Boolean functions of n variables and permutations on \mathbf{F}_2^n

Michel Mitton SGDN/DCSSI/SDS/Crypto. Lab. 75700 Paris-07 SP, France e-mail: michel.mitton@sgdn.pm.gouv.fr

May 29, 2006

Abstract

For each Boolean function in n variables, from the expression of the product of all its Walsh spectrum values derived in a precedent paper, we deduce a new characterization of the parity of its distance from the set of all the affine functions. This characterization uses a subset of permutations on \mathbf{F}_2^n , and some new properties on this subset are deduced.

Keywords

Boolean functions, Walsh and Fourier transforms, nonlinearity, permutations.

1 Introduction

In a previous paper [1], we have derived, for each integer $n \ge 1$, the following formula

$$\prod_{a \in \mathbf{F}_2^n} W_f(a) = \sum_{\sigma \in S(f)} \varepsilon(\sigma)$$

where f is an arbitrary Boolean function, W_f the Walsh spectrum of f, and

$$S(f) = \{ \sigma \in Sym(\mathbf{F}_2^n) | \forall a \in \mathbf{F}_2^n, f(a \oplus \sigma(a)) = 1 \}$$

From this formula, and for each Boolean function f, we obtain firstly a characterization of the parity of its distance to the set of all the n-variable affine functions.

This parity condition is linked to the weight parity of f so, our aim is, in a further study, to obtain new informations on the parity of f when this function is maximally nonlinear.

In a second part, some new informations on #S(f) are derived.

2 Basic definitions and notation

In this paper, the finite field $(\mathbf{Z}/2\mathbf{Z}, \oplus, .)$ with its additive and multiplicative laws will be denoted by \mathbf{F}_2 and the \mathbf{F}_2 -algebra of Boolean functions in n variables $\mathcal{F}(\mathbf{F}_2^n, \mathbf{F}_2)$ will be denoted by \mathcal{F} .

For $f \in \mathcal{F}$ and $a \in \mathbf{F}_2$, recall that $f^{-1}(a) = \{u \in \mathbf{F}_2^n | f(u) = a\}$ and $\overline{a} = a \oplus 1$. We will use #E to denote the number of elements of the set E. The weight wt(f) of $f \in \mathcal{F}$ is defined by $wt(f) = \#f^{-1}(1)$, and a function $f \in \mathcal{F}$ is called balanced if $wt(f) = 2^{n-1}$.

The Hamming distance between f and g, defined by $\#(f \oplus g)^{-1}(1)$, will be denoted by d(f,g).

 $W_f(a)$ is the Walsh spectrum of $f \in \mathcal{F}$ to a point $a = (a_0, ..., a_{n-1}) \in \mathbf{F}_2^n$ defined by

$$W_f(a) = \sum_{x \in \mathbf{F}_2^n} f(x)(-1)^{}.$$
(1)

In this formula, the sum on the right is calculated in \mathbf{Z} , and $\langle a, x \rangle = a_0 x_0 \oplus ... \oplus a_{n-1} x_{n-1}$ represents the scalar product on \mathbf{F}_2^n .

In the sequel, δ_a^b is the Kronecker's symbol, and we will use the notation

$$W_f^*(a) = 2^{n-1}\delta_0^a - W_f(a).$$
(2)

Between Walsh and Fourier transforms, we have the relation $2W_f^* = f$ with $\hat{f}(a) = \sum_{x \in \mathbf{F}_2^n} (-1)^{f(x) + \langle a, x \rangle}.$

We denote Sym(E) the group of permutations on the set E, and for each $\sigma \in Sym(E)$, $\varepsilon(\sigma)$ the parity +1 or -1 of σ .

The affine function defined by $f(x) = \langle \alpha, x \rangle \oplus \lambda$, with $\alpha, x \in \mathbf{F}_2^n$ and $\lambda \in \mathbf{F}_2$, will be denoted by $l_{\alpha} \oplus \lambda$.

The semi-norm on \mathcal{F} defined by $\min_{\alpha \in \mathbf{F}_2^n, \lambda \in \mathbf{F}_2} d(f, l_\alpha \oplus \lambda)$, will be denoted by $\delta(f)$.

