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Abstract

The subject of this paper is the algebraic study of the adjacency matrix of the Cay-

ley graph of a Boolean function. From the characteristic polynomial of this adjacency

matrix we deduce its minimal polynomial.
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1 Introduction

In a previous paper [1], we have obtained the polynomial expression of

P (X) =
∏

a∈Fn
2

(X −Wf (a))

and as a corollary, the evaluation of
∏

a∈Fn
2

Wf (a) where f is an arbitrary Boolean

function of n variables and Wf the Walsh spectrum of f.
The proofs of these results are based on the use of the adjacency matrixMf =

(f(i⊕j)i∈[0,2n−1],j∈[0,2n−1]) of the Cayley graph of f (see [2], [3]) associated with
the Cayley set f−1(1).
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If we consider Mf as an element of M2n(R), the R− algebra of the 2n × 2n

matrix in real coefficients for matrix addition, multiplication, and product by a
real, we can consider the homomorphism of R− algebras

Ψf : R[X]→M2n(R)

Q(X) �−→ Ψf (Q(X)) = Q(Mf ). (1)

We have seen in [1] that, if we denote P (X) = detR(Mf −XI2n) the char-
acteristic polynomial of Mf , we have P (X) =

∏

a∈Fn
2

(X −Wf (a)).

Our aim in the sequel is to compute the minimal polynomial of Ψf and to
obtain some properties of this polynomial.

2 Basic definitions and notation

In this paper, the finite field (Z/2Z,⊕, .) with its additive and multiplicative
laws will be denoted by F2 and the F2-algebra of Boolean functions of n variables
F(Fn2 ,F2) will be denoted by F .
(R,+R, .R) denotes the field of the real numbers.
For f ∈ F and a ∈ F2, recall that f

−1(a) = {u ∈ Fn2 |f(u) = a} .
Wf (a) is the Walsh spectrum of f ∈ F to a point a = (a0, ..., an−1) ∈ F

n
2

defined by

Wf (a) =
∑

x∈Fn
2

f(x)(−1)<a,x>. (2)

In this formula, the sum on the right is calculated in Z, and < a, x >=
a0x0 ⊕ ...⊕ an−1xn−1 represents the scalar product on Fn2 .

Sometimes, we will identify Fn2 with [0, 2n− 1], or with the subset {0, 1}n of
R
n. In this last case < a, x >R= a0x0 +R ... +R an−1xn−1 denotes the scalar

product on Rn.
Remark that, for each x, y ∈ Z,(−1)x+Ry = (−1)x⊕y.
We denote δba the Kronecker’s symbol. With the following notation

W ∗
f (a) = 2n−1δ0a − Wf (a), we have the relation 2W ∗

f (a) =
∧

f(a) between
Walsh and Fourier transforms, with

∧

f(a) =
∑

x∈Fn
2

(−1)f(x)+R<a,x> =
∑

x∈Fn
2

(−1)f(x)⊕<a,x>.

Each f ∈ F verifies the important Parseval’s relation

∑

a∈Fn
2

(
W ∗
f (a)

)2
= 22(n−1). (3)

If R is a ring, for each r ∈ R we denote (r) = rR the principal ideal generated
by r, and R[X] is the ring of polynomials in the indeterminate X over R.

For P (X),Q(X) ∈ R[X], we denote P (X)|Q(X) when P (X) divides Q(X).
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degP (X), gcd(P (X),Q(X)) and lcm(P (X), Q(X)) denotes, in R[X], respec-
tively the degree of P (X), the greatest common divisor and the least common
multiple of P (X) and Q(X).

In [2][3], the Walsh-Fourier analysis is viewed as an eigenvalue problem of
adjacency matrix of Cayley graph.

For f ∈ F , we consider f−1(1) and the following graph Gf where the vertex
set is Fn2 , and the edge set is defined by

{(a, b) ∈ Fn2 ×F
n
2 |a⊕ b ∈ f

−1(1)}.

This definition implies that Gf = G(Fn2 , f
−1(1)) is the Cayley graph of

F
n
2 with respect to the Cayley set f−1(1), and the symmetric matrix Mf =
(mi,j)i,j∈[0,2n−1]×[0,2n−1] with mi,j = f(i ⊕ j) is the adjacency matrix of Gf ,
where we identify [0, 2n − 1] with Fn2 .

