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Abstract. In the last few years, many different attacks against com-
puting platform targeting hardware or low level firmware have been
published. Such attacks are generally quite hard to detect and to de-
fend against as they target components that are out of the scope of the
operating system and may not have been taken into account in the secu-
rity policy enforced on the platform. In this paper, we study the case of
remote attacks against network adapters. In our case study, we assume
that the target adapter is running a flawed firmware that an attacker may
subvert remotely by sending packets on the network to the adapter. We
study possible detection techniques and their efficiency. We show that,
depending on the architecture of the adapter and the interface provided
by the NIC to the host operating system, building an efficient detection
framework is possible. We explain the choices we made when designing
such a framework that we called NAVIS and give details on our proof of
concept implementation.
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1 Introduction

In [8], we demonstrated how it is possible for an attacker to take full control
of a computer by exploiting a vulnerability in the network adapter1. This proof
of concept shows how it is possible for an attacker to take full control of the
adapter and to add a backdoor in the OS kernel using DMA accesses. The vul-
nerability was unconditionally exploitable when the ASF function was enabled
on the network card to any attacker that would be able to send UDP packets to
the victim.

While preventing the network card from tampering with the operating sys-
tem is possible using existing mechanisms, having a compromised network card
remains a real problem, not only because the network card is a critical compo-
nent from the security perspective, but also because a compromised device can
be used to compromise surrounding peripherals on the computer.

Possible countermeasures were considered in [8], but none of them seemed
really convincing. The best way to prevent a network card from being compro-
mised would probably consist in formally verifying that the code running in the

1 See http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0104.
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firmware is correct. Considering that network adapters’ firmware code is increas-
ingly complex and generally proprietary, the prevention problem is brought down
to a detection problem. In this paper2, we propose a pragmatic approach to de-
tect network card corruptions, where the monitor is located inside the operating
system. As much as we know, the kind of attacks we are trying to detect has
not been the subject of many papers in the intrusion detection community. Still,
these attacks represent a real threat considering the privilege level an attacker
might gain in successfully exploiting the underlying vulnerabilities. Moreover,
we believe that studying a detection approach (as opposed to a prevention one)
is relevant, as the vulnerabilities reside in a component which is not completely
under user control.

Our contribution is twofold. First, we raise the community’s awareness of the
threats associated with widespread devices by illustrating the effectiveness of an
attack against a network device. Second, we present a solution to this problem
in the form of an anomaly detection system called NAVIS (Network Adapter
Verification and Integrity checking Solution). This solution is based on several
detection paradigms and aims at instantly blocking attacks against firmware em-
bedded on the target network device. Our goal is to block attacks corresponding
to a modification of the control flow of the embedded device, while maintaining
good performance and virtually avoid false positives. As an illustration of the
efficiency of the NAVIS framework, we focus on a particular network adapter
and developed a proof of concept implementation of our detection system.

The paper is organised as follows. In section 2, we present existing mech-
anisms to assess firmware integrity. Section 3 summarizes our previous attack
on a network card and its implications on the security of a system. Then, we
present the assumptions for our work, on which we build our firmware corruption
detection system. Our prototype implementation of the monitor is described in
section 5. Section 6 illustrates the effectiveness of our approach and presents
experimental results. Before concluding and evoking future work, we discuss the
limitations of our approach.

2 Problem Statement and Related Work

2.1 Attacks against firmware

In the last few years, several researchers have examined the security of firmware
and embedded software in various devices, such as basebands [27], network
cards [25,7], keyboard controllers [6] or chipsets [24].

These attacks might enable an intruder to take full control of the component
and use it as a stepping stone to run other attacks against the OS (through DMA
attacks) or other peripherals. Even without bouncing on the component, the
attack itself might be interesting to eavesdrop data (keylogger on the keyboard
controller) or perform man in the middle stealthily (on the network card).

2 Our results have been presented in the CanSecWest 2011 conference [9].



2.2 Countermeasures

Defending a system against such attacks is difficult as firmware are running out
of the scope of the operating system and potentially have a wide access on other
systems resources (like the PCI bus) and there is not much control over what
they actually do.

Patching is the most obvious countermeasure. However, one can only patch
known vulnerabilities, and patching firmware is even harder than patching appli-
cations on an operating system. Moreover, adapters often start running resident
firmware in ROM before dynamically loading a newer firmware. This resident
firmware cannot be patched, so there might be a window of opportunity before
a new, fixed firmware can be safely loaded.