It is easy to prove that $\delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)|.$

The integer $\max_{f \in \mathcal{F}} \delta(f)$ will be denoted by $\rho(n)$. In the theory of errorcorrecting codes [3], $\rho(n)$ is called the covering radius of the first Reed-Muller code R(1,n) of length 2^n .

A function $f \in \mathcal{F}$ will be called maximally nonlinear if $\delta(f) = \rho(n)$. C(n) denotes the set of maximally nonlinear functions of \mathcal{F} . When n is even, Bent functions[2][3][4] are defined as Boolean functions having uniform Walsh spectrum $|W_f^*(a)| = 2^{\frac{n}{2}-1}$ for each $a \in \mathbf{F}_2^n$.

For even n, it is easy to prove that f is maximally nonlinear if and only if f is Bent.

3 Parity of $\delta(f)$

For each $f \in \mathcal{F}$, we give a necessary and sufficient condition in order that $\delta(f)$ to be odd or even.

Theorem 1 For each $f \in \mathcal{F}$ and each integer $n \ge 1$, if we denote

$$S(f) = \left\{ \sigma \in Sym(\mathbf{F}_2^n) | \forall a \in \mathbf{F}_2^n, f(a \oplus \sigma(a)) = 1 \right\},$$
(3)

 $\delta(f)$ is an even (resp. odd) integer if and only if #S(f) is even (resp. odd).

Proof. We suppose $\delta(f)$ even and we denote $P = \prod_{a \in \mathbf{F}_2^n} W_f(a)$.

We have proved in [1], Corollary 2, that $\prod_{a \in \mathbf{F}_2^n} W_f(a) = \sum_{\sigma \in S(f)} \varepsilon(\sigma)$ with $S(f) = \{\sigma \in Sym(\mathbf{F}_2^n) | \forall a \in \mathbf{F}_2^n, f(a \oplus \sigma(a)) = 1\}$. Furthermore, we have remarked that $wt(f) \leq \#S(f)$.

Then, if #S(f) = 0 we have necessarily f = 0, so we can suppose $\#S(f) \neq 0$. In this case, if we denote $S(f) = (\sigma_i)_{1 \le i \le \#S(f)}$, by the formula $\prod_{a \in \mathbf{F}_2^n} W_f(a) =$

 $\sum_{\sigma \in S(f)} \varepsilon(\sigma)$ we deduce that

So, we obtain P^2 even if and only if #S(f) is even.

But P^2 is even if and only if P is also even because we can write P = 2q + rwith r = 0 or r = 1. Then $P^2 = 4q(q + r) + r^2$, so P^2 is even if and only if $r^2 = 0$, i.e. P = 2q is even. So, we have P even if and only if #S(f) even.

But, we know that if 2|mn then 2|m or 2|n, so if P is even, there exists $a \in \mathbf{F}_2^n$ at least such that $W_f(a)$ is even. On the other hand, we have seen in [1], lemma 3, that if there exists $a \in \mathbf{F}_2^n$ such that $W_f(a)$ is even, all the values $W_f(a)$, for each $a \in \mathbf{F}_2^n$, are also even.

 $\begin{array}{l} \text{[1], fermina } b, \text{ order } a \in \mathbf{F}_2^n, \text{ are also even.} \\ \text{Finally, we have } \delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} \delta_0^a - W_f(a), \\ \text{We have } \delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} \delta_0^a - W_f(a), \\ \text{We have } \delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} \delta_0^a - W_f(a), \\ \text{We have } \delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} \delta_0^a - W_f(a), \\ \text{We have } \delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} \delta_0^a - W_f(a), \\ \text{We have } \delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} \delta_0^a - W_f(a), \\ \text{We have } \delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} \delta_0^a - W_f(a), \\ \text{We have } \delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} \delta_0^a - W_f(a), \\ \text{We have } \delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} \delta_0^a - W_f(a), \\ \text{We have } \delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} \delta_0^a - W_f(a), \\ \text{We have } \delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a)| \text{ with } W_f^*(a) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)| \text{ with } W_f^*(a)| \text{ with } W_f^*(a)$

therefore $\delta(f)$ is even if and only if, for each $a \in \mathbf{F}_2^n$, $W_f^*(a)$ is even and then also $W_f(a)$. Therefore, the hypothesis $\delta(f)$ even integer is equivalent to the property P even, and consequently to the property #S(f) even, and the theorem is proved. \blacksquare

Corollary 2 For each $f \in \mathcal{F}$ and each $n \geq 1$, wt(f) is even if and only if #S(f) is even.