For a detailed study on this topic, see [2], [3] and [4].
For each a ∈ Fn2 we denote χa =

t ((−1)<a,0>, (−1)<a,1>, ..., (−1)<a,2
n−1>) ∈

R
2n . It can be shown that Mfχa =Wf (a)χa.

3 The minimal polynomial of Ψf

Let us consider Ψf and its kernel Ψ−1f (0) ⊂ R[X]. We know that R[X] is a
principal ring.

As Ψ−1f (0) is an ideal of R[X], there exists only one monic polynomial

I(X) such that Ψ−1f (0) is a principal ideal generated by I(X): Ψ−1f (0) = (I(X)).
I(X) is called the minimal polynomial associated with Ψf and, from the

Hamilton-Cayley’s theorem applied to the characteristic polynomial P (X) =
detR(Mf −XI2n), we obtain Ψf (P (X)) = P (Mf ) = O2n , so P (X) ∈ Ψ

−1
f (0)

and finally I(X)|
∏

a∈Fn
2

(X −Wf (a)).

We deduce from this that there exists a subset E ⊂ F
n
2 such that I(X) =∏

a∈E

(X −Wf (a)).

Our aim is now to determine explicitely E.
First, we have the following lemma:

Lemma 1 Let R be a field. For each r ∈ R and each Q(X) ∈ R[X] where
degQ(X) > 0, we have X − r|Q(X) or gcd(X − r,Q(X)) = 1.

Proof. As deg(X − r) > 0 and R a field, the property of the Euclidean
division implies the existence of two polynomials S(X) and T (X) in R[X] such
that Q(X) = (X − r)S(X) + T (X) where 0 ≤ deg T (X) < deg(X − r) = 1.

We deduce from this that T (X) ∈ R so we have the two following cases:
− T (X) = 0 and then X − r|Q(X).
− T (X) 
= 0 and, bccause R is a field, T (X) is invertible in R. So we can

write Q(X)T (X)−1 − (X − r)S(X)T (X)−1 = 1 which implies, from Bezout’s
theorem, gcd(X − r,Q(X)) = 1.

This lemma is useful to prove the following second lemma:
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Lemma 2 For each a ∈ Fn2 , (X −Wf (a))|I(X).

Proof. We have seen that I(X)|P (X), so I(X) 
= 0.
If deg I(X) = 0, then I(X) ∈ R− {0} so (I(X)) = R[X] and Ψf (Q(X)) =

O2n for each Q(X), which contradicts Ψf (1) = I2n . Consequently we have
deg I(X) > 0.

If we suppose now (X−Wf (a)) � I(X), the precedent lemma implies gcd(X−
Wf (a), I(X)) = 1 so there exists A(X), B(X) in R[X] such that A(X)(X −
Wf (a)) +B(X)I(X) = 1.

Using Ψf and I(Mf ) = O2n
, we obtain A(Mf )(Mf−Wf (a)I2n) = I2n which

implies Mf −Wf (a)I2n ∈ GL2n(R).
On the other hand, we have seen in [1] that, for Mf , χa is an eigenvector

associated to the eigenvalue Wf (a), i.e. (Mf −Wf (a)I2n)χa = 0 with 0 the null
vector in R2n . This last property, together with Mf −Wf (a)I2n ∈ GL2n(R),
finally implies χa = 0 and we obtain a contradiction which proves the initial
property (X −Wf (a))|I(X).

We can now state the following.

Theorem 3 For each f ∈ F , I(X) =
∏

m∈Wf (Fn2 )

(X −m).

Proof. Let us consider the polynomial J(X) =
∏

m∈Wf (Fn2 )

(X −m).

If m ∈ Wf (F
n
2 ), there exists a ∈ F

n
2 such that m = Wf (a) and then,

from lemma 2, we have X − m|I(X). Then I(X) is a common multiple of
all the polynomials X −m for each m ∈ Wf (F

n
2 ), so we obtain firstly J(X) =

lcm
m∈Wf (Fn2 )

(X −m)|I(X).

Now, consider a ∈ Fn2 .

We have Ψf (J(X))χa = J(Mf )χa =

(
∏

m∈Wf (Fn2 )

(Mf −mI2n)

)

χa

=

(
∏

m∈Wf (Fn2 ),m�=Wf (a)

(Mf −mI2n)

)

([Mf −Wf (a)I2n ]χa) .

