# Minimal polynomial of Cayley graph adjacency matrix for Boolean functions 

Michel Mitton<br>SGDN/DCSSI/SDS/Crypto Lab<br>51 boulevard de la Tour-Maubourg 75700 Paris-07 SP, France e-mail: michel.mitton@sgdn.pm.gouv.fr

April 23, 2007


#### Abstract

The subject of this paper is the algebraic study of the adjacency matrix of the Cayley graph of a Boolean function. From the characteristic polynomial of this adjacency matrix we deduce its minimal polynomial.


## Keywords

Boolean functions, Walsh and Fourier transforms, Cayley graph, adjacency matrix, homomorphisms of algebras, characteristic and minimal polynomials.

## 1 Introduction

In a previous paper [1], we have obtained the polynomial expression of

$$
P(X)=\prod_{a \in \mathbf{F}_{2}^{n}}\left(X-W_{f}(a)\right)
$$

and as a corollary, the evaluation of $\prod_{a \in \mathbf{F}_{2}^{n}} W_{f}(a)$ where $f$ is an arbitrary Boolean function of $n$ variables and $W_{f}$ the Walsh spectrum of $f$.

The proofs of these results are based on the use of the adjacency matrix $M_{f}=$ $\left(f(i \oplus j)_{i \in\left[0,2^{n}-1\right], j \in\left[0,2^{n}-1\right]}\right)$ of the Cayley graph of $f$ (see [2], [3]) associated with the Cayley set $f^{-1}(1)$.

If we consider $M_{f}$ as an element of $M_{2^{n}}(\mathbf{R})$, the $\mathbf{R}-$ algebra of the $2^{n} \times 2^{n}$ matrix in real coefficients for matrix addition, multiplication, and product by a real, we can consider the homomorphism of $\mathbf{R}$ - algebras

$$
\begin{gather*}
\Psi_{f}: \mathbf{R}[X] \rightarrow M_{2^{n}}(\mathbf{R}) \\
Q(X) \longmapsto \Psi_{f}(Q(X))=Q\left(M_{f}\right) . \tag{1}
\end{gather*}
$$

We have seen in [1] that, if we denote $P(X)=\operatorname{det}_{\mathbf{R}}\left(M_{f}-X I_{2^{n}}\right)$ the characteristic polynomial of $M_{f}$, we have $P(X)=\prod_{a \in \mathbf{F}_{2}^{n}}\left(X-W_{f}(a)\right)$.

Our aim in the sequel is to compute the minimal polynomial of $\Psi_{f}$ and to obtain some properties of this polynomial.

## 2 Basic definitions and notation

In this paper, the finite field $(\mathbf{Z} / \mathbf{2 Z}, \oplus,$.$) with its additive and multiplicative$ laws will be denoted by $\mathbf{F}_{2}$ and the $\mathbf{F}_{2}$-algebra of Boolean functions of $n$ variables $\mathcal{F}\left(\mathbf{F}_{2}^{n}, \mathbf{F}_{2}\right)$ will be denoted by $\mathcal{F}$.
$\left(\mathbf{R},+_{\mathbf{R}}, \cdot_{\mathbf{R}}\right)$ denotes the field of the real numbers.
For $f \in \mathcal{F}$ and $a \in \mathbf{F}_{2}$, recall that $f^{-1}(a)=\left\{u \in \mathbf{F}_{2}^{n} \mid f(u)=a\right\}$.
$W_{f}(a)$ is the Walsh spectrum of $f \in \mathcal{F}$ to a point $a=\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbf{F}_{2}^{n}$ defined by

$$
\begin{equation*}
W_{f}(a)=\sum_{x \in \mathbf{F}_{2}^{n}} f(x)(-1)^{<a, x>} \tag{2}
\end{equation*}
$$

In this formula, the sum on the right is calculated in $\mathbf{Z}$, and $\langle a, x\rangle=$ $a_{0} x_{0} \oplus \ldots \oplus a_{n-1} x_{n-1}$ represents the scalar product on $\mathbf{F}_{2}^{n}$.