If $n \ge 2$ is even and for each $f \in C(n)$, #S(f) is even.

Proof. Obvious because if $wt(f) = W_f(0)$ is even, from [1] Lemma 3, $W_f(a)$ is even for each $a \in \mathbf{F}_2^n$ and, equivalently, $\delta(f)$ is also even. Using Theorem 1, we obtain finally the first result.

Now, suppose n even and $f \in C(n)$. In this case we know that $wt(f) = 2^{n-1} \pm 2^{\frac{n}{2}-1}$, so wt(f) is even when $n \ge 2$, and we have proved the second result.

We continue with a result which clarifies the inequality $\prod_{a \in \mathbf{F}_2^n} |W_f(a)| \leq \#S(f)$ proved in [1].

Proposition 3 For each non-null $f \in \mathcal{F}$ and each $n \ge 1$, if we denote $S(f) = (\sigma_i)_{1 \le i \le \#S(f)}$ and $A(f) = \sum_{\substack{1 \le i < j \le \#S(f) \\ 1 \le i < j \le \#S(f)}} \varepsilon(\sigma_i \sigma_j)$, we have the two following cases: - $A(f) \ge 0$ if and only if $(\#S(f))^{\frac{1}{2}} \le \prod_{a \in \mathbf{F}_2^n} |W_f(a)| \le \#S(f)$, - $A(f) \le -1$ if and only if $\prod_{a \in \mathbf{F}_2^n} |W_f(a)| \le (\#S(f) - 2)^{\frac{1}{2}}$.

Proof. With the notations of this proposition, we have seen in the proof of Theorem 1 that $\prod_{a \in \mathbf{F}_{2}^{n}} W_{f}^{2}(a) = \#S(f) + 2A(f).$

If #S(f) = 1, from the definition of A(f) we deduce A(f) = 0, so we have $\prod_{a \in \mathbf{F}_2^n} W_f^2(a) = 1$ and then $|W_f(a)| = 1$ for each $a \in \mathbf{F}_2^n$. In particular we must have $W_f(0) = 1$, i.e. wt(f) = 1, so there exists $\lambda \in \mathbf{F}_2^n$ such that $f = \delta_{\lambda}$ (for each $a \in \mathbf{F}_2^n \ \delta_{\lambda}(a) = 1$ if $a = \lambda$ and $\delta_{\lambda}(a) = 0$ if $a \neq \lambda$). It is easy to see that $S(\delta_{\lambda}) = \{\sigma_{\lambda}\}$ where σ_{λ} is the permutation on \mathbf{F}_2^n defined by $\sigma_{\lambda}(a) = a \oplus \lambda$ and we obtain finally $\prod_{a \in \mathbf{F}_2^n} |W_f(a)| \in [(\#S(f))^{\frac{1}{2}}, \#S(f)] = \{1\}.$

Consequently we can suppose $\#S(f) \ge 2$. Now if $A(f) \ge 0$, the equality $\prod_{a \in \mathbf{F}_2^n} W_f^2(a) = \#S(f) + 2A(f) \text{ implies } \prod_{a \in \mathbf{F}_2^n} W_f^2(a) \ge \#S(f), \text{ so we firstly obtain}$ $(\#S(f))^{\frac{1}{2}} \le \prod_{a \in \mathbf{F}_2^n} |W_f(a)| \le \#S(f).$ If A(f) < 0, i.e. $A(f) \le -1$, we have $\prod_{a \in \mathbf{F}_2^n} W_f^2(a) = \#S(f) + 2A(f) \le$ #S(f) - 2 and we secondly obtain $\prod_{a \in \mathbf{F}_2^n} |W_f(a)| \le (\#S(f) - 2)^{\frac{1}{2}}$ which proves the proposition.

