
Run-time firmware integrity verification:
what if you can’t trust your network card?

International Symposium on Recent Advances in Intrusion Detection
Menlo Park, September 2011

Loïc Duflot, Yves-Alexis Perez, Benjamin Morin

ANSSI
French Network and Information Security Agency

firstname.lastname@ssi.gouv.fr

Introduction

Embedded devices

I Embedded systems are increasingly prevalent in computers
I Network cards, hard drive controllers, chipsets, basebands, etc.
I Some have high processing capabilities (“smart” devices)
I They act as black-box execution environments

I They constitute a potential threat for the platforms’ security
I They have access to sensitive information
I They generally lack the protections available on standard proces-

sors (e.g., an MMU)
I They potentially run with high privileges w.r.t the main operating

system

ANSSI – French Network and Information Security Agency 2/26

Introduction

Attacks against embedded devices

I Vulnerabilities were found in several embedded software and firmware
in the past few years :

Basebands Weinmann [13]
Network controllers Duflot and Perez [4], Triulzi [12], Delugré [3]

Keyboard controllers Chen [2], Gazet [6]
Chipsets Ortega and Sacco [9]

I Defending a system against such attacks is difficult because firmware
are running out of the scope of the operating system.

I Existing IDSes have probably overlooked these attacks
I they mainly monitor the operating system and applications
I those attacks are still quite new

ANSSI – French Network and Information Security Agency 3/26

Introduction

Example from our own proof-of-concept attack

I In [4], we demonstrated how it is possible for an attacker to take
full control of a computer

I by exploiting a vulnerability in the network adapter, and
I adding a back-door in the OS kernel using DMA accesses ;
I the back-door opens a reverse shell when the kernel processes an

ICMP message with a particular type.
I Our proof-of-concept attack was based on a real world vulnera-

bility
I the vulnerability lied in the ASF remote administration function of

the network adapter of the target machine.
I it was unconditionally exploitable when the ASF function was acti-

vated to any attacker that would be able to send UDP packets to
the machine.

ANSSI – French Network and Information Security Agency 4/26

Problem statement

Problems & existing solutions
Compromised device?

Consequences

system I full OS compromise
I rootkit re-injection at startup

platform I attacks against other devices on the same buses [11]
network I silent data leak

I stepping stone to attack the whole network silently
I won’t be blocked by firewalls on vulnerable machines

Counter-measures
system I I/O MMU (Intel Vt-d and AMD IOMMU)

platform I PCI Express Access Control Services
network I ?

ANSSI – French Network and Information Security Agency 5/26

Problem statement

Problems & existing solutions
Compromised device?

Consequences

system I full OS compromise
I rootkit re-injection at startup

platform I attacks against other devices on the same buses [11]

network I silent data leak
I stepping stone to attack the whole network silently
I won’t be blocked by firewalls on vulnerable machines

Counter-measures
system I I/O MMU (Intel Vt-d and AMD IOMMU)

platform I PCI Express Access Control Services

network I ?

ANSSI – French Network and Information Security Agency 5/26

Problem statement

Problems & existing solutions
Compromised device?

Consequences

system I full OS compromise
I rootkit re-injection at startup

platform I attacks against other devices on the same buses [11]
network I silent data leak

I stepping stone to attack the whole network silently
I won’t be blocked by firewalls on vulnerable machines

Counter-measures
system I I/O MMU (Intel Vt-d and AMD IOMMU)

platform I PCI Express Access Control Services
network I ?

ANSSI – French Network and Information Security Agency 5/26

Problem statement

Firmware integrity checks

We need to check the firmware’s integrity
I At load time

I Peripherals’ firmware should be measured during a trusted boot
I This can be achieved by means of a TPM

I At runtime
I Our objective is to check that the firmware is running untampered
I The operating system acts as the verifier of the network card’s ex-

ecution
I We assume that the operating system is trusted

ANSSI – French Network and Information Security Agency 6/26

Problem statement

Existing solutions

Remote firmware attestation [7, 8] ?
I Based on a challenge-response protocol

I The target computes a checksum over its entire memory
I The verifier checks the correctness of the returned checksum

I Remote firmware attestation is difficult [1, 10, 5]
I Severe constraints imposed by the checksum function execution
I Is it really suitable for a network card?

