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Abstract

For each Boolean function in n variables, from the expression of the product of
all its Walsh spectrum values derived in a precedent paper, we deduce a new charac-
terization of the parity of its distance from the set of all the affine functions. This
characterization uses a subset of permutations on F%, and some new properties on
this subset are deduced.
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1 Introduction

In a previous paper [1], we have derived, for each integer n > 1, the following

formula
[IWi@= > <)

ackFy oes(f)
where f is an arbitrary Boolean function, W, the Walsh spectrum of f, and

S(f) = {0 € Sym(F3)|Va € Fy, f(a ® o(a)) =1}.

From this formula, and for each Boolean function f, we obtain firstly a
characterization of the parity of its distance to the set of all the n—variable
affine functions.

This parity condition is linked to the weight parity of f so, our aim is, in a
further study, to obtain new informations on the parity of f when this function
is maximally nonlinear.

In a second part, some new informations on #S5(f) are derived.



2 Basic definitions and notation

In this paper, the finite field (Z/2Z,®,.) with its additive and multiplicative
laws will be denoted by F9 and the Fy-algebra of Boolean functions in n variables
F(F%,Fa) will be denoted by F.

For f € F and a € Fo, recall that f~!(a) = {u € F3|f(u) = a} and @ = a®1.

We will use #F to denote the number of elements of the set . The weight
wt(f) of f € F is defined by wt(f) = #f7 (1), and a function f € F is called
balanced if wt(f) = 2"~

The Hamming distance between f and g, defined by #(f @ g)~*(1), will be
denoted by d(f, g).

Wy(a) is the Walsh spectrum of f € F to a point a = (ao,...,an—1) € FY
defined by

Wi(a) = Y fla)(=1)="*. (1)

z€Fy

In this formula, the sum on the right is calculated in Z, and < a,z >=
aoZo P ... B anp_1T,_1 represents the scalar product on F5.
In the sequel, 62 is the Kronecker’s symbol, and we will use the notation

Wi(a) = 2"7165 — Wy(a). (2)

A
Between Walsh and Fourier transforms, we have the relation 2WE = f with

.?.(a) = Z (—1)f(1)+<a,:1;>.

zeFY
We denote Sym(FE) the group of permutations on the set F, and for each
o € Sym(E), (o) the parity +1 or —1 of o.
The affine function defined by f(x) =< a,z > @A, with a,z € FJ and
A € Fo, will be denoted by I, & A.
The semi-norm on F defined by  min  d(f,l, ® A), will be denoted by

a€F} A€F2
6(f)-
It is easy to prove that §(f) =2"~! — max Wi(a)l.
a€Fy

The integer max 6(f) will be denoted by p(n). In the theory of error-
€

correcting codes [3], p(n) is called the covering radius of the first Reed-Muller
code R(1,n) of length 2.

A function f € F will be called mazimally nonlinear if 6(f) = p(n). C(n)
denotes the set of maximally nonlinear functions of F. When n is even, Bent
functions|2][3][4] are defined as Boolean functions having uniform Walsh spec-
trum [W5(a)| = 231 for each a € FJ.

For even n, it is easy to prove that f is maximally nonlinear if and only if f
is Bent.



3 Parity of 6(f)

For each f € F, we give a necessary and sufficient condition in order that 6(f)
to be odd or even.

Theorem 1 For each f € F and each integer n > 1, if we denote
S(f) ={o € Sym(F3)|Va € Fy, f(a® 0(a)) = 1}, (3)
8(f) is an even (resp. odd) integer if and only if #S(f) is even (resp. odd).

Proof. We suppose 6(f) even and we denote P = [[ Wy(a).
acFy

We have proved in [1], Corollary 2, that [] Wy(a) = > e(o) with
a€Fy o€5(1)
S(f) = {o € Sym(F3)|Va € Fy, f(a @ o(a)) = 1} . Furthermore, we have re-
marked that wt(f) < #S(f).
Then, if #S5(f) = 0 we have necessarily f = 0, so we can suppose #S5(f) # 0.
In this case, if we denote S(f) = (04)1<i<#s(f), by the formula [] Wy(a) =

acFy
> e(o) we deduce that
oeS(f) )
P2=< 2 5(0)> = > (@) +2( X eloi)e(oy))
oeS(f) a€S(f) 1<i<j<#S(f)
_aS( 42 Y eoneloy):
1<i<j<#5(f)

So, we obtain P? even if and only if #S5(f) is even.