Sometimes, we will identify $\mathbf{F}_{2}^{n}$ with $\left[0,2^{n}-1\right]$, or with the subset $\{0,1\}^{n}$ of $\mathbf{R}^{n}$. In this last case $<a, x>_{\mathbf{R}}=a_{0} x_{0}+_{\mathbf{R}} \ldots+_{\mathbf{R}} a_{n-1} x_{n-1}$ denotes the scalar product on $\mathbf{R}^{n}$.

Remark that, for each $x, y \in \mathbf{Z},(-1)^{x+\mathbf{R} y}=(-1)^{x \oplus \mathbf{y}}$.
We denote $\delta_{a}^{b}$ the Kronecker's symbol. With the following notation
$W_{f}^{*}(a)=2^{n-1} \delta_{a}^{0}-W_{f}(a)$, we have the relation $2 W_{f}^{*}(a)=\hat{f}(a)$ between Walsh and Fourier transforms, with
$\hat{f}(a)=\sum_{x \in \mathbf{F}_{2}^{n}}(-1)^{f(x)+\mathbf{R}\langle a, x\rangle}=\sum_{x \in \mathbf{F}_{2}^{n}}(-1)^{f(x) \oplus\langle a, x\rangle}$.
Each $f \in \mathcal{F}$ verifies the important Parseval's relation

$$
\begin{equation*}
\sum_{a \in \mathbf{F}_{2}^{n}}\left(W_{f}^{*}(a)\right)^{2}=2^{2(n-1)} . \tag{3}
\end{equation*}
$$

If $R$ is a ring, for each $r \in R$ we denote $(r)=r R$ the principal ideal generated by $r$, and $R[X]$ is the ring of polynomials in the indeterminate $X$ over $R$.

For $P(X), Q(X) \in R[X]$, we denote $P(X) \mid Q(X)$ when $P(X)$ divides $Q(X)$.
$\operatorname{deg} P(X), \operatorname{gcd}(P(X), Q(X))$ and $\operatorname{lcm}(P(X), Q(X))$ denotes, in $R[X]$, respectively the degree of $P(X)$, the greatest common divisor and the least common multiple of $P(X)$ and $Q(X)$.

In [2][3], the Walsh-Fourier analysis is viewed as an eigenvalue problem of adjacency matrix of Cayley graph.

For $f \in \mathcal{F}$, we consider $f^{-1}(1)$ and the following graph $G_{f}$ where the vertex set is $\mathbf{F}_{2}^{n}$, and the edge set is defined by

$$
\left\{(a, b) \in \mathbf{F}_{2}^{n} \times \mathbf{F}_{2}^{n} \mid a \oplus b \in f^{-1}(1)\right\} .
$$

This definition implies that $G_{f}=G\left(\mathbf{F}_{2}^{n}, f^{-1}(1)\right)$ is the Cayley graph of $\mathbf{F}_{2}^{n}$ with respect to the Cayley set $f^{-1}(1)$, and the symmetric matrix $M_{f}=$ $\left(m_{i, j}\right)_{i, j \in\left[0,2^{n}-1\right] \times\left[0,2^{n}-1\right]}$ with $m_{i, j}=f(i \oplus j)$ is the adjacency matrix of $G_{f}$, where we identify $\left[0,2^{n}-1\right]$ with $\mathbf{F}_{2}^{n}$.

For a detailed study on this topic, see [2], [3] and [4].
For each $a \in \mathbf{F}_{2}^{n}$ we denote $\chi_{a}=^{t}\left((-1)^{<a, 0>},(-1)^{<a, 1>}, \ldots,(-1)^{<a, 2^{n}-1>}\right) \in$ $\mathbf{R}^{2^{n}}$. It can be shown that $M_{f} \chi_{a}=W_{f}(a) \chi_{a}$.

## 3 The minimal polynomial of $\Psi_{f}$

Let us consider $\Psi_{f}$ and its kernel $\Psi_{f}^{-1}(0) \subset \mathbf{R}[X]$. We know that $\mathbf{R}[X]$ is a principal ring.