Software symbiotes ?
I might be an interesting solution, requires further investigations
I seems quite intrusive

..

ANSSI – French Network and Information Security Agency 7/26

Problem statement

Existing solutions

Remote firmware attestation [7, 8] ?
I Based on a challenge-response protocol

I The target computes a checksum over its entire memory
I The verifier checks the correctness of the returned checksum

I Remote firmware attestation is difficult [1, 10, 5]
I Severe constraints imposed by the checksum function execution
I Is it really suitable for a network card?

Software symbiotes ?
I might be an interesting solution, requires further investigations
I seems quite intrusive

..

ANSSI – French Network and Information Security Agency 7/26

Problem statement

Existing solutions

Remote firmware attestation [7, 8] ?
I Based on a challenge-response protocol

I The target computes a checksum over its entire memory
I The verifier checks the correctness of the returned checksum

I Remote firmware attestation is difficult [1, 10, 5]
I Severe constraints imposed by the checksum function execution
I Is it really suitable for a network card?

Software symbiotes ?
I might be an interesting solution, requires further investigations
I seems quite intrusive

..

ANSSI – French Network and Information Security Agency 7/26

Problem statement

Existing solutions

Remote firmware attestation [7, 8] ?
I Based on a challenge-response protocol

I The target computes a checksum over its entire memory
I The verifier checks the correctness of the returned checksum

I Remote firmware attestation is difficult [1, 10, 5]
I Severe constraints imposed by the checksum function execution
I Is it really suitable for a network card?

Software symbiotes ?
I might be an interesting solution, requires further investigations
I seems quite intrusive

..

ANSSI – French Network and Information Security Agency 7/26

Embedded device intrusion detection approach

What is a network card?

Quite simple in theory
I transfer ethernet frames from the host to the wire
I and vice versa

Increasingly complex in practice...
I advanced capabilities (PXE, TSO...)
I platform administration functions
I active even when OS is down or absent
I runs a firmware on embedded CPU

ANSSI – French Network and Information Security Agency 8/26

Embedded device intrusion detection approach

What is (graphically) a network card?

ANSSI – French Network and Information Security Agency 9/26

Embedded device intrusion detection approach

Intrusion detection model

I Our detection method is anomaly-based
I The model of normal behavior is based on the NIC’s memory layout
I The memory profile is built empirically, by means of the observed

NIC’s memory accesses during “normal” network sessions
I Memory areas used to execute code, read and/or write data are

distinguished in the model
I The card in run in step-by-step (debug) mode during detection
I Any memory access that is outside the NIC’s memory profile is

interpreted as an attempt to divert the firmware’s control flow
I Heuristics used to detect anomalous memory accesses

I Step-by-step instruction comparison
I Step-by-step instruction address checking
I Shadow return stack

ANSSI – French Network and Information Security Agency 10/26

Embedded device intrusion detection approach

Detection heuristics (1/2)

Step-by-step instruction comparison
I Basically consists in checking that the instruction that is to be

run is the same as the reference model’s one
I This technique only works if the code is not self modifying (which

is the case for the firmware we are considering)

Step-by-step address checking
I Basically consists in checking that the instruction pointer value is

consistent
I The network card running code in the heap, in the stack or in the

memory scratchpad is indicative of an anomaly

ANSSI – French Network and Information Security Agency 11/26

Embedded device intrusion detection approach

Detection heuristics (2/2)

Shadow call stack
I Basically consists in maintaining a copy of the call stack of the

firmware on the host side
I On an identified CALL-like instruction, the return address is pushed

on the shadow stack
I On an identified RET-like instruction, the return address is checked

against the saved one

Other heuristics (not implemented)
I Another heuristic could consist in searching for anything that

meets the statistical profile of executable code in data area
I This detection technique is prone to false positives

