofs of the subgoals generated by the tactic to the induction principle of the
term passed as an argument. Similarly, the destruct tactic is typically translated into a match
statement. The Print command can be leveraged in order to illustrate that mechanism.
Inductive even : nat→ Prop :=
| even_O : even O
| even_S_S_n (n : nat) (even : even n) : even (S (S n)).
Lemma even_n_or_even_S_n (n : nat)

: even n ∨ even (S n).
Proof.
induction n as [| n IHn].
+ left; constructor.
+ destruct IHn as [IHn|IHn].
* right.

19

now constructor.
* now left.

Qed.
Print even_n_or_even_S_n.

will output:
even_n_or_even_S_n =
fun n : nat =>
nat_ind (fun n0 : nat => even n0 \/ even (S n0)) (or_introl even_O)

(fun (n0 : nat) (IHn : even n0 \/ even (S n0)) =>
match IHn with
| or_introl IHn0 => or_intror (even_S_S_n n0 IHn0)
| or_intror IHn0 => or_introl IHn0
end) n

: forall n : nat, even n \/ even (S n)

It is possible to write the definition of even_n_or_even_S_n directly in Gallina, but in practice
proofs terms tend to quickly become of large size. Also, the resulting Ltac proof script is much
closer to what a pencil proof of the same statement would look like, compared to the generated
term.
Developers Rule 4.10. Developers shall take care to carefully organize their proof scripts to make
them readable and reviewable. In particular, they shall use goal markers (e.g., +, −, or *).

A “flat” proof script is hard to read.
induction n as [| n IHn].
left; constructor.
destruct IHn as [IHn|IHn].
right.
now constructor.
now left.

Using appropriate markers, the structure of the proof becomes clearer and the resulting proof
script easier to read.
induction n as [| n IHn].
+ left; constructor.
+ destruct IHn as [IHn|IHn].
* right.
now constructor.

20

* now left.

Developers Rule 4.11. Developers shall enclose their proof scripts with appropriate vernacular
commands (e.g., Proof, Next Obligation on the one hand, and Qed or Defined on the other
hand) even when this is not strictly required by Rocq.

Rocq allows for writing a proof script directly after a lemma statement, but this is considered a bad
practice.
Lemma modus_ponens (P Q : Prop) (p : P) (imp : P→ Q) : Q.
apply imp.
exact p.

Qed.

The vernacular command Proof shall be used to explicit the entry point of a proof script in this
context.
Lemma modus_ponens (P Q : Prop) (p : P) (imp : P→ Q) : Q.
Proof.
apply imp.
exact p.

Qed.
Note that, in addition to these requirements, developers should consider keeping the size of

their proof scripts manageable. In practice, a long proof script (e.g., more than 100 lines) can be
reduced by isolating intermediary results which can be proven as auxiliary lemmas. Conforming
to this approach can greatly improve the readability of a formal development, and therefore ease
the work of evaluators.
Hints. Rocq provides several features to enable proof automation, such that the theorem prover
tries to construct proof terms through “heuristics” (provided by the Rocq distribution or by
developers). To add new “heuristics,” the Hint family of vernacular command is leveraged:
• Hint Resolve my_lemma will make certain tactics (e.g., auto) try to apply my_lemma to

progress in the current goal resolution
• Hint Rewrite my_equation will make the auto_rewrite tactics try to use my_equation

to progress in the current goal resolution
• Hint Extern my_ltac will make certain tactics (e.g., auto) try to use the tactics my_ltac

to solve the current goal
The use of Hint, albeit very convenient, can have a significant impact over Rocq’s performance,

and make the resulting proof’s shape hard to predict.
21

Developers Rule 4.12. Developers shall always assign their hints to a hint database, preferably
dedicated to their project although this is not mandatory (e.g., they can be added to the core
database if needed).

Metaprogramming. Since Rocq 8.5, it is possible to use Ltac within a Gallina term. This enables
powerful metaprogramming development. Indeed, the same Ltac script may generate totally
different Gallina terms depending on the goal to solve.
Developers Rule 4.13. Developers shall only use ltac:(...) with a tactic. The tactic name shall be
carefully chosen to be self-explanatory.

Definition test_nat : nat :=
ltac:(match goal with

| ⊢ nat⇒ exact 0
| ⊢ bool⇒ exact true
end).

Ltac choose_default :=
match goal with
| ⊢ nat⇒ exact 0
| ⊢ bool⇒ exact true
end.

Definition test_nat: nat :=
ltac:(choose_default).

Consistent Naming. While variables can be arbitrarily named when introduced, it is sensible to
keep a consistent naming scheme in order to help evaluators reviewing the code. Types can also
be aliased, care should be taken about which name to use given the context in the code.
Developers Rule 4.14. Developers shall use a consistent naming scheme with regards to typing
when introducing variables.

Suppose that a user-defined type permission is introduced.
Lemma perm_eq_dec: forall (p op: permission),

22

{ p = op } + { p <> op }.
The variable op could be confused with a variable of another type (e.g., operation) at first glance.

Lemma perm_eq_dec: forall (p1 p2: permission),
{ p1 = p2 } + { p1 <> p2 }.

Lemma perm_eq_dec': forall (p p': permission),
{ p = p' } + { p <> p' }.

Developers Rule 4.15. Developers shall take care to use the right name when adding type annota-
tions with regards to aliases.

Definition error_raised: Type := bool.
Definition trace_has_error (l: list error_raised): bool :=
List.fold_left (fun (acc b: bool) ⇒ acc || b) false.

Definition error_raised: Type := bool.
Definition trace_has_error (l: list error_raised): bool :=
List.fold_left (fun (acc: bool) (b: error_raised) ⇒ acc || b) false.

Type Annotations. While Rocq can infer types, adding type annotations to definitions and
theorem statements can significantly help evaluators reviewing the code.
Developers Rule 4.16. Developers shall add type annotations to all definitions, lemma and theorem
statements.

Definition has_true l :=
List.fold_left (fun acc b⇒ acc || b) false.

Lemma has_true_iff:
forall l,

23

(has_true l = true↔ exists n, List.nth_error l n = Some true).

Definition has_true (l: list bool): bool :=
List.fold_left (fun (acc b: bool) ⇒ acc || b) false.

Lemma has_true_iff:
forall (l: list bool),

(has_true l = true↔ exists (n: nat), List.nth_error l n = Some true).

Unused Function Parameters. Unused function parameters can be misleading, and must be
avoided as much as possible.
Developers Rule 4.17. Unused parameters in function definitions must be avoided as much as
possible, or, otherwise, they must be explained and made explicit by the use of an underscore.

Definition incorrect_thunk_one (x: unit) := 1%nat.

Definition correct_thunk_one (_: unit) := 1%nat.

4.4 Code Structure

Dependency graph In order to make evaluation and reviewing of Rocq developments easier, we
recommend to provide evaluators with a dependency graph of definitions, lemmas, theorems, etc
using for instance coq-dpdgraph1. This could be done in addition with describing the files to help
evaluators navigating them.

1https://github.com/rocq-community/coq-dpdgraph

24

https://github.com/rocq-community/coq-dpdgraph

	Introduction
	Rocq Architecture
	Rocq Standard Distribution
	Version Accountability
	rocqchk
	Features Restrictions

	Development Recommendations
	Axioms and Hypotheses
	Empty Types
	Coding Style
	Code Structure

