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Introduction

Embedded devices

I Embedded systems are increasingly prevalent in computers
I Network cards, hard drive controllers, chipsets, basebands, etc.
I Some have high processing capabilities (“smart” devices)
I They act as black-box execution environments

I They constitute a potential threat for the platforms’ security
I They have access to sensitive information
I They generally lack the protections available on standard proces-

sors (e.g., an MMU)
I They potentially run with high privileges w.r.t the main operating

system
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Introduction

Attacks against embedded devices

I Vulnerabilities were found in several embedded software and firmware
in the past few years :

Basebands Weinmann [13]
Network controllers Duflot and Perez [4], Triulzi [12], Delugré [3]

Keyboard controllers Chen [2], Gazet [6]
Chipsets Ortega and Sacco [9]

I Defending a system against such attacks is difficult because firmware
are running out of the scope of the operating system.

I Existing IDSes have probably overlooked these attacks
I they mainly monitor the operating system and applications
I those attacks are still quite new
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Introduction

Example from our own proof-of-concept attack

I In [4], we demonstrated how it is possible for an attacker to take
full control of a computer

I by exploiting a vulnerability in the network adapter, and
I adding a back-door in the OS kernel using DMA accesses ;
I the back-door opens a reverse shell when the kernel processes an

ICMP message with a particular type.
I Our proof-of-concept attack was based on a real world vulnera-

bility
I the vulnerability lied in the ASF remote administration function of

the network adapter of the target machine.
I it was unconditionally exploitable when the ASF function was acti-

vated to any attacker that would be able to send UDP packets to
the machine.
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Problem statement

Problems & existing solutions
Compromised device?

Consequences

system I full OS compromise
I rootkit re-injection at startup

platform I attacks against other devices on the same buses [11]
network I silent data leak

I stepping stone to attack the whole network silently
I won’t be blocked by firewalls on vulnerable machines

Counter-measures
system I I/O MMU (Intel Vt-d and AMD IOMMU)

platform I PCI Express Access Control Services
network I ?
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Problem statement

Firmware integrity checks

We need to check the firmware’s integrity
I At load time

I Peripherals’ firmware should be measured during a trusted boot
I This can be achieved by means of a TPM

I At runtime
I Our objective is to check that the firmware is running untampered
I The operating system acts as the verifier of the network card’s ex-

ecution
I We assume that the operating system is trusted
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Problem statement

Existing solutions

Remote firmware attestation [7, 8] ?
I Based on a challenge-response protocol

I The target computes a checksum over its entire memory
I The verifier checks the correctness of the returned checksum

I Remote firmware attestation is difficult [1, 10, 5]
I Severe constraints imposed by the checksum function execution
I Is it really suitable for a network card?

Software symbiotes ?
I might be an interesting solution, requires further investigations
I seems quite intrusive

..
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Embedded device intrusion detection approach

What is a network card?

Quite simple in theory
I transfer ethernet frames from the host to the wire
I and vice versa

Increasingly complex in practice...
I advanced capabilities (PXE, TSO...)
I platform administration functions
I active even when OS is down or absent
I runs a firmware on embedded CPU

ANSSI – French Network and Information Security Agency 8/26



Embedded device intrusion detection approach

What is (graphically) a network card?
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Embedded device intrusion detection approach

Intrusion detection model

I Our detection method is anomaly-based
I The model of normal behavior is based on the NIC’s memory layout
I The memory profile is built empirically, by means of the observed

NIC’s memory accesses during “normal” network sessions
I Memory areas used to execute code, read and/or write data are

distinguished in the model
I The card in run in step-by-step (debug) mode during detection
I Any memory access that is outside the NIC’s memory profile is

interpreted as an attempt to divert the firmware’s control flow
I Heuristics used to detect anomalous memory accesses

I Step-by-step instruction comparison
I Step-by-step instruction address checking
I Shadow return stack
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Embedded device intrusion detection approach

Detection heuristics (1/2)

Step-by-step instruction comparison
I Basically consists in checking that the instruction that is to be

run is the same as the reference model’s one
I This technique only works if the code is not self modifying (which

is the case for the firmware we are considering)

Step-by-step address checking
I Basically consists in checking that the instruction pointer value is

consistent
I The network card running code in the heap, in the stack or in the

memory scratchpad is indicative of an anomaly
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Embedded device intrusion detection approach

Detection heuristics (2/2)

Shadow call stack
I Basically consists in maintaining a copy of the call stack of the

firmware on the host side
I On an identified CALL-like instruction, the return address is pushed

on the shadow stack
I On an identified RET-like instruction, the return address is checked

against the saved one

Other heuristics (not implemented)
I Another heuristic could consist in searching for anything that

meets the statistical profile of executable code in data area
I This detection technique is prone to false positives
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Prototype implementation : NAVIS

Network Adapter Verification and Integrity checking Solution
We designed our verification framework, NAVIS

I based on card instrumentation
I implements detection heuristics
I prevents control flow modifications