ANSSI – French Network and Information Security Agency 12/26

Prototype implementation : NAVIS

Network Adapter Verification and Integrity checking Solution
We designed our verification framework, NAVIS

I based on card instrumentation
I implements detection heuristics
I prevents control flow modifications

We used:
I Broadcom BCM5754 and BCM5755M network cards
I ASF firmware

Preventing confusion:
From now on:

CPU is the main CPU on the motherboard, running the OS
MIPS is the management processor on the network controller

ANSSI – French Network and Information Security Agency 13/26

Prototype implementation : NAVIS

Instrumenting the card

I Accessing NIC’s memory
I The NIC’s internal memory is mapped in the main memory
I This mechanism provides access to the firmware running on the NIC

I Identifying memory areas
I Broadcom docs and drivers reveal that firmware files have three

areas (text, data, rodata)
I But they do not provide the mappings for these area
I The mappings can be identified by tracking the MIPS activity

I NIC’s internal registers
I state, control and breakpoint registers are accessible from the host

..
This allows us to monitor the activity of the firmware, detect
anomalous behaviours and stop the adapter when a problem is
detected

ANSSI – French Network and Information Security Agency 14/26

Prototype implementation : NAVIS

Instrumenting the card

I Accessing NIC’s memory
I The NIC’s internal memory is mapped in the main memory
I This mechanism provides access to the firmware running on the NIC

I Identifying memory areas
I Broadcom docs and drivers reveal that firmware files have three

areas (text, data, rodata)
I But they do not provide the mappings for these area
I The mappings can be identified by tracking the MIPS activity

I NIC’s internal registers
I state, control and breakpoint registers are accessible from the host

..

This allows us to monitor the activity of the firmware, detect
anomalous behaviours and stop the adapter when a problem is
detected

ANSSI – French Network and Information Security Agency 14/26

Prototype implementation : NAVIS

Instrumenting the card

I Accessing NIC’s memory
I The NIC’s internal memory is mapped in the main memory
I This mechanism provides access to the firmware running on the NIC

I Identifying memory areas
I Broadcom docs and drivers reveal that firmware files have three

areas (text, data, rodata)
I But they do not provide the mappings for these area
I The mappings can be identified by tracking the MIPS activity

I NIC’s internal registers
I state, control and breakpoint registers are accessible from the host

..
This allows us to monitor the activity of the firmware, detect
anomalous behaviours and stop the adapter when a problem is
detected

ANSSI – French Network and Information Security Agency 14/26

Prototype implementation : NAVIS

Instrumenting the card

I Accessing NIC’s memory
I The NIC’s internal memory is mapped in the main memory
I This mechanism provides access to the firmware running on the NIC

I Identifying memory areas
I Broadcom docs and drivers reveal that firmware files have three

areas (text, data, rodata)
I But they do not provide the mappings for these area
I The mappings can be identified by tracking the MIPS activity

I NIC’s internal registers
I state, control and breakpoint registers are accessible from the host

..
This allows us to monitor the activity of the firmware, detect
anomalous behaviours and stop the adapter when a problem is
detected

ANSSI – French Network and Information Security Agency 14/26

Prototype implementation : NAVIS

Instrumenting the card

I Accessing NIC’s memory
I The NIC’s internal memory is mapped in the main memory
I This mechanism provides access to the firmware running on the NIC

I Identifying memory areas
I Broadcom docs and drivers reveal that firmware files have three

areas (text, data, rodata)
I But they do not provide the mappings for these area
I The mappings can be identified by tracking the MIPS activity

I NIC’s internal registers
I state, control and breakpoint registers are accessible from the host

..