Remark that $f \neq 0$ jointly with $\#S(f) \geq wt(f)$ implies that, in the first case, we have $0 \notin [(\#S(f))^{\frac{1}{2}}, \#S(f)]$.

The proof of the precedent proposition implies that, in the second case, $\#S(f) \ge 2$.

We deduce from this proposition the following result.

Corollary 4 For each non-null $f \in \mathcal{F}$ and each $n \ge 1$, if $\prod_{a \in \mathbf{F}_2^n} W_f(a) = 0$, then $A(f) \le -1$.

Proof. When $A(f) \ge 0$, the proposition 3 implies $\prod_{a \in \mathbf{F}_2^n} |W_f(a)| \in [(\#S(f))^{\frac{1}{2}}, \#S(f)]$ and $0 \notin [(\#S(f))^{\frac{1}{2}}, \#S(f)]$ if $f \ne 0$.

We obtain the following general upper bound on #S(f).

Proposition 5 For each $f \in \mathcal{F}$ and each $n \ge 1$, - If $f(0) = 0, \#S(f) \le \min(wt(f)^{2^n}, 2^n! \sum_{q=0}^{2^n} \frac{(-1)^q}{q!})$ - If $f(0) = 1, \#S(f) \le \min(wt(f)^{2^n}, 2^n!)$. Furthermore, if wt(f) verifies $wt(f)^{2^n} = 2^n!$ or $wt(f)^{2^n} = 2^n!e^{-1}$, we have $wt(f) \sim 2^n e^{-1}$ for $n \to +\infty$.

Proof. Firstly, from Definition (3) of S(f) and if we suppose f(0) = 0 (resp. f(0) = 1), it is clear that if $\sigma \in S(f)$, necessarily $\sigma(a) \neq a$ for each $a \in \mathbf{F}_2^n$ so σ is a derangement of $Sym(\mathbf{F}_2^n)$ as defined in [5], §4.2, p. 180 (resp. $S(f) \subset Sym(\mathbf{F}_2^n)$). In this case, Theorem A of [5], p. 180, gives us a first result

$$\#S(f) \le 2^n! \sum_{q=0}^{2^n} \frac{(-1)^q}{q!} \text{ (resp. } \#S(f) \le 2^n! \text{).}$$
(4)

Secondly, independently of the value f(0), we can write

$$S(f) = \left\{ \sigma \in Sym(\mathbf{F}_2^n) | \forall a \in \mathbf{F}_2^n, (\sigma \oplus Id)(a) \in f^{-1}(1) \right\}$$

So, we can consider the application $\Phi : S(f) \to \mathcal{F}(\mathbf{F}_2^n, f^{-1}(1))$ such that $\Phi(\sigma) = \sigma \oplus Id$, and the injectivity of Φ implies the second result

$$#S(f) \le wt(f)^{2^n}.$$
(5)

Finally, combining (4) and (5), we obtain the two upper bounds on #S(f) of the proposition.

Now, if $wt(f)^{2^n} = 2^n!$ (resp. $wt(f)^{2^n} = 2^n!e^{-1}$), using the Stirling formula for $n \to +\infty$ (we) $\frac{1}{2^n} + \frac{1}{2^n}(e^{-n})^{\frac{1}{n}} + \frac{$

 $wt(f) = (2^{n}!)^{\frac{1}{2^{n}}} \sim [2^{n2^{n}}e^{-2^{n}}(2\pi 2^{n})^{\frac{1}{2}}]^{\frac{1}{2^{n}}} = 2^{n}e^{-1}(2^{n+1}\pi)^{\frac{1}{2^{n}}} \sim 2^{n}e^{-1} \text{ (resp. wt(f) = (2^{n}!)^{\frac{1}{2^{n}}}e^{-\frac{1}{2^{n}}} \sim 2^{n}e^{-1}). \quad \blacksquare$

Remark 6 Obviously,
$$\sum_{q=0}^{2^n} \frac{(-1)^q}{q!} \sim e^{-1}$$
 for $n \to +\infty$.