As we will see later, IOMMUs can help protect the system, but it is not 100%
efficient as it might not protect other peripherals, as shown by Sang et al. [21].
Besides, IOMMU does not protect the affected subsystem, whose corruption can
be critical, especially in the case of a network card (as previously mentioned, it
may lead to e.g., passive eavesdropping).

Many vulnerability mitigation techniques have been proposed in the litera-
ture for defending against arbitrary code execution attacks ; these include ad-
dress space layout randomization (ASLR) [22], canaries [13], W⊕X principle
(a.k.a NX bit), data tainting. However, some of them can independently be
circumvented by attackers. W⊕X techniques for can instance be circumvented
using Return oriented Programming (ROP) and canaries will fail to be efficient
against ROP without returns [5], [23]. But most importantly, these defense tech-
niques are impractical in the case of firmware because these systems generally
lack the required basic features since they run on hardware-constrained devices
with embedded CPUs like MIPS.

Our approach basically consists in verifying the integrity of the firmware of
a network card at runtime in order to detect malicious control flow alterations.
Generally speaking, run-time integrity verification consists in checking that an
untrusted target is running untampered. In the remainder of this section, we
focus on two kinds of protection approaches against arbitrary code execution
attacks, namely CFI (Control Flow Integrity) and Remote firmware attestation.

2.3 Control flow integrity

Classical Control Flow Integrity (CFI) [1] security policy dictates that software
must follow a path of a Control-Flow Graph determined ahead of time. The
CFG can be determined by analysis (source code analysis, binary analysis or
execution profiling).

In its objectives, our intrusion detection approach is similar to CFI, applied
to a firmware, as proposed by Francillon et al. [11]. We control access to mem-
ory regions, which can be seen as a form of Software Memory Access Control
(SMAC), and we use a shadow call stack to achieve detection. Our monitor uses
an execution profile of the network card, which can be seen as a very coarse and
primitive form of access control policy. The profile is built ahead of time and is



derived from an inspection of multiple executions of the firmware. It is used by
the monitor at runtime to detect abnormal executions.

However, our approach differs from CFI in its design. First, we do not rewrite
the code of the firmware. Second, we do not have a fine grained model to dy-
namically ensure that the control flow remains within an expected control flow
(i.e., Control Flow Graph).

Similar to CFI, software guards [4,10] use program rewriting techniques in
order to insert code elements in a host program. These elements may perform
arbitrary tasks at runtime to protect the host program against illegitimate modi-
fications (e.g., self-checksumming). They have primarily been used to implement
software cracking protections, but software guards could be used to implement
temper-resistance features inside firmwares.

2.4 Remote firmware attestation

Runtime integrity verification can be achieved with software-based remote at-
testation [15]. The verification is performed by a trusted verifier during the
execution of the target. In our case, the target would be the network adapter
and the verifier would be the operating system.

Remote device attestation is based on a classical challenge-response protocol,
where the verifier first sends a random nonce n to the target. The target then
computes a checksum over its entire memory using n as seed3 and returns the
checksum to the verifier. The verifier then checks the correctness of the result.

The target data and unused code memory is erased with a predictable value.
Memory is read in a pseudo-random traversal to prevent checksum precomputa-
tion. All interrupts are disabled during the computation of the checksum. The
device is reset after the checksum is returned

The verifier has a copy of the expected target’s memory content and compares
the checksum returned by the target with its own computation. The verifier also
checks that the computation time is within fixed bounds

As discussed by several authors [3,17,12], remote firmware attestation is diffi-
cult. First, a malware could keep a (compressed) copy of the legitimate firmware
code in memory and redirect memory reads to compute the correct checksum. For
this reason, checksum computation time must be predictable and near-optimal in
order to detect checksum computation overheads caused by memory redirects.
Also, the verifier must know the exact hardware configuration of the target.
Second, data memory must be reset into a predictable state before attestation
with pseudo-random values because otherwise, data memory is unpredictable
and may contain malware code.

In [15], remote firmware attestation has been implemented on Apple Alu-
minum Keyboard firmware, which is a rather simple device. Still, attestation
takes up to two seconds, during which the peripheral is unresponsive. This leads
us to the following question : is remote firmware attestation adequate for com-
plex devices such as network adapters? Indeed, the checksum function imposes

3 The nonce is used as a seed to prevent replay attacks.



severe constraints : it requires to reset the memory of the device and block all
interrupts, which can be time consuming for the device. Moreover, the assump-
tion that the device cannot communicate with a third-party machine during
computation may not hold (especially for a network adapter...). As a summary,
we doubt whether firmware attestation is currently suited for devices with harsh
time constraints.