This allows us to monitor the activity of the firmware, detect
anomalous behaviours and stop the adapter when a problem is
detected

ANSSI – French Network and Information Security Agency 14/26

Prototype implementation : NAVIS

Network controller memory map
code exec instructions executed by the MIPS

MIPS writes addresses written by the MIPS (SH, SB, SW)
MIPS reads addresses read by the MIPS (LH/LHU, LB/LBU, LW)

other writes network packets written to the card memory by DMA from host and by PHY from
the wire

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

0x0 0x20000

co
u
n
t

address

R/W/X memory mapping

EXT W
CPU X
CPU R
CPU W

RCB
TX
ring

RX
ring

TXMBUF RXMBUF scratchpad

cpu stack

ANSSI – French Network and Information Security Agency 15/26

Prototype implementation : NAVIS

Memory map analysis

External writes
I in RX/TX rings . and in the

scratchpad area . (traffic from
and to the main host)

I in unmapped areas... .
I inside the MIPS code area! .

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

0x0 0x20000

co
u
n
t

address

R/W/X memory mapping

EXT W
CPU X
CPU R
CPU W

RCB
TX
ring

RX
ring

TXMBUF RXMBUF scratchpad

cpu stack

.....

ANSSI – French Network and Information Security Agency 16/26

Prototype implementation : NAVIS

Memory map analysis

MIPS execution
I mostly at the beginning of

scratchpad . plus few instruc-
tions at the end .

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

0x0 0x20000

co
u
n
t

address

R/W/X memory mapping

EXT W
CPU X
CPU R
CPU W

RCB
TX
ring

RX
ring

TXMBUF RXMBUF scratchpad

cpu stack

...

ANSSI – French Network and Information Security Agency 16/26

Prototype implementation : NAVIS

Memory map analysis

MIPS reads/writes
I in the Rings .Control Blocks

and TXMBUF . (presumably ASF

traffic)
I in the scratchpad, with four dif-

ferent areas:
I just after the main code area .
I in the packets area (presum-

ably ASF traffic) .
I just after the MIPS code area
I after the MIPS code area,

just before scrachpad end (the
stack) .

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

0x0 0x20000

co
u
n
t

address

R/W/X memory mapping

EXT W
CPU X
CPU R
CPU W

RCB
TX
ring

RX
ring

TXMBUF RXMBUF scratchpad

cpu stack

......

ANSSI – French Network and Information Security Agency 16/26

Prototype implementation : NAVIS

Challenges in monitoring the MIPS

I Control flow instructions
I No CALL/RET instructions on MIPS architecture
I Fortunately, the firmware code is rather simple
I Function calls can reliably be inferred from jump instructions (JAL)

and a specific register (R31) used to store return addresses
I Interrupts triggered by the network adapter

I Cause unexpected changes in the control flow (looks like an attack)
I The firmware uses a single interrupt handler, starting at a fixed

address
I Return from the interrupt vector is done through register R27
I Dealing with interrupts is manageable by monitoring this behaviour

ANSSI – French Network and Information Security Agency 17/26

Prototype implementation : NAVIS

Summary
we know I where the MIPS reads and writes data

I where the MIPS executes code
I how to find function calls and RET

issues I there are external writes to the MIPS code area
I there are writes in unmapped areas
I interrupts make it harder to follow control flow

remarks I no way to enforce rodata
I no such thing as NX on those MIPS processor
I no segmentation/pagination

This allows to detect any unexpected change in the control flow
I When a return value is modified on the stack
I But data on the stack, heap and scratchpad can still be modified

by the attacker.

ANSSI – French Network and Information Security Agency 18/26

Experimental results

It works!

We tried the various proof-of-concept attacks we created as
part of previous researches

I they are all detected
I an alert is reported in NAVIS
I the network controler is stopped
I one can either reset the card and start fresh,
I or try to investigate in the debugger

Since we detect control flow modification, other attacks should be
detected as well

ANSSI – French Network and Information Security Agency 19/26

Experimental results

Performance

I The monitoring is expected to have a negative impact on the NIC’s
performance

I The MIPS CPU is run in step-by-step mode
I Various tests are done at each MIPS cycle (bounds, call stack, etc.)
I So each MIPS cycle requires many CPU cycles

I Still, performance is not that poor
I We still manage to achieve gigabit speed...
I ... at the cost of 100% CPU usage on one core (active loop and

context switches)
I However, what is really important is

I packets rate and packet loss
I when firmware processes packets
I when NAVIS checks are active (ASF traffic)