The propositions 3 and 5 give us the possibility to clarify and improve the lower bound on #S(f) of the proposition 4 of [1] where we have proved that $\#S(f) \ge 2^{2^n}$ when jointly, wt(f) is even and $\prod_{a \in \mathbf{F}_2^n} W_f(a) \ne 0$.

Proposition 7 For $n \geq 1$ and for each $f \in \mathcal{F}$ such that wt(f) even and $\prod_{a \in \mathbf{F}_2^n} W_f(a) \neq 0$, if we denote $\lambda_n = (\sum_{q=0}^{2^n} \frac{(-1)^q}{q!})\overline{f(0)} + f(0)$, we have the two following cases:

$$-If A(f) \geq 0, \min(wt(f)^{2^{n}}, 2^{n}!\lambda_{n}) \geq \#S(f) \geq 2^{2^{n}-1}wt(f),$$
(6)

- If
$$A(f) \leq -1, \min(wt(f)^{2^n}, 2^n!\lambda_n) \geq \#S(f) \geq \left(2^{2^n-1}wt(f)\right)^2 + 2$$
 (7)

Proof. As wt(f) is even and $\prod_{a \in \mathbf{F}_2^n} W_f(a) \neq 0$, from [1], Lemma 3, we have necessarily $|W_f(a)| \geq 2$ for each $a \in \mathbf{F}_2^n$, which implies

$$\prod_{a \in \mathbf{F}_{2}^{n}} |W_{f}(a)| \ge 2^{2^{n} - 1} wt(f).$$
(8)

Moreover, it is clear that $f \neq 0$, so we are under the hypothesis of the proposition 3, and consequently we have two cases $A(f) \geq 0$ or $A(f) \leq -1$.

If $A(f) \ge 0$, the propositions 3 and 5 give us $\prod_{a \in \mathbf{F}_2^n} |W_f(a)| \le \#S(f) \le$ $\min(wt(f)^{2^n}, 2^n!\lambda_n)$, and combining this first inequality with $\prod_{a \in \mathbf{F}_2^n} |W_f(a)| \ge$

 $2^{2^n-1}wt(f)$, we obtain the first result.

Now, if we are in the case $A(f) \leq -1$, then $\prod_{a \in \mathbf{F}_2^n} |W_f(a)| \leq (\#S(f)-2)^{\frac{1}{2}}$ and, from the above inequality (8), we obtain finally $(\#S(f)-2)^{\frac{1}{2}} \geq 2^{2^n-1}wt(f)$ which, combined with Proposition 5, proves the result.

Corollary 8 For each $f \in \mathcal{F}$ balanced such that $\prod_{a \in \mathbf{F}_2^n} W_f(a) \neq 0$, we have for $n \geq 2$ and n enough large, $\min(wt(f)^{2^n}, 2^n!\lambda_n) = 2^n!\lambda_n$ and

 $u(t) > 0, 2^{n+1} > u(t) > 2^{n+n-2}$

$$-If A(f) \geq 0, \ 2^{n}!\lambda_n \geq \#S(f) \geq 2^{2^n+n-2},$$
(9)

$$-If A(f) \leq -1, \ 2^{n}!\lambda_n \geq \#S(f) \geq 2^{2(2^n+n-2)} + 2.$$
 (10)

Proof. If $n \ge 2$, $wt(f) = 2^{n-1}$ is even, so we are under the hypothesis of Proposition 7. Consequently we obtain firstly $\min(wt(f)^{2^n}, 2^n!\lambda_n) \ge \#S(f)$ for each $n \ge 2$.