2.5 Other IDS-oriented protections

Other approaches have been proposed to monitor the integrity of a system at a
low level. By using a dedicated hardware coprocessor to monitor the integrity of
the memory (Copilot [18]), by using an embedded microcontroller in the chipset
(DeepWatch [2]), or by embedding the verifier in System Mode Management
(HyperGuard [20], HyperCheck [26]). However, these mechanisms are primarily
designed to protect the main operating system, and it is unclear whether they
can be used to monitor the integrity of peripherals. Moreover, some require a
trusted network card for remote attestation (e.g., [26]), which is “problematic”
in our case.

3 Exploiting network adapters firmware vulnerabilities

In [8], we demonstrated how it is possible for an attacker to subvert the execution
of a network adapter by exploiting a software fault in its firmware code and then
gain control over the operating system.

Network adapters have become complex objects. Indeed, they are not only
used to process network frames and transfer them between the wire and the
operating system anymore. They are also used as out-of-band low-cost manage-
ment devices. Their position in the hardware stack (i.e., between the operating
system and the network) has led manufacturers to develop new remote adminis-
tration functions like ASF (Alert Standard Format), IPMI (Intelligent Platform
Management Interface) or AMT (Active Management Technology), which allow
network adapters to communicate with a command and control node. More-
over, those administration functions are active even with a broken, powered-off
or even absent operating system, which means that they have a very privileged
position on the motherboard and have access to other components (like System
Management Bus (SMBus), PCI bus or ACPI).

The administration functions are not handled completely in hardware but
rather using a management CPU included on adapters, which runs an embedded
firmware and performs various tasks (network frames handling, authentication,
interactions with the platform, etc.). The CPU inspects network frames before
sending them to the OS and, when the adapter is the final destination, process
the whole packets to perform the administrative tasks.

The vulnerability that was exploited in [8] lied in the authentication part
of the ASF firmware of some Broadcom NetXtreme adapters. When ASF was



enabled, the adapter was vulnerable to remote code execution before any au-
thentication was performed, meaning that an attacker could run any code on
the embedded CPU. On the card itself it was possible to examine each and ev-
ery packet (from and to the OS), to send packets to a remote machine for later
inspection or to reconfigure the card itself (a proof of concept changing MAC
addresses and LED configuration was done). Attacking the platform was also
possible, for example by forcing an ACPI restart through the SMBus.

Using a DMA attack, it was possible to compromise the running kernel and
insert a backdoor in it. In our attack, the backdoor basically consisted in opening
a reverse shell when certain type of ICMP packet were processed by the host.

Other attacks are conceivable, which do not require to fully compromise
the host operating system (e.g., SSLstrip-like attacks, ARP and DNS caches
poisoning, packet drops, etc.), which is why it is not sufficient to protect the
host from a compromised network card. We need to be able to detect network
card corruption.

4 Detecting network adapter firmware corruption

This section describes the principle of the NAVIS network adapter integrity
checker. NAVIS is a kind of anomaly detection system which checks memory
accesses performed by the NIC processor against a model of expected behaviour
based on its memory layout profile. Any memory access that is outside the NIC
memory profile is interpreted as an attempt to divert the firmware control flow.
Of course, profiling the memory layout of the network card is a prerequisite to
try to detect attacks. In the remainder of this section, we first present our basic
assumptions for our detection system before describing the memory profiling
approach. The anomaly detection heuristics are described in the last part of this
section. The details of implementation, the practical obstacles, and how they are
circumvented are described in the next section.

4.1 Assumptions

Our objective is to detect an adapter firmware corruption at runtime from the
host operating system. Therefore, we need to assume that the operating system
is trusted (i.e., that it cannot be compromised by the controller), as it plays
the role of the verifier. We also assume that the firmware is not compromised
in the initial state of the system, i.e., we have to check the controller firmware’s
integrity at system startup. We believe that these two assumptions are realistic
by using standard mechanisms that equip current computers.

Firmware load-time integrity can be enforced using a TPM (Trusted Plat-
form Module) [14]. A TPM is a secure cryptographic chip present on most x86
platforms, whose primary goal is to allow the operating system to verify the
integrity of the platform. Specific software (including embedded software) can



be measured by the operating system using the TPM to detect unexpected con-
figuration changes. Peripherals’ firmware should be part of the components that
are measured during the trusted boot pathway. After a (trusted) kernel is booted,
the network driver will force a firmware reload, using a trusted file on the system
(integrity checked via TPM calls) and the reset the embedded CPU.

As pointed out by Rutkowska [19], using so-called Dynamic Root of Trusts
can even solve race conditions at boot time. We consider such techniques to
provide an efficient solution to the problem of integrity verification of embedded
software at load-time. As a result, we do not study such a problem in this paper.