But [Mf −Wf (a)I2n ]χa =Mf (χa)−Wf (a)χa = 0 so we obtain

Ψf (J(X))χa =

(
∏

m∈Wf (Fn2 ),m�=Wf (a)

(Mf −mI2n)

)

(0) = 0.

Furthermore, if we consider each vector χa as a vector in R2n it is easy to see
that the 2n vectors (χa)a∈Fn2 form an orthogonal basis of the R−vector space

R
2n for the usual real scalar product < ., . >R .
As Ψf (J(X))χa = 0 for each a ∈ F

n
2 , from the precedent property we deduce

Ψf (J(X))u = 0 for each u ∈ R2n , which finally gives us Ψf (J(X)) = O2n .
Then we have proved that J(X) ∈ Ψ−1f (0) = (I(X)), i.e. I(X)|J(X).
As we have also proved J(X)|I(X) and as I(X) and J(X) are monic poly-

nomials, we obtain I(X) = J(X).
From this theorem, we deduce the corollary below.
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Corollary 4 For each f ∈ F, if n ≥ 3 then I(X) 
= P (X).

Proof. Consider f ∈ F . We have seen that I(X) =
∏

m∈Wf (Fn2 )

(X − m).

Furthermore we have

F
n
2 =

◦⋃

m∈Wf (Fn2 )

W−1
f (m), so we can write

∏

a∈Fn
2

(X −Wf (a)) =
∏

m∈Wf (Fn2 )

(X −m)#W
−1

f
(m)

=

(
∏

m∈Wf (Fn2 )

(X −m)

)(
∏

m∈Wf (Fn2 )

(X −m)#W
−1

f
(m)−1

)

with#W−1
f (m) ≥

1 for each m ∈Wf (F
n
2 ).

Then we obtain P (X) = I(X)
∏

m∈Wf (Fn2 )

(X − m)#W
−1

f
(m)−1 which implies

the equivalence

I(X) = P (X) if and only if
∏

m∈Wf (Fn2 )

(X −m)#W
−1

f
(m)−1 = 1, i.e.

#W−1
f (m)− 1 = 0 for each m ∈Wf (F

n
2 ), so Wf : F

n
2 −→ Z is injective.

But we have proved ([1] lemma 3) that, when a scans Fn2 , the relative integers
Wf (a) are all even or all odd.

On other hand the Parseval’s relation (3) implies, for each a ∈ Fn2 , |W
∗
f (a)| ≤

2n−1, i.e. −2n−1 ≤Wf (a) ≤ 2
n−1 for each a ∈ Fn2 − {0}.

Consequently, if I(X) = P (X) we have a family of 2n − 1 distinct relative
integers (Wf (a))a∈Fn

2
−{0} in [−2n−1, 2n−1] which are all even or all odd.

So if I(X) = P (X), when the spectrum of f is even (respectively odd) we
have necessarily 2n − 1 ≤ #{k ∈ Z∩[−2n−1, 2n−1]|k even} = 2n−1 + 1

(respectively 2n − 1 ≤ #{k ∈ Z∩[−2n−1, 2n−1]|k odd} = 2n−1), which im-
plies n ≤ 2 (respectively n ≤ 1) and proves the corollary.

Associated with Wf : F
n
2 −→ Z, we have Fn2 =

◦⋃

m∈Wf (Fn2 )

W−1
f (m) so we

can consider the equivalence relation ∼ on Fn2 defined by a ∼ b if and only if
Wf (a) =Wf (b).

The quotient space Fn2/∼ of the equivalence classes
_
a for ∼ is such that the

function Γ : Fn2/∼ −→Wf (F
n
2 )_

a �−→ Γ(
_
a) =Wf (a)

is a bijection.
We deduce from this and Theorem 3 that
I(X) =

∏

m∈Wf (Fn2 )

(X −m) =
∏

_
a∈Fn

2
/∼

(X − Γ(
_
a)) =

∏

a∈∆(Fn
2
/∼ )

(X −Wf (a))

with the injection ∆ : Fn2/∼ −→ F
n
2 such that ∆(

_
a) = a.

Therefore, the answer to the question asked at the beginning of chapter 3 is
E = ∆(Fn2/∼ ).
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