But P? is even if and only if P is also even because we can write P = 2¢+r
with » = 0 or » = 1. Then P? = 4q(q + ) + r%, so P? is even if and only if
r? =0, i.e. P =2qis even. So, we have P even if and only if #S(f) even.

But, we know that if 2|mn then 2|m or 2|n, so if P is even, there exists
a € Fy at least such that Wy(a) is even. On the other hand, we have seen in
[1], lemma 3, that if there exists a € F4 such that Wy (a) is even, all the values
We(a), for each a € FY, are also even.

Finally, we have §(f) = 2"~ ! — ;Iel%}§L|Wf (a)| with W} (a) = 2"7165 — Wy(a),

2

therefore 6(f) is even if and only if, for each a € F3, W;(a) is even and then
also Wy(a). Therefore, the hypothesis 6(f) even integer is equivalent to the
property P even, and consequently to the property #S5(f) even, and the theorem
is proved. m

Corollary 2 For each f € F and each n > 1, wt(f) is even if and only if

#S(f) is even.
If n > 2 is even and for each f € C(n), #S(f) is even.

Proof. Obvious because if wt(f) = W(0) is even, from [1] Lemma 3, W(a)
is even for each a € F% and, equivalently, §(f) is also even. Using Theorem 1,
we obtain finally the first result.



Now, supppose n even and f € C(n). In this case we know that wt(f) =
2n=1 4 2371 50 wt(f) is even when n > 2, and we have proved the second
result. m

We continue with a result which clarifies the inequality [] [Wy(a)| <
acFy
#S(f) proved in [1].

Proposition 3 For each non-null f € F and each n > 1, if we denote S(f) =
(0i)1<i<ps(p) and A(f) = > e(0i0;), we have the two following cases:
- 1<i<j<#5(f)

- A(f) 20 if and only if (#5(F)F < TT Ws(a@)l < #S(),

~A() < —1 i and only if T] [Wy(a)] < (#S(f) - 2)%.

Proof. With the notations of this proposition, we have seen in the proof of
Theorem 1 that ag[?nWJ?(a) =#S(f) + 2A(f).
2
If #S(f) = 1, from the definition of A(f) we deduce A(f) = 0, so we have
[1 W#(a) =1 and then [W¢(a)| = 1 for each a € Fj. In particular we must
acFy
have W;(0) = 1, i.e. wt(f) = 1, so there exists A € F§ such that f = 65 (for
each a € F§ 6x(a) =1if a = X and 6x(a) = 0 if a # ). It is easy to see that
S(6x) = {oA} where o is the permutation on F% defined by o (a) = a® A and

1

we obtain finally [[ [Wy(a)| € [(#5(f))2, #5(f)] = {1}.

acFy
Consequently we can suppose #S(f) > 2. Now if A(f) > 0, the equality
[1 Wi(a) = #5(f) +2A(f) implies  [] W7(a) > #S(f), so we firstly obtain

acFy a€Fy
#S(NF < T Wrla)] < #5(7).
If A(f) <0, ie A(f) < —1, we have [] WF(a) = #S(f) + 2A(f) <

acFy
#S(f) — 2 and we secondly obtain [] |[Wy(a)| < (#S(f) — 2)% which proves
acFy
the proposition. m

Remark that f # 0 jointly with #S(f) > wt(f) implies that, in the first
case, we have 0 ¢ [(#S(f))2, #S(f)].

The proof of the precedent proposition implies that, in the second case,

#S(f) > 2.

We deduce from this proposition the following result.

Corollary 4 For each non-null f € F and each n > 1, if [][ Wy(a) =0, then
acFy

A(f) < 1.



Proof. When A(f) > 0, the proposition 3 implies [[ |Wy(a)| € [(#S(F)2, #5(f)]
a€Fy
and 0 ¢ [(#5(f)*. #S(N)if f#0. m

We obtain the following general upper bound on #S(f).

Proposition 5 For each f € F and eachn > 1,
I F(0) = 0, #8(f) < min(uwt(f)”", 21 5 EA)
q=0
I £(0) = 1, #S(f) < min(wt(f)*",2").