Operating system’s runtime integrity can be enforced by means of an
IOMMU mechanism. Once the system is booted in a trusted state (thanks to a
TPM and the dynamic root of trusts), an IOMMU protects it from DMA attacks
initiated from the devices by only allowing them access to a specific (and private)
area of the main memory. Any attempt to access memory outside that area fails
and triggers an alert on the system.

Other types of attacks against the operating system (either direct or through
userland applications) are outside the scope of this paper.

4.2 Model of the network adapter

Figure 1 sketches the typical architecture of a network card. The PHY is re-
sponsible for sending and receiving signals on the wire and performing physical
and logical conversions. The SRAM is the volatile memory area where packets
are temporarily stored before being sent to the operating system by means of
the DMA controller of the card. The management CPU is an on-chip processor
which operates independently of all architectural blocks and is intended to run a
custom firmware that can be used for custom frame processing. Many different
firmware types exist, e.g., management firmware (for ASF, IPMI or AMT) or
accelerators like TSO (TCP segmentation Offloading).

Model of the memory layout As NAVIS monitors NIC memory accesses, we
now focus on the memory of the network card.

In theory, the architecture of a network adapter should be quite simple. Like
most embedded systems, NICs are based on a Von Neumann memory archi-
tecture, where executable code and data are located in a single address space.
The software which makes up a firmware is usually executed as a monolithic
application. As a result, firmware generally lacks memory protections that are
commonly found on custom systems (such as a memory management unit, ran-
domization or NX features) because they do not require memory protection
between different applications or isolation between kernelland and userland.

In fact, one may argue that the integration of additional features in network
adapters (see section 3) should make these protections a requirement. However,
apart from the fact that it would probably degrade the NIC performances, having



Fig. 1: Architecture of network adapter

a more sophisticated adapter in a computer would give rise to other questions
regarding the security model of the overall system.

To sum up, our approach is based on a flat memory model that combines
both code and data, on top of which we enforce access restrictions and control
flow integrity verifications.

Next, the memory layout model must distinguish precisely those memory
areas that are used to execute code, to read and write data, and specify which
areas are in read-only mode. In the case of the network card, data read and write
operations can be performed by three components of the card : the management
CPU, the DMA controller and the PHY.

The DMA controller and the PHY are used to transfer packets between the
host and the wire, which are stored in a specific place in the card memory. Some
area is reserved too for storing the structures used to synchronize DMA transfers
between the host and the card (mainly pointers to the packets themselves).

The management CPU uses some memory for the code it executes, for the
read-only data shipped with the firmware and for the various structures usually
needed (like room for a stack and heap). As it usually needs to process some
packets (e.g management packets for ASF or TCP packets for TSO), it can read
and write on the memory area used for storing packets. The management CPU
also has access to the sending area because it might need to send packets.



Building the reference memory layout One of the obstacles that came up
in building the reference memory layout of the network card used in our exper-
iments is that the purposes of the various memory areas are not public.

Therefore, we have built the reference memory layout of the network card
empirically, by monitoring the NIC activity during typical network sessions :
large HTTP download, SSH sessions and legitimate ASF traffic (session open,
a few ”query” commands and session close). The data obtained is a good rep-
resentation of the network controller activity. Details on the memory reference
model acquisition are given in section 5.3.

Figure 3 (p.14) shows the memory map of the card used in our experiments.
Of course, this memory map is highly card-specific, but our acquisition proce-
dure can applied to other card models, provided that the cards can be tightly
controlled by the host.

4.3 Detection heuristics

Based on the memory model presented previously, NAVIS uses three comple-
mentary detection heuristics to detect network controller firmware corruptions.
The first two aim at enforcing access restrictions on memory areas. The third
one is used to detect potential control flow integrity violations and uses a shadow
return stack.

During the initialization phase, NAVIS records a golden model of the firmware,
which serves as a reference for the subsequent verifications. As a reminder, we
assume that the golden model is authentic (see 4.1). NAVIS then acts as a de-
bugger to keep track of the NIC CPU operations and update its internal model of
the NIC status. The following verifications a performed at each state transition.

Step-by-step instruction address checking: Based on the memory layout
model, NAVIS checks the consistency of the instruction pointer at each execution
step. If the instruction pointer points to a memory area that corresponds to the
heap, the stack or the scratchpad, then a code injection attack followed by a
control flow redirection probably occurred.

Step-by-step instruction comparison: In addition to the previous verifica-
tion, NAVIS also checks that there is a match between the instruction that is
to be run by the CPU and the one that should be run according to the golden
model. A mismatch is indicative of a code injection in the NIC memory, in which
case the NIC is stopped.