As $\Psi_{f}^{-1}(0)$ is an ideal of $\mathbf{R}[X]$, there exists only one monic polynomial $I(X)$ such that $\Psi_{f}^{-1}(0)$ is a principal ideal generated by $I(X): \Psi_{f}^{-1}(0)=(I(X))$.
$I(X)$ is called the minimal polynomial associated with $\Psi_{f}$ and, from the Hamilton-Cayley's theorem applied to the characteristic polynomial $P(X)=$ $\operatorname{det}_{\mathbf{R}}\left(M_{f}-X I_{2^{n}}\right)$, we obtain $\Psi_{f}(P(X))=P\left(M_{f}\right)=O_{2^{n}}$, so $P(X) \in \Psi_{f}^{-1}(0)$ and finally $I(X) \mid \prod_{a \in \mathbf{F}_{2}^{n}}\left(X-W_{f}(a)\right)$.

We deduce from this that there exists a subset $E \subset \mathbf{F}_{2}^{n}$ such that $I(X)=$ $\prod_{a \in E}\left(X-W_{f}(a)\right)$.

Our aim is now to determine explicitely $E$.
First, we have the following lemma:
Lemma 1 Let $R$ be a field. For each $r \in R$ and each $Q(X) \in R[X]$ where $\operatorname{deg} Q(X)>0$, we have $X-r \mid Q(X)$ or $\operatorname{gcd}(X-r, Q(X))=1$.

Proof. As $\operatorname{deg}(X-r)>0$ and $R$ a field, the property of the Euclidean division implies the existence of two polynomials $S(X)$ and $T(X)$ in $R[X]$ such that $Q(X)=(X-r) S(X)+T(X)$ where $0 \leq \operatorname{deg} T(X)<\operatorname{deg}(X-r)=1$.

We deduce from this that $T(X) \in R$ so we have the two following cases:
$-T(X)=0$ and then $X-r \mid Q(X)$.
$-T(X) \neq 0$ and, bccause $R$ is a field, $T(X)$ is invertible in $R$. So we can write $Q(X) T(X)^{-1}-(X-r) S(X) T(X)^{-1}=1$ which implies, from Bezout's theorem, $\operatorname{gcd}(X-r, Q(X))=1$.

This lemma is useful to prove the following second lemma:

Lemma 2 For each $a \in \mathbf{F}_{2}^{n},\left(X-W_{f}(a)\right) \mid I(X)$.
Proof. We have seen that $I(X) \mid P(X)$, so $I(X) \neq 0$.
If $\operatorname{deg} I(X)=0$, then $I(X) \in \mathbf{R}-\{0\}$ so $(I(X))=\mathbf{R}[X]$ and $\Psi_{f}(Q(X))=$ $O_{2^{n}}$ for each $Q(X)$, which contradicts $\Psi_{f}(1)=I_{2^{n}}$. Consequently we have $\operatorname{deg} I(X)>0$.

If we suppose now $\left(X-W_{f}(a)\right) \nmid I(X)$, the precedent lemma implies $\operatorname{gcd}(X-$ $\left.W_{f}(a), I(X)\right)=1$ so there exists $A(X), B(X)$ in $\mathbf{R}[X]$ such that $A(X)(X-$ $\left.W_{f}(a)\right)+B(X) I(X)=1$.

Using $\Psi_{f}$ and $I\left(M_{f}\right)=O_{2^{n}}$, we obtain $A\left(M_{f}\right)\left(M_{f}-W_{f}(a) I_{2^{n}}\right)=I_{2^{n}}$ which implies $M_{f}-W_{f}(a) I_{2^{n}} \in G L_{2^{n}}(\mathbf{R})$.

On the other hand, we have seen in [1] that, for $M_{f}, \chi_{a}$ is an eigenvector associated to the eigenvalue $W_{f}(a)$, i.e. $\left(M_{f}-W_{f}(a) I_{2^{n}}\right) \chi_{a}=0$ with 0 the null vector in $\mathbf{R}^{2^{n}}$. This last property, together with $M_{f}-W_{f}(a) I_{2^{n}} \in G L_{2^{n}}(\mathbf{R})$, finally implies $\chi_{a}=0$ and we obtain a contradiction which proves the initial property $\left(X-W_{f}(a)\right) \mid I(X)$.

