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Abstract

For each Boolean function in n variables, from the expression of the product of

all its Walsh spectrum values derived in a precedent paper, we deduce a new charac-

terization of the parity of its distance from the set of all the affine functions. This

characterization uses a subset of permutations on Fn2 , and some new properties on

this subset are deduced.
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1 Introduction

In a previous paper [1], we have derived, for each integer n ≥ 1, the following
formula ∏

a∈Fn2

Wf (a) =
∑

σ∈S(f)

ε(σ)

where f is an arbitrary Boolean function, Wf the Walsh spectrum of f, and

S(f) = {σ ∈ Sym(Fn2 )|∀a ∈ F
n
2 , f(a⊕ σ(a)) = 1} .

From this formula, and for each Boolean function f , we obtain firstly a
characterization of the parity of its distance to the set of all the n−variable
affine functions.

This parity condition is linked to the weight parity of f so, our aim is, in a
further study, to obtain new informations on the parity of f when this function
is maximally nonlinear.

In a second part, some new informations on #S(f) are derived.
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2 Basic definitions and notation

In this paper, the finite field (Z/2Z,⊕, .) with its additive and multiplicative
laws will be denoted by F2 and the F2-algebra of Boolean functions in n variables
F(Fn2 ,F2) will be denoted by F .

For f ∈ F and a ∈ F2, recall that f−1(a) = {u ∈ Fn2 |f(u) = a} and a = a⊕1.
We will use #E to denote the number of elements of the set E. The weight

wt(f) of f ∈ F is defined by wt(f) = #f−1(1), and a function f ∈ F is called
balanced if wt(f) = 2n−1.

The Hamming distance between f and g, defined by #(f ⊕ g)−1(1), will be
denoted by d(f, g).

Wf (a) is the Walsh spectrum of f ∈ F to a point a = (a0, ..., an−1) ∈ Fn2
defined by

Wf (a) =
∑

x∈Fn2

f(x)(−1)<a,x>. (1)

In this formula, the sum on the right is calculated in Z, and < a, x >=
a0x0 ⊕ ...⊕ an−1xn−1 represents the scalar product on Fn2 .

In the sequel, δba is the Kronecker’s symbol, and we will use the notation

W ∗
f (a) = 2

n−1δa0 −Wf (a). (2)

Between Walsh and Fourier transforms, we have the relation 2W ∗
f =

∧

f with
∧

f(a) =
∑

x∈Fn2

(−1)f(x)+<a,x>.

We denote Sym(E) the group of permutations on the set E, and for each
σ ∈ Sym(E), ε(σ) the parity +1 or −1 of σ.

The affine function defined by f(x) =< α, x > ⊕λ, with α, x ∈ F
n
2 and

λ ∈ F2, will be denoted by lα ⊕ λ.
The semi-norm on F defined by min

α∈Fn2 ,λ∈F2
d(f, lα ⊕ λ), will be denoted by

δ(f).
It is easy to prove that δ(f) = 2n−1 − max

a∈Fn2
|W ∗

f (a)|.

The integer max
f∈F

δ(f) will be denoted by ρ(n). In the theory of error-

correcting codes [3], ρ(n) is called the covering radius of the first Reed-Muller
code R(1, n) of length 2n.

A function f ∈ F will be called maximally nonlinear if δ(f) = ρ(n). C(n)
denotes the set of maximally nonlinear functions of F . When n is even, Bent
functions[2][3][4] are defined as Boolean functions having uniform Walsh spec-
trum |W ∗

f (a)| = 2
n
2−1 for each a ∈ Fn2 .

For even n, it is easy to prove that f is maximally nonlinear if and only if f
is Bent.
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3 Parity of δ(f)

For each f ∈ F , we give a necessary and sufficient condition in order that δ(f)
to be odd or even.

Theorem 1 For each f ∈ F and each integer n ≥ 1, if we denote

S(f) = {σ ∈ Sym(Fn2 )|∀a ∈ F
n
2 , f(a⊕ σ(a)) = 1} , (3)

δ(f) is an even (resp. odd) integer if and only if #S(f) is even (resp. odd).