Of course, this heuristic is valid only if the code is not self modifying. This
assumption does not seem excessive : despite their increasing complexity, one
does not expect network cards to require the execution of self-modifying code
for their legitimate processing.

This assumption might need to be revisited at some point. Management
firmware already include software like web and application servers, it might be



possible that in the future java-based applications become available, where code
would be written in memory before beeing executed, and thus there would be
no golden model for that part. Anything using just in time execution would fail
the assumption.

Shadow stack : In order to detect malicious control flow alterations, we main-
tain a simplified copy of the call stack of the firmware on the verifier side, called
the shadow stack. The shadow call stack is used to verify that a function call
returns to the callsite most recently used for invoking the function. Of course,
the shadow call stack must be maintained in a protected memory, so that the
attacker cannot modify it. In our case, the shadow call stack is maintained on
the host side, in userland, which is assumed to be trusted.

The shadow stack is updated every time a CALL-like or a RET-like instruction
is executed by the firmware as follows:

– on a CALL instruction, the return address is pushed on the shadow stack;
– on a RET instruction, the target return address is matched against the one

that was previously saved on the shadow stack; a difference between the two
addresses is the sign of an anomaly.

The concept of a shadow call stack is not original by itself, but its implemen-
tation turns out to be complex on a concrete network adapter whose firmware
architecture is not known (see section 5.5 for details). The main challenges ac-
tually reside in the identification of CALL and RET instructions and in the
presence of interrupts triggered by components of the NIC. These interrupts are
susceptible to disrupt the control flow of the firmware which is monitored.

This approach is similar in its principle to the Instruction-Based Memory
Access Control mechanism proposed by Francillon [11], except that we do not
have to implement the monitor inside the firmware. This is possible because
the former has physical access to the latter, and because we assume that the
network card cannot subvert the operating system. In a way, our settings are
less constraining than his, but they are also the only viable solution considering
that we do not modify the underlying NIC hardware.

Step-by-step instruction address checking may seem superfluous, consider-
ing that the attack types it detects are included in those that are detected by
the shadow stack. However, step-by-step instruction address checking may prove
useful in practice when the specificities of a given network adapter make the im-
plementation of shadow stack protection inaccurate (in particular, dealing with
on-board interrupts is a difficult task, see 5.5). We chose to use all three tech-
niques considering that our implementation of the shadow stack technique might
not be perfect (because of specificities of the network adapter). The shadow stack
is also the slowest method so it makes sense to enable it only when it is really
needed.

Other heuristics : Another way to detect code injection attacks could consist
in scanning the memory in search of values whose statistical distribution matches



that of executable code in memory areas that are supposed to contain data only
(heap, stack and scratchpad). Such data locations are used to store ethernet
packets and there is no reason why data stored there should meet the statistical
profile of binary instructions.

We mention this type of detection criterion here, but it has not been imple-
mented. Indeed, due to its statistical nature, this approach is more error prone
than the previous ones, and its benefits are uncertain. Also, scanning the whole
packet area every time a packet arrives would be time consuming and would
degrade the performances of NAVIS.

5 Implementation of NAVIS

In the remainder, we consider the case of the Broadcom NetXtreme network
adapter. Those adapters can be found on various type of machines but are gen-
erally integrated on mainboard of desktop and laptops sold by HP and Dell. The
variants used in this study are mobile versions of the 575x series.

5.1 Quick description of the Broadcom NetXtreme network
adapters

Broadcom provides a complete set of specifications of their network adapters for
open source driver development which we used as a basis for our work.

The network card follows the model shown in Fig. 1. The management
firmware is run by a MIPS CPU which has access to the various components
and especially the whole memory area.

The memory layout is described in Broadcom documentation though a lot of
space is either undocumented or explicitly marked as unmapped. Depending on
the documentation version, read access to unmapped areas returns all zeros or
unexpected data while write access are dropped internally or have no effect. In
practice, useful data can sometime be found on unmapped areas.

The host communicates with the card through different ways. The driver can
configure it using MMIO address space (including DMA configuration) and then
sends and receives data through DMA reads and writes in a reserved address
space setup initially. The data structures used to communicate with the cards
are called rings since they are circular buffers. Several such rings are used for
sending and receiving packets, both in the card memory and in the main host
memory. The rings contain pointers (in a structure called buffer descriptor) to
the packet, and the ring is controlled by a structure named ring control block.
These structures are located in various places in the card memory.