For $n \to +\infty$, we have seen that $(2^n!)^{\frac{1}{2^n}} \sim 2^n e^{-1}$ and

$$\lim_{n \to +\infty} \lambda_n^{\frac{1}{2^n}} = \lim_{n \to +\infty} \left(\left(\sum_{q=0}^{2^n} \frac{(-1)^q}{q!} \right) \overline{f(0)} + f(0) \right)^{\frac{1}{2^n}} = \left(e^{-1} \overline{f(0)} + f(0) \right)^0 = 1, \text{ so}$$

we obtain $\lim_{n \to +\infty} \frac{(2^{n}!)^{\frac{1}{2^n}} \lambda_n^{2^n}}{2^{n-1}} = 2e^{-1} < 1.$

Denote $u_n = \frac{(2^n!)^{\frac{1}{2^n}} \lambda_n^{\frac{1}{2^n}}}{2^{n-1}}$ for $n \ge 1$. The properties $\lim_{n \to +\infty} u_n = 2e^{-1}$ and $1 - 2e^{-1} > 0$ implies the existence of an integer $N \ge 1$ such that, for each

 $n \geq N, |u_n - 2e^{-1}| \leq 1 - 2e^{-1}$. We deduce of this last inequality $u_n \leq 1$, i.e. $\frac{(2^n!)^{\frac{1}{2^n}}\lambda_n^{\frac{1}{2^n}}}{2^{n-1}} \leq \frac{wt(f)}{2^{n-1}}$ and equivalently $(2^n!)\lambda_n \leq wt(f)^{2^n}$ for each $n \geq N$.

So, for $n \geq N$ we have necessarily $\min(wt(f)^{2^n}, 2^n!\lambda_n) = 2^n!\lambda_n$, and the upper bounds on #S(f) are proved.

Finally, the lower bounds on #S(f) results directly from Proposition 7 with $wt(f) = 2^{n-1}$.

For $n \geq 2$, say that there exits f balanced with $\prod_{a \in \mathbf{F}_2^n} W_f(a) \neq 0$ implicetely implies that $n \geq 3$ because, for n = 2 it is easy to see that the only existing balanced functions are the non-constant affine functions (we have $\binom{2^n}{2^{n-1}} = \binom{4}{2} =$ 6 balanced functions which coincide with the $2(2^2 - 1) = 6$ non-constant affine functions $l_{\alpha} \oplus \lambda$ with $\lambda \in \mathbf{F}_2$ and $\alpha \in \mathbf{F}_2^n - \{0\}$).

So, if f is balanced and n = 2, $\prod_{a \in \mathbf{F}_2^n} W_f(a) = 0$ because, for $f = l_\alpha \oplus \lambda$ with $\alpha \in \mathbf{F}_2^n - \{0\}$ and $\lambda \in \mathbf{F}_2$ we obtain $W_f(\alpha) = \pm 2^{n-1} = \pm 2$, $W_f(0) = 2^{n-1} = 2$

and $W_f(a) = 0$ for each $a \in \mathbf{F}_2^n - \{\alpha, 0\}$. This remark explains why (9) and (10) are not verified when n = 2: there exits no function verifying the hypothesis of the corollary for n = 2.

Furthermore, one can verify that the corollary 8 is practically applicable as soon as $n \geq 3$.

Corollary 9 For each $f \in \mathcal{F}$ such that wt(f) even and $\prod_{a \in \mathbf{F}_2^n} W_f(a) \neq 0$,

- If n = 2, or $wt(f) \le 5$ for n = 3, or $wt(f) \le 4$ for each $n \ge 4$, then $A(f) \ge 0$.

- For each $n \ge 2$, if wt(f) = 2 then $\#S(f) = 2^{2^n}$.

Proof. By Proposition 7, if $A(f) \leq -1$ we have seen that (7) is verified, so we have $wt(f)^{2^n} \geq (2^{2^n-1}wt(f))^2 + 2 > (2^{2^n-1}wt(f))^2$. Consequently we obtain $wt(f)^{2^n-2} > 2^{2(2^n-1)}$, i.e. $wt(f) > 4.2^{\frac{1}{2^{n-1}-1}} > 4$ if $n \geq 2$.

If n = 2 then wt(f) > 8 which is impossible, so in this case we have $A(f) \ge 0$. If n = 3 then $wt(f) > 4.2^{\frac{1}{3}} = 5.039... > 5$. So, when $wt(f) \le 5$ the only possibility is $A(f) \ge 0$.

If $n \ge 4$ then wt(f) > 4, so we have again $A(f) \ge 0$ when $wt(f) \le 4$.