We can now state the following.

Theorem 3 For each $f \in \mathcal{F}, I(X)=\prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}(X-m)$.
Proof. Let us consider the polynomial $J(X)=\prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}(X-m)$.
If $m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)$, there exists $a \in \mathbf{F}_{2}^{n}$ such that $m=W_{f}(a)$ and then, from lemma 2, we have $X-m \mid I(X)$. Then $I(X)$ is a common multiple of all the polynomials $X-m$ for each $m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)$, so we obtain firstly $J(X)=$ $\operatorname{lcm}_{n \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}(X-m) \mid I(X)$.
Now, consider $a \in \mathbf{F}_{2}^{n}$.
We have $\Psi_{f}(J(X)) \chi_{a}=J\left(M_{f}\right) \chi_{a}=\left(\prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}\left(M_{f}-m I_{2^{n}}\right)\right) \chi_{a}$
$=\left(\prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right), m \neq W_{f}(a)}\left(M_{f}-m I_{2^{n}}\right)\right)\left(\left[M_{f}-W_{f}(a) I_{2^{n}}\right] \chi_{a}\right)$.
But $\left[M_{f}-W_{f}(a) I_{2^{n}}\right] \chi_{a}=M_{f}\left(\chi_{a}\right)-W_{f}(a) \chi_{a}=0$ so we obtain
$\Psi_{f}(J(X)) \chi_{a}=\left(\prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right), m \neq W_{f}(a)}\left(M_{f}-m I_{2^{n}}\right)\right)(0)=0$.
Furthermore, if we consider each vector $\chi_{a}$ as a vector in $\mathbf{R}^{2^{n}}$ it is easy to see that the $2^{n}$ vectors $\left(\chi_{a}\right)_{a \in \mathbf{F}_{2}^{n}}$ form an orthogonal basis of the $\mathbf{R}$-vector space $\mathbf{R}^{2^{n}}$ for the usual real scalar product $<., .>_{\mathbf{R}}$.

As $\Psi_{f}(J(X)) \chi_{a}=0$ for each $a \in \mathbf{F}_{2}^{n}$, from the precedent property we deduce $\Psi_{f}(J(X)) u=0$ for each $u \in \mathbf{R}^{2^{n}}$, which finally gives us $\Psi_{f}(J(X))=O_{2^{n}}$.

Then we have proved that $J(X) \in \Psi_{f}^{-1}(0)=(I(X))$, i.e. $I(X) \mid J(X)$.
As we have also proved $J(X) \mid I(X)$ and as $I(X)$ and $J(X)$ are monic polynomials, we obtain $I(X)=J(X)$.

From this theorem, we deduce the corollary below.

Corollary 4 For each $f \in \mathcal{F}$, if $n \geq 3$ then $I(X) \neq P(X)$.
Proof. Consider $f \in \mathcal{F}$. We have seen that $I(X)=\prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}(X-m)$. Furthermore we have
$\mathbf{F}_{2}^{n}=\bigcup_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}^{\circ} W_{f}^{-1}(m)$, so we can write

$$
\begin{aligned}
& \prod_{a \in \mathbf{F}_{2}^{n}}\left(X-W_{f}(a)\right)=\prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}(X-m)^{\# W_{f}^{-1}(m)} \\
& =\left(\prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}(X-m)\right)\left(\prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}(X-m)^{\# W_{f}^{-1}(m)-1}\right) \text { with } \# W_{f}^{-1}(m) \geq
\end{aligned}
$$

1 for each $m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)$.
Then we obtain $P(X)=I(X) \prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}(X-m)^{\# W_{f}^{-1}(m)-1}$ which implies the equivalence

$$
I(X)=P(X) \text { if and only if } \prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}(X-m)^{\# W_{f}^{-1}(m)-1}=1 \text {, i.e. }
$$

$\# W_{f}^{-1}(m)-1=0$ for each $m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)$, so $W_{f}: \mathbf{F}_{2}^{n} \longrightarrow \mathbf{Z}$ is injective.
But we have proved ([1] lemma 3) that, when $a$ scans $\mathbf{F}_{2}^{n}$, the relative integers $W_{f}(a)$ are all even or all odd.