We used:
I Broadcom BCM5754 and BCM5755M network cards
I ASF firmware

Preventing confusion:
From now on:

CPU is the main CPU on the motherboard, running the OS
MIPS is the management processor on the network controller
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Prototype implementation : NAVIS

Instrumenting the card

I Accessing NIC’s memory
I The NIC’s internal memory is mapped in the main memory
I This mechanism provides access to the firmware running on the NIC

I Identifying memory areas
I Broadcom docs and drivers reveal that firmware files have three

areas (text, data, rodata)
I But they do not provide the mappings for these area
I The mappings can be identified by tracking the MIPS activity

I NIC’s internal registers
I state, control and breakpoint registers are accessible from the host

..
This allows us to monitor the activity of the firmware, detect
anomalous behaviours and stop the adapter when a problem is
detected
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Prototype implementation : NAVIS

Network controller memory map
code exec instructions executed by the MIPS

MIPS writes addresses written by the MIPS (SH, SB, SW)
MIPS reads addresses read by the MIPS (LH/LHU, LB/LBU, LW)

other writes network packets written to the card memory by DMA from host and by PHY from
the wire
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Prototype implementation : NAVIS

Memory map analysis

External writes
I in RX/TX rings . and in the

scratchpad area . (traffic from
and to the main host)

I in unmapped areas... .
I inside the MIPS code area! .
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Prototype implementation : NAVIS

Memory map analysis

MIPS execution
I mostly at the beginning of

scratchpad . plus few instruc-
tions at the end .
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Prototype implementation : NAVIS

Memory map analysis

MIPS reads/writes
I in the Rings .Control Blocks

and TXMBUF . (presumably ASF

traffic)
I in the scratchpad, with four dif-

ferent areas:
I just after the main code area .
I in the packets area (presum-

ably ASF traffic) .
I just after the MIPS code area
I after the MIPS code area,

just before scrachpad end (the
stack) .
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Prototype implementation : NAVIS

Challenges in monitoring the MIPS

I Control flow instructions
I No CALL/RET instructions on MIPS architecture
I Fortunately, the firmware code is rather simple
I Function calls can reliably be inferred from jump instructions (JAL)

and a specific register (R31) used to store return addresses
I Interrupts triggered by the network adapter

I Cause unexpected changes in the control flow (looks like an attack)
I The firmware uses a single interrupt handler, starting at a fixed

address
I Return from the interrupt vector is done through register R27
I Dealing with interrupts is manageable by monitoring this behaviour
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Prototype implementation : NAVIS

Summary
we know I where the MIPS reads and writes data

I where the MIPS executes code
I how to find function calls and RET

issues I there are external writes to the MIPS code area
I there are writes in unmapped areas
I interrupts make it harder to follow control flow

remarks I no way to enforce rodata
I no such thing as NX on those MIPS processor
I no segmentation/pagination

This allows to detect any unexpected change in the control flow
I When a return value is modified on the stack
I But data on the stack, heap and scratchpad can still be modified

by the attacker.
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Experimental results

It works!

We tried the various proof-of-concept attacks we created as
part of previous researches

I they are all detected
I an alert is reported in NAVIS
I the network controler is stopped
I one can either reset the card and start fresh,
I or try to investigate in the debugger

Since we detect control flow modification, other attacks should be
detected as well
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Experimental results

Performance

I The monitoring is expected to have a negative impact on the NIC’s
performance

I The MIPS CPU is run in step-by-step mode
I Various tests are done at each MIPS cycle (bounds, call stack, etc.)
I So each MIPS cycle requires many CPU cycles

I Still, performance is not that poor
I We still manage to achieve gigabit speed...
I ... at the cost of 100% CPU usage on one core (active loop and

context switches)
I However, what is really important is

I packets rate and packet loss
I when firmware processes packets
I when NAVIS checks are active (ASF traffic)
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Experimental results

I UDP/9
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Conclusion and future work

Limitations of the approach

I The detection model is highly adapter-specific:
I we tested on BCM5754 and BCM5755M adapters
I it could be adapted to other Broadcom adapters (provided they use

the same kind of firmwares)
I our concept can be ported to other devices as long as similar debug

capabilities are present
I Can an attacker prevent us to control the NIC?
I We cannot prevent arbitrary writes in code area (since standard

behavior seems to allow it)
I High processing cost
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Conclusion and future work

Conclusion
We proposed NAVIS, a firmware integrity attestation
framework:

I firmware integrity attestation is a (very) hard problem
I our proof of concept is highly firmware and adapter specific

NAVIS can detect and prevent most low level attacks on NIC
firmware

I But it requires the OS to be trusted.
I And protecting the OS stays the highest priority.

If the embedded devices implement more functions, could they have
more protections too?
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Conclusion and future work

Questions & Answers
Thank your for your attention

Do you have any question?

No network cards were harmed in the making of this paper
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Conclusion and future work
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