ANSSI – French Network and Information Security Agency 20/26

Experimental results

I UDP/9

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0

 50000

 100000

 150000

 200000

 250000

% pp
s

CPU
Interrupt

#recv

-20

 0

 20

 40

 60

 80

 100

 120

 0

 50000

 100000

 150000

 200000

 250000

% pp
s

I UDP/623

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0

 2000

 4000

 6000

 8000

 10000

 12000

% pp
s

CPU
Interrupt

#recv

Without Navis

-20

 0

 20

 40

 60

 80

 100

 120

 0

 50

 100

 150

 200

 250

 300

% pp
s

With Navis
ANSSI – French Network and Information Security Agency 21/26

Conclusion and future work

Limitations of the approach

I The detection model is highly adapter-specific:
I we tested on BCM5754 and BCM5755M adapters
I it could be adapted to other Broadcom adapters (provided they use

the same kind of firmwares)
I our concept can be ported to other devices as long as similar debug

capabilities are present
I Can an attacker prevent us to control the NIC?
I We cannot prevent arbitrary writes in code area (since standard

behavior seems to allow it)
I High processing cost

ANSSI – French Network and Information Security Agency 22/26

Conclusion and future work

Conclusion
We proposed NAVIS, a firmware integrity attestation
framework:

I firmware integrity attestation is a (very) hard problem
I our proof of concept is highly firmware and adapter specific

NAVIS can detect and prevent most low level attacks on NIC
firmware

I But it requires the OS to be trusted.
I And protecting the OS stays the highest priority.

If the embedded devices implement more functions, could they have
more protections too?

ANSSI – French Network and Information Security Agency 23/26

Conclusion and future work

Questions & Answers
Thank your for your attention

Do you have any question?

No network cards were harmed in the making of this paper

ANSSI – French Network and Information Security Agency 24/26

Conclusion and future work

Bibliography I
[1] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente. On the

difficulty of software-based attestation of embedded devices. In Proceedings of 16th ACM
Conference on Computer and Communications Security, November 2009.

[2] K. Chen. Reversing and exploiting an apple firmware update. BlackHat, 2009.

[3] Guillaume Delugré. Closer to metal : Reverse ingineering the broadcom netextreme’s
firmware. Hack.lu, 2010.

[4] Löıc Duflot and Yves-Alexis Perez. Can you still trust your network card? CanSecWest,
2010.

[5] Aurélien Francillon, Claude Castelluccia, Daniele Perito, and Claudio Soriente. Comments
on “refutation of on the difficulty of software based attestation of embedded devices”. -, 2010.

[6] Alexandre Gazet. Sticky fingers & kbc custom shop. -, 2011.

[7] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. SBAP: Software-Based Attestation for
Peripherals. In Proceedings of the 3rd International Conference on Trust and Trustworthy
Computing (Trust 2010), June 2010.

[8] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. VIPER: Verifying the integrity of pe-
ripheral’s firmware. In Proceedings of CCS’11, 2011.

[9] Alfredo Ortega and Anibal Sacco. Deactivate the rootkit. BlackHat, 2009.

ANSSI – French Network and Information Security Agency 25/26

Conclusion and future work

Bibliography II

[10] Adrian Perrig and Leendert Van Doorn. Refutation of “on the difficulty of software based
attestation of embedded devices”. -, 2010.

[11] Fernand L. Sang, Eric Lacombe, Vincent Nicomette, and Yves Deswarte. Exploiting an
I/OMMU vulnerability. In MALWARE ’10: 5th International Conference on Malicious and
Unwanted Software, pages 7–14, 2010.

[12] Arrigo Triulzi. Taking NIC backdoors to the next level. CanSecWest, 2010.

[13] Ralf-Philipp Weinmann. All Your Baseband Are Belong To Us. CCC, 2010.

ANSSI – French Network and Information Security Agency 26/26

	Introduction
	Problem statement
	Embedded device intrusion detection approach
	Prototype implementation : NAVIS
	Experimental results
	Conclusion and future work