On other hand the Parseval's relation (3) implies, for each $a \in \mathbf{F}_{2}^{n},\left|W_{f}^{*}(a)\right| \leq$ $2^{n-1}$, i.e. $-2^{n-1} \leq W_{f}(a) \leq 2^{n-1}$ for each $a \in \mathbf{F}_{2}^{n}-\{0\}$.

Consequently, if $I(X)=P(X)$ we have a family of $2^{n}-1$ distinct relative integers $\left(W_{f}(a)\right)_{a \in \mathbf{F}_{2}^{n}-\{0\}}$ in $\left[-2^{n-1}, 2^{n-1}\right]$ which are all even or all odd.

So if $I(X)=P(X)$, when the spectrum of $f$ is even (respectively odd) we have necessarily $2^{n}-1 \leq \#\left\{k \in \mathbf{Z} \cap\left[-2^{n-1}, 2^{n-1}\right] \mid k\right.$ even $\}=2^{n-1}+1$
(respectively $2^{n}-1 \leq \#\left\{k \in \mathbf{Z} \cap\left[-2^{n-1}, 2^{n-1}\right] \mid k\right.$ odd $\}=2^{n-1}$ ), which implies $n \leq 2$ (respectively $n \leq 1$ ) and proves the corollary.

Associated with $W_{f}: \mathbf{F}_{2}^{n} \longrightarrow \mathbf{Z}$, we have $\mathbf{F}_{2}^{n}=\bigcup_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)} W_{f}^{-1}(m)$ so we can consider the equivalence relation $\sim$ on $\mathbf{F}_{2}^{n}$ defined by $a \sim b$ if and only if $W_{f}(a)=W_{f}(b)$.

The quotient space $\mathbf{F}_{2}^{n} / \sim$ of the equivalence classes $\bar{a}$ for $\sim$ is such that the function $\Gamma: \mathbf{F}_{2}^{n} / \sim \longrightarrow W_{f}\left(\mathbf{F}_{2}^{n}\right)$

$$
\bar{a} \longmapsto \Gamma(\bar{a})=W_{f}(a)
$$

is a bijection.
We deduce from this and Theorem 3 that
$I(X)=\prod_{m \in W_{f}\left(\mathbf{F}_{2}^{n}\right)}(X-m)=\prod_{\bar{a} \in \mathbf{F}_{2}^{n} / \sim}(X-\Gamma(\bar{a}))=\prod_{a \in \Delta\left(\mathbf{F}_{2}^{n} / \sim\right)}\left(X-W_{f}(a)\right)$ with the injection $\Delta: \mathbf{F}_{2}^{n} / \sim \longrightarrow \mathbf{F}_{2}^{n}$ such that $\Delta(\bar{a})=a$.

Therefore, the answer to the question asked at the beginning of chapter 3 is $E=\Delta\left(\mathbf{F}_{2}^{n} / \sim\right)$.

## 4 References

[1] M. Mitton, On the Walsh-Fourier analysis of Boolean functions, Jour. of Discr. Math. Sciences $\mathcal{G}$ Crypto., Vol. 9 (3) (December 2006), pp. 429-439.
[2] A. Bernasconi, Mathematical techniques for the analysis of Boolean functions, Ph. D. Thesis TD-2/98, Università di Pisa-Udine, 1998,
http://www.di.unipi.it/~annab/publications.html
[3] A. Bernasconi and B. Codenotti, Spectral Analysis of Boolean Functions as Graph Eigenvalue Problem, IEEE Transactions on Computers, Vol. 48 (3) (1999), pp. 345-351.
[4] A. Bernasconi, B. Codenotti, and J. M. VanderKam, A Characterization of Bent Functions in terms of Strongly Regular Graphs, IEEE Transactions on Computers, Vol. 50 (9) (2001), pp. 984-985.