The firmware uses area allocated from the card memory space. It needs room
for storing the code as well as the various data structures (heap, stack etc.).



5.2 Low level interface to the device

We first need to be able to reach the network card (and especially the embedded
CPU and the firmware) from the operating system to allow NAVIS to perform
various verifications to ensure firmware integrity.

Such an interface was implemented to analyse the vulnerability presented
in section 3, as well as to craft an external debugger for the network adapter’s
embedded MIPS CPU that executes the firmware. The same interface is reused
to analyse the standard behaviour of the firmware and monitor the CPU activity
in real time from the host and detect strange or unusual behaviours.

From our previous study, we know that many interesting components of
the network card are directly accessible to the host, like registers and internal
memory. Everything is accessible in the MMIO region dedicated to interactions
between the network card and the driver.

Among the registers that are directly accessible from the host:

– the program counter indicates what is the next instruction which will be
fetched and executed by the embedded CPU,

– state registers indicate whether the embedded CPU is stalled or not (and if
so, why),

– control registers allow us to run the embedded CPU of the network adapter
step by step,

– breakpoint registers allow us to selectively enable debug conditions associ-
ated with addresses.

Access to internal memory is achieved by using a memory window (Fig. 2).
This mechanism provides direct access to the firmware running on the adapter:
reading an address in the card memory means writing the base address to the
relevant register and reading at the correct offset in the MMIO address space.

5.3 Memory profiler

Identifying code and data area: The documentation and driver code show
that firmware files have three areas (text (code), data, and read-only data), but
the exact mappings into the card memory are not specified, so we first need to
identify them.

Thanks to the low-level interface to the NIC, the following operations of the
embedded CPU are monitored:

– code execution: instructions executed by the CPU,
– CPU write operations: addresses written by the CPU (SB, SH, SW4),
– CPU read operations: addresses read by the CPU (LB/LBU, LH/LHU, LW5),
– other write operations : network packets written to the card memory by

DMA from host and by PHY from the wire.

4 store byte, halfword, word
5 load byte, byte upper, half word, half word upper, word .



Fig. 2: Memory window

By monitoring these events we can map the CPU activity. The mapping
will be highly adapter and firmware specific, but the same analysis could be
performed for other combinations.

We made a record of that activity during a somehow standard network ses-
sion: large HTTP download, SSH sessions and legitimate ASF traffic (i.e., session
open, a few ”query” commands for the system state and session close). The data
obtained is a good representation of the network controller activity since the host
sends and receives various traffic and the network controller receives, processes
and sends ASF packets, performs authentication and session management, and
communicates with the platform for collecting information about the system
state.

5.4 Memory map analysis

According to the memory map (Fig. 3), we know where the CPU reads and
writes data: first in the structures used for replying to ASF traffic (the ring
control blocks, the transmit ring and the TXMBUF area, where packets are
stored before sending), then in the scratchpad (a generic writeable area, where
received packets are stored for handling), and finally the CPU stack and heap. We
also know where the CPU executes code (in a space taken from the RXMBUF
and scratchpad area where the firmware is stored), with a main area and a
secondary area just before the stack.

We also note that there are external writes to the CPU code area and writes
in areas noted as unmapped in the documentation. Other external writes include
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network packets from and to the host, located in the RX and TX rings and network
packets to the adapter (ASF traffic), stored in the scratchpad.

Finally, it’s important to note that there is no way to enforce rodata and that
there is no segmentation/pagination mechanisms.

5.5 Implementation of the detection heuristics

Step-by-step instruction address checking: The instruction checks are easy
but highly specific. The analysis should therefore been done for each NIC model
and each firmware version.

The first heuristic checks the program counter against code bounds. The
recorded model defines some areas where code is expected to be located, and
code execution outside these areas by the CPU is indicative of an attack. This
verification is more complex to implement than the next one because it was not
possible to find a unique code area on this specific card model and firmware
version combination. Thus, multiple checks must be done because there are one
main area and several sub-areas. An incomplete model (i.e, one which does not
cover the whole ranges of operations for the analysed firmware) may lead to false
positives and false negatives.

Step-by-step instruction comparison: The second heuristic compares the
content of the memory area pointed to by the program counter (which is the



address of the next instruction to be executed) and compares it to the recorded
golden model. A mismatch between the two indicates that the code has been
overwritten and that an attack is ongoing (since we assume that the code is not
self-modifying). In this case, the monitor halts the embedded CPU.

Implementation of the shadow stack Maintaining a shadow stack on the
host is complex because we need to identify function CALLs and RETs. Unfortu-
nately, the firmware runs on a MIPS architecture, and there are no such instruc-
tions in MIPS assembly language.