Proof. We suppose δ(f) even and we denote P =
∏

a∈Fn2

Wf (a).

We have proved in [1], Corollary 2, that
∏

a∈Fn2

Wf (a) =
∑

σ∈S(f)

ε(σ) with

S(f) = {σ ∈ Sym(Fn2 )|∀a ∈ F
n
2 , f(a⊕ σ(a)) = 1} . Furthermore, we have re-

marked that wt(f) ≤ #S(f).
Then, if#S(f) = 0 we have necessarily f = 0, so we can suppose#S(f) �= 0.
In this case, if we denote S(f) = (σi)1≤i≤#S(f), by the formula

∏

a∈Fn2

Wf (a) =

∑

σ∈S(f)

ε(σ) we deduce that

P 2 =

(
∑

σ∈S(f)

ε(σ)

)2
=

∑

σ∈S(f)

(ε(σ))2 +2(
∑

1≤i<j≤#S(f)

ε(σi)ε(σj))

= #S(f) + 2(
∑

1≤i<j≤#S(f)

ε(σi)ε(σj)).

So, we obtain P 2 even if and only if #S(f) is even.
But P 2 is even if and only if P is also even because we can write P = 2q+ r

with r = 0 or r = 1. Then P 2 = 4q(q + r) + r2, so P 2 is even if and only if
r2 = 0, i.e. P = 2q is even. So, we have P even if and only if #S(f) even.

But, we know that if 2|mn then 2|m or 2|n, so if P is even, there exists
a ∈ Fn2 at least such that Wf (a) is even. On the other hand, we have seen in
[1], lemma 3, that if there exists a ∈ Fn2 such that Wf (a) is even, all the values
Wf (a), for each a ∈ Fn2 , are also even.

Finally, we have δ(f) = 2n−1−max
a∈Fn2

|W ∗
f (a)| with W ∗

f (a) = 2
n−1δa0 −Wf (a),

therefore δ(f) is even if and only if, for each a ∈ Fn2 , W ∗
f (a) is even and then

also Wf (a). Therefore, the hypothesis δ(f) even integer is equivalent to the
property P even, and consequently to the property#S(f) even, and the theorem
is proved.

Corollary 2 For each f ∈ F and each n ≥ 1, wt(f) is even if and only if
#S(f) is even.

If n ≥ 2 is even and for each f ∈ C(n), #S(f) is even.

Proof. Obvious because if wt(f) =Wf (0) is even, from [1] Lemma 3, Wf (a)
is even for each a ∈ Fn2 and, equivalently, δ(f) is also even. Using Theorem 1,
we obtain finally the first result.
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Now, supppose n even and f ∈ C(n). In this case we know that wt(f) =
2n−1 ± 2

n
2−1, so wt(f) is even when n ≥ 2, and we have proved the second

result.

We continue with a result which clarifies the inequality
∏

a∈Fn2

|Wf (a)| ≤

#S(f) proved in [1].

Proposition 3 For each non-null f ∈ F and each n ≥ 1, if we denote S(f) =
(σi)1≤i≤#S(f) and A(f) =

∑

1≤i<j≤#S(f)

ε(σiσj), we have the two following cases:

- A(f) ≥ 0 if and only if (#S(f))
1
2 ≤

∏

a∈Fn2

|Wf (a)| ≤ #S(f),

- A(f) ≤ −1 if and only if
∏

a∈Fn2

|Wf (a)| ≤ (#S(f)− 2)
1
2 .

Proof. With the notations of this proposition, we have seen in the proof of
Theorem 1 that

∏

a∈Fn2

W 2
f (a) = #S(f) + 2A(f).