Furthermore, if wt(f) verifies wt(f)?" = 2" or wt(f)?" = 2"le~ !, we have
wt(f) ~2%e~1 for n — +oo.

Proof. Firstly, from Definition (3) of S(f) and if we suppose f(0) = 0
(resp. f(0) = 1), it is clear that if o € S(f), necessarily o(a) # a for each
a € F¥ so o is a derangement of Sym(F%) as defined in [5], §4.2, p. 180 (resp.
S(f) € Sym(F%)). In this case, Theorem A of [5], p. 180, gives us a first result

(-1

q!)q (resp. #S(f) < 2"). (4)

o
#S(f) <2m>
q=0

Secondly, independently of the value f(0), we can write
S(f) = {o € Sym(F3)|Va € F}, (0 ® Id)(a) € f'(1)}.

So, we can consider the application ® : S(f) — F(F%, f~1(1)) such that ®(c) =
o @ Id, and the injectivity of ® implies the second result

n

#S(f) < wt(f)*. (5)

Finally, combining (4) and (5), we obtain the two upper bounds on #S(f)
of the proposition.

Now, if wt(f)?" = 2" (resp. wt(f)?" = 2™e~ 1), using the Stirling formula
for n — +o00 we obtain

wt(f) = ()7 ~ [272" 2" (2727227 = 2ne~ (27 ) Tw ~ 27! (resp.
wi(f) = (2")Tre 2 ~ 2" 1), m

n

Remark 6 Obuviously, > (_ql!)q ~ e ! forn — +oo.
q=0

The propositions 3 and 5 give us the possibility to clarify and improve the
lower bound on #S(f) of the proposition 4 of [1] where we have proved that
#S(f) > 22" when jointly, wt(f) is even and [[ Wy(a) # 0.

acFy



Proposition 7 For n > 1 and for each f € F such that wt(f) even and
2TL
[T Wia) # 0, if we denote A, = (Zﬁ)f(()) + f(0), we have the two

acFy q=0 N

following cases:

IFAGS) = 0,min(wi(f)*,2"A) > #S(f) > 22 T hwt(f), (6)
CIFA(S) < —1min(wt(f)?,2"MN,) > #8(f) > (22“1wt(f))2 +2 (7)
Proof. As wt(f) is even and [[ Wy(a) # 0, from [1], Lemma 3, we have

acFy
necessarily |Wy(a)| > 2 for each a € Fj, which implies

1T Wr(a)l = 22" tut(f). (8)

acFy

Moreover, it is clear that f # 0, so we are under the hypothesis of the
proposition 3, and consequently we have two cases A(f) >0 or A(f) < —1.

If A(f) > 0, the propositions 3 and 5 give us [] [Wy(a)| < #S(f) <
acFy
min(wt(f)?",2"\,), and combining this first inequality with [] [Wg(a)| >

acFy
22" =Lt (f), we obtain the first result.
1
Now, if we are in the case A(f) < —1, then [[ |W¢(a)| < (#S(f) —2)2
acFy
and, from the above inequality (8), we obtain finally (#S(f) — 2)% > 22" =Lt (f)
which, combined with Proposition 5, proves the result. m

Corollary 8 For each f € F balanced such that [] Wy(a) # 0, we have for

acFy
n > 2 and n enough large, min(wt(f)?",2"\,) = 2"\, and

SIFA(S) =0, 270, > #8(f) > 2272, 9)
SIFA(F) <0 =1, 2MA, > #S(f) > 22372 g (10)

Proof. If n > 2, wt(f) = 2"~ ! is even, so we are under the hypothesis of
Proposition 7. Consequently we obtain firstly min(wt(f)2",2"I\,,) > #S(f) for
each n > 2.

For n — +00, we have seen that (2"1)z7 ~ 27¢~1 and

. = . 2%y 1 1T
Jim AT = Tim (0 SR FO) + £O0)F = (7 H(0) + £(0))° = 1, 50
q:
npygh A2
we obtain 1i1J1r1 (222—,33 =21 < 1.
1o
Denote u,, = @g# for n > 1. The properties lim w, = 2e~! and

n——4oo

1 —2e ! > 0 implies the existence of an integer N > 1 such that, for each



n> N, |u, —2e 1 <1—2e~t. We deduce of this last inequality u, < 1, i.e.