On MIPS architecture with 32 internal general purpose registers, r29 is usu-
ally used as a stack pointer and r31 to hold a return value while r0 is always
zero. Other registers are used for general operations.

MIPS CPU only have jump and branch instructions. For instance, BEQ is
branch on equal, JAL is jump and link (jump to immediate address and store
return address in r31), and JR r is jump register (jump to address stored in
register r).

Fortunately, the firmware that we are monitoring is pretty simple :

– function calls are done through the JAL instructions,

– there are no function pointers. JAL are always performed on absolute values,

– returns from functions are done through JR 31.

In theory, locating function CALLs and RETs is not difficult. However, we have
to manage interrupts, which can be triggered in the network adapters asyn-
chronously. Some of them can be predicted (by looking at the MIPS CPU status
registers), but it is difficult to predict the exact CPU cycle when the interrupt
will be triggered. Interrupts cause unexpected changes in the control flow of the
network adapter and can cancel instructions (because of the MIPS delay slot).
Therefore, we need to take interrupts into account to implement our shadow
stack.

In the firmware we are looking at, there is only one interrupt handler starting
at a fixed address (interrupt vector), and return from the handler is done through
JR r27. As a result, identifying interrupts is possible : we need to detect unex-
pected jumps to the interrupt vector and check that the program will go back
using JR r27. However, interrupts sometimes cause errors on the shadow stack:
the MIPS delay slot is ignored on interrupt, so we need to take that into account.
Indeed, if an interrupt is taken when a CALL instruction (or a RET) instruction
is in the delay slot, the CPU will indeed perform as if running this instruction
(causing a modification of the shadow stack) when in fact this instruction is
ignored (as if replaced by a NOP in the CPU pipeline). As a consequence, each
time our framework detects an interrupt, we check whether the last instruction
that was supposed to be run was a CALL or a RET instruction. If it is the case,
that means that our shadow stack is incorrect and we have to correct it.



6 Experimental results

6.1 Effectiveness of the detection

Needless to say that the kinds of attacks we are trying to detect are extremely
specific. Therefore, it would not make sense to check the effectiveness of our tool
against, e.g. the DARPA evaluation dataset.

Also, our intrusion detection system basically consists in finding evidences
of code injection and control flow redirects in the memory of the network card
using simple heuristics, so our detector cannot actually be tuned. Therefore,
using ROC curves (receiver operating characteristic curves) to test it would
not be relevant either [16] (plotting the true-positive rate of detection against
the corresponding false-positive rate of error implies a degree of freedom in the
settings of the detector).

One way to evaluate the effectiveness of our intrusion detection system ex-
perimentally may consist in testing it against a set of various attacks (e.g., stack
overflow, return-oriented programming) and/or vulnerabilities of the same type.
However, implementing variants of arbitrary code execution attacks is time-
consuming, especially on exotic and undocumented architectures. Moreover, as
our detection approach only relies on the measurable effects of the attacks on the
monitored system (not on attack signatures), merely applying code obfuscation
techniques do not seem to be relevant.

As a summary, we can essentially speculate on the detection effectiveness
from a theoretical point of view.

6.2 Experimental Settings

As a consequence, we chose a very simple experimental setting.
For our experiment, we used a Dell D530 laptop using a 5755M Broadcom

NetXtreme adapter running a firmware vulnerable to the different kinds of at-
tacks we presented in [8]. The laptop is running Debian Squeeze with our NAVIS
detection framework.

In one setting of the experiment, the target PC is directly connected to
the internet through the adapter we are monitoring and we manually simulate
standard user actions (FTP downloads, web browsing etc.). At the same time,
we allowed automatic processes to access resources on the web several days in
a row. In a second setting we directly connect the adapter to a PC emulating
an attacker sending attack packets that will try to exploit vulnerabilities in the
adapter. Three different types of payload are used for the experiments.

In our first experiment, none of the packets associated with regular traffic
did trigger any alert from NAVIS. On the contrary, all three different kind of
attacks using ASF traffic were successfully detected by NAVIS.

6.3 Performance

We were expecting that our detection framework would drastically decrease the
performances of the machine we are monitoring. Indeed, we run the MIPS CPU



in step-by-step mode, at each MIPS cycle we do various tests (bounds, call
stack...), so each MIPS cycle leads to a lot of host CPU cycles. As a result,
NAVIS uses 100% CPU for one core even when the adapter is not processing
traffic. Indeed, when the MIPS processor is idle (because there is no ASF traffic
at all) it loops on an waiting procedure which means the host CPU still analyses
the various steps.