Now, if wt(f) = 2, using Proposition 7 and the precedent result for each $n \ge 2$, we are necessarily in the case $A(f) \ge 0$ and the inequalities $wt(f)^{2^n} \ge \#S(f) \ge 2^{2^n-1}wt(f)$ deduced of (6) proves the result.

4 Lower bounds on $\rho(n)$

We finish with the following proposition which give us, under the hypothesis $\rho(n) > \rho_B(n)$, lower bounds on the covering radius $\rho(n)$ using #S(f) for $f \in C(n)$.

Proposition 10 For each integer $n \ge 2$, if $\rho(n) > \rho_B(n)$, for each $f \in C(n)$ we have the two following cases:

$$- If A(f) \ge 0 \text{ then } \rho(n) \ge 2^{n-1} - \left(|1 - \frac{2^{n-1}}{wt(f)}| \# S(f) \right)^{\frac{1}{\#|W_f^*|^{-1}(2^{n-1} - \rho(n))}} .$$

$$- If A(f) \le -1 \text{ then } \rho(n) \ge 2^{n-1} - \left(|1 - \frac{2^{n-1}}{wt(f)}| (\# S(f) - 2)^{\frac{1}{2}} \right)^{\frac{1}{\#|W_f^*|^{-1}(2^{n-1} - \rho(n))}} .$$

Proof. Firstly, for each $f \neq 0$, we have

$$\prod_{a \in \mathbf{F}_2^n} |W_f^*(a)| = |1 - \frac{2^{n-1}}{wt(f)}| \prod_{a \in \mathbf{F}_2^n} |W_f(a)|$$

so, from Proposition 3, if $A(f) \ge 0$ (respectively $A(f) \le -1$) we obtain

$$\prod_{a \in \mathbf{F}_2^n} |W_f^*(a)| \le |1 - \frac{2^{n-1}}{wt(f)}| \# S(f)$$
(11)

(resp. $\prod_{a \in \mathbf{F}_2^n} |W_f^*(a)| \leq |1 - \frac{2^{n-1}}{wt(f)}| (\#S(f) - 2)^{\frac{1}{2}}).$ On the other hand, if we suppose that $\rho(n) > \rho_B(n)$, each $f \in C(n)$ is such that $W_f^{*-1}(0) = \emptyset$ ([1] Proposition 7) so we have $|W_f^*(a)| \geq 1$ for each $a \in \mathbf{F}_2^n$. Furthermore if $n \geq 2$, for each $f \in C(n)$ we have $\delta(f) = \rho(n) \geq 1$, so $f \neq 0$.

Consequently, we can write

$$\prod_{a \in \mathbf{F}_2^n} |W_f^*(a)| \ge (2^{n-1} - \rho(n))^{\# |W_f^*|^{-1}(2^{n-1} - \rho(n))}$$
(12)

and, combining (11) (12), we obtain for each $f \in C(n)$ such that $A(f) \geq 0$ (resp. $A(f) \leq -1$),

$$\begin{aligned} &|1 - \frac{2^{n-1}}{wt(f)}| \# S(f) &\geq (2^{n-1} - \rho(n))^{\#|W_f^*|^{-1}(2^{n-1} - \rho(n))} \\ &(\text{resp. } |1 - \frac{2^{n-1}}{wt(f)}| (\# S(f) - 2)^{\frac{1}{2}} &\geq (2^{n-1} - \rho(n))^{\#|W_f^*|^{-1}(2^{n-1} - \rho(n))}). \end{aligned}$$

We obtain the result in the two cases by resolution of these inequations in $\rho(n)$.

References 5

[1] M. Mitton, On the Walsh-Fourier analysis of Boolean functions, Jour. Discr. Maths. Sciences. & Crypto., (September 2005), accepted.

[2] O. S. Rothaus, On "bent" functions, J. Comb. Th. (Series A), Vol. 20, pp. 300-305 (1976).

[3] F. J. Mac Williams and N. J. A. Sloane, *The Theory of Error-Correcting Codes*, Amsterdam North-Holland, 1977.

[4] J. F. Dillon, Elementary Hadamard difference sets, Ph. D. dissertation, University of Maryland, 1974.

[5] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Compagny, Dordrecht, 1974.