¥ _]W n
2 gf,f‘% < gi(,fl) and equivalently (27!)\,, < wt(f)? for each n > N.

So, for n > N we have necessarily min(wt(f)2",2"1\,) = 2"\, and the
upper bounds on #S(f) are proved.

Finally, the lower bounds on #S(f) results dircetly from Proposition 7 with
wt(f)=2""1. m

For n > 2, say that there exits f balanced with [] Wy(a) # 0 implicetely
acFy
implies that n > 3 because, for n = 2 it is easy to see that the only existing
balanced functions are the non-constant affine functions (we have (23;1) = (3) =
6 balanced functions which coincide with the 2(22— 1) = 6 non-constant affine
functions I, ® A with A € F, and o € F§ — {0}).

So, if f is balanced and n =2, [[ Wy(a) = 0 because, for f =1, & X with

acFy
a € F} — {0} and A € F, we obtain W(a) = £27~1 = £2, W;(0) = 2"~ =2
and Wy(a) = 0 for each a € Fy — {«, 0}.
This remark explains why (9) and (10) are not verified when n = 2: there
exits no function verifying the hypothesis of the corollary for n = 2.
Furthermore, one can verify that the corollary 8 is practically applicable as
soon as n > 3.

Corollary 9 For each f € F such that wt(f) even and [ Wy(a) # 0,

acFy
-Ifn =2, orwt(f) <5 forn =3, or wt(f) < 4 for each n > 4, then
A(f) > 0.
- For each n > 2, if wt(f) = 2 then #S(f) = 22".

Proof. By Proposition 7, if A(f) < —1 we have seen that (7) is verified,
so we have wt(f)?" > (22n_1wt(f))2 +2> (22n_1wt(f))2. Consequently we

obtain wt(f)?" 2 > 222"~V ie. wt(f) > 4277 > 4if n > 2.
If n = 2 then wt(f) > 8 which is impossible, so in this case we have A(f) > 0.
If n = 3 then wt(f) > 4.2% = 5.039... > 5. So, when wt(f) < 5 the only
possibility is A(f) > 0.
If n > 4 then wt(f) > 4, so we have again A(f) > 0 when wt(f) < 4.
Now, if wt(f) = 2, using Proposition 7 and the precedent result for each

n > 2, we are necessarily in the case A(f) > 0 and the inequalities wt(f)zn >
#S(f) > 22" twt(f) deduced of (6) proves the result. m

4 Lower bounds on p(n)

We finish with the following proposition which give us, under the hypothesis
p(n) > pg(n), lower bounds on the covering radius p(n) using #S(f) for f €
C(n).



Proposition 10 For each integer n > 2, if p(n) > pg(n), for each f € C(n)
we have the two following cases:

- If A(f) > 0 then p(n) > 271 — (‘1 i:(fl 4S(f )> FWFI T T

SIFA(S) < =1 then p(n) = 20— (|1 = Zs (S (f) - 2)F) T

Proof. Firstly, for each f # 0, we have

[T Wil =1~ IH\

acFy aeF"

so, from Proposition 3, if A(f) > 0 (respectively A(f) < —1) we obtain

[T Wi@l<n- ( )I#S( ) (11)

acFy

(resp. [] [W;(a)] < 1= Zz|(#S(f) - 2)%).

acFp
On the other hand, if we suppose that p(n) > pg(n), each f € C(n) is such
that W;_l(()) = 0 ([1] Proposition 7) so we have [Wf(a)| > 1 for each a € F3.
Furthermore if n > 2, for each f € C(n) we have 6(f) = p(n) > 1,s0 f #0.
Consequently, we can write

x| =lign—1_ 0.
H (Wi(a)| > (2"~ 1 p(n))#lW*fl (2 p(n)) (12)
acFy

and, combining (11) (12), we obtain for each f € C(n) such that A(f) > 0
(resp. A(f) < -1),

. %#S” ) > (@ pm))#IVITTCT )
(resp. |1 — %(#S(f) — 2)% > (211—1 _ p(n))#IW;‘71(2"71—,0(11))).

We obtain the result in the two cases by resolution of these inequations in
p(n). m
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