The network adapter speed itself is not impaired by the detection technique.
Even after activating NAVIS, we still achieve gigabit speed. This comes from
the fact that the firmware we are monitoring only processes special kind of UDP
packets (ASF packets) so the fact that this firmware is running in step by step
mode does not have any kind of impact on regular traffic.

The testbed is composed of the Dell D530 laptop (IP 192.0.2.1), a gigabit
switch and a second machine with a gigabit ethernet card (IP 192.0.2.2). The
test is run using pktgen (a packet generator included in the Linux kernel), while
dstat (a statistics collecting tool) is run on the receiving machine (the D530
one) to monitor CPU usage along with network statistics (mainly packet rate).
The test is done in two parts, first on a standard installation (Fig. 4a) then with
(Fig. 4b) NAVIS running. Generated traffic is sent and received on UDP port 9
and packet size is 256 and the source machine sends traffic at rates from 1000
to 250 000 packets per second.
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Fig. 4: CPU usage and packet rate (UDP port 9)

It’s pretty clear that NAVIS does not really prevent the network to reach full
speed on this test, as both packet rate curves have the same shape when send
rate augments and they both reach 250 000 packets per second. At low packet
rates, the 100% CPU usage is mostly the active loop of the debugger. When
packet rate rises, software interrupts from system calls are starting to become
significant. The packet generator isn’t able to generate more traffic but it seems
likely that NAVIS could handle more packets before slowing down the traffic.



Performances might not be that good with firmware needing to process every
network packets. A good test for that case is to send UDP packets on port 623
(ASF/RMCP port) to the D530. In that case the PHY will detect the packet needs
to be handled by the firmware, which needs to check if the datagram is ASF
traffic or not before relaying it to the host.

So we run the same test, this time sending datagrams to UDP port 623.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0

 2000

 4000

 6000

 8000

 10000

 12000

% p
p
s

CPU
Interrupt

#recv

(a) NAVIS stopped

-20

 0

 20

 40

 60

 80

 100

 120

 0

 50

 100

 150

 200

 250

 300

% p
p
s

(b) NAVIS running

Fig. 5: CPU usage and packet rate (UDP port 623)

Even when NAVIS is not running (Fig. 5a), we have issues sending datagrams
to the network card. Processing done by the firmware to check if the packet
is ASF or not is slowing down the whole packet processing, meaning the PHY
queues are full and ethernet frames are dropped when packet rate is above 11000.

When running the same tests with NAVIS, we can achieve speeds around
24Mb/s, but packet rate drops dramatically and barely exceeds 250 packets per
second (Fig. 5b). The speed issues aren’t related to all the context switches from
the system calls (since interrupts are mostly at 0%) but are due to the time
spent in processing the various memory accesses to the card.

It might be worth implementing the verification part of NAVIS inside the
kernel and optimize all the PCI accesses in order to improve the packet processing
rate of the whole installation.

7 Limitations of the approach

The solution is specific to the adapter. The kind of live verifications that we
are able to carry out will depend on the architecture of the controller we are
considering.

This approach allows to detect any unexpected change in the control flow
when a return value is modified on the stack, but data on the stack, heap and
scratchpad can still be modified by the attacker. One could imagine that an
attacker would be able to craft an attack only by being able to modify data
areas. These kind of attacks would not be detected by NAVIS.



Moreover, the fact that the firmware we are considering is quite simple makes
it easier for us to verify its integrity. For instance, the following characteristics
simplify the analysis:

– the firmware is not using any kind of indirection for CALL operations (there
are no function pointers). Function adresses are hardcoded and can be easily
identified by disassembling CALL instructions;

– no paging mechanism is involved. Addresses in the firmware are physical
addresses and therefore our framework does not need to perform any kind
of address translation;

– the firmware is running on the embedded CPU as a single thread.

8 Conclusion and Future work

In this paper we studied the difficult problem of firmware integrity attestation
or verification. We looked at the problem from a theoretical point of view and
showed that depending on the interface of the device we are considering and
the nature of the firmware, monitoring was possible. In our setting, the host
operating system acts as an external verifier running a framework called NAVIS
that constantly analyses the behaviour of the embedded firmware and stops the
device whenever an unexpected behaviour is detected. We developed a proof of
concept for a popular model of network adapter and showed that our proof-
of-concept was indeed efficient against attacks (even 0-day ones). The proof-
of-concept is highly specific to the adapter but shows that firmware integrity
verification can be achieved in practice.

Future work on this topic involves studying alternate detection mechanisms
such as on the fly virtualisation and control by an hypervisor of embedded
firmware.
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