If #S(f) = 1, from the definition of A(f) we deduce A(f) = 0, so we have∏

a∈Fn2

W 2
f (a) = 1 and then |Wf (a)| = 1 for each a ∈ Fn2 . In particular we must

have Wf (0) = 1, i.e. wt(f) = 1, so there exists λ ∈ Fn2 such that f = δλ (for
each a ∈ Fn2 δλ(a) = 1 if a = λ and δλ(a) = 0 if a �= λ). It is easy to see that
S(δλ) = {σλ} where σλ is the permutation on Fn2 defined by σλ(a) = a⊕λ and

we obtain finally
∏

a∈Fn2

|Wf (a)| ∈ [(#S(f))
1
2 ,#S(f)] = {1}.

Consequently we can suppose #S(f) ≥ 2. Now if A(f) ≥ 0, the equality∏

a∈Fn2

W 2
f (a) = #S(f) + 2A(f) implies

∏

a∈Fn2

W 2
f (a) ≥ #S(f), so we firstly obtain

(#S(f))
1
2 ≤

∏

a∈Fn2

|Wf (a)| ≤ #S(f).

If A(f) < 0, i.e. A(f) ≤ −1, we have
∏

a∈Fn2

W 2
f (a) = #S(f) + 2A(f) ≤

#S(f) − 2 and we secondly obtain
∏

a∈Fn2

|Wf (a)| ≤ (#S(f)− 2)
1
2 which proves

the proposition.

Remark that f �= 0 jointly with #S(f) ≥ wt(f) implies that, in the first

case, we have 0 /∈ [(#S(f))
1
2 ,#S(f)].

The proof of the precedent proposition implies that, in the second case,
#S(f) ≥ 2.

We deduce from this proposition the following result.

Corollary 4 For each non-null f ∈ F and each n ≥ 1, if
∏

a∈Fn2

Wf (a) = 0, then

A(f) ≤ −1.
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Proof. When A(f) ≥ 0, the proposition 3 implies
∏

a∈Fn2

|Wf (a)| ∈ [(#S(f))
1
2 ,#S(f)]

and 0 /∈ [(#S(f))
1
2 ,#S(f)] if f �= 0.

We obtain the following general upper bound on #S(f).

Proposition 5 For each f ∈ F and each n ≥ 1,

- If f(0) = 0,#S(f) ≤ min(wt(f)2
n

, 2n!
2n∑

q=0

(−1)q

q! )

- If f(0) = 1,#S(f) ≤ min(wt(f)2
n

, 2n!).
Furthermore, if wt(f) verifies wt(f)2

n

= 2n! or wt(f)2
n

= 2n!e−1, we have
wt(f) ∼ 2ne−1 for n → +∞.

Proof. Firstly, from Definition (3) of S(f) and if we suppose f(0) = 0
(resp. f(0) = 1), it is clear that if σ ∈ S(f), necessarily σ(a) �= a for each
a ∈ Fn2 so σ is a derangement of Sym(Fn2 ) as defined in [5], §4.2, p. 180 (resp.
S(f) ⊂ Sym(Fn2 )). In this case, Theorem A of [5], p. 180, gives us a first result

#S(f) ≤ 2n!
2n∑

q=0

(−1)q

q!
(resp. #S(f) ≤ 2n!). (4)

Secondly, independently of the value f(0), we can write

S(f) =
{
σ ∈ Sym(Fn2 )|∀a ∈ F

n
2 , (σ ⊕ Id)(a) ∈ f−1(1)

}
.

So, we can consider the application Φ : S(f)→ F(Fn2 , f
−1(1)) such that Φ(σ) =

σ ⊕ Id, and the injectivity of Φ implies the second result

#S(f) ≤ wt(f)2
n

. (5)

Finally, combining (4) and (5), we obtain the two upper bounds on #S(f)
of the proposition.

Now, if wt(f)2
n

= 2n! (resp. wt(f)2
n

= 2n!e−1), using the Stirling formula
for n→ +∞ we obtain

wt(f) = (2n!)
1
2n ∼ [2n2

n

e−2
n

(2π2n)
1
2 ]

1
2n = 2ne−1(2n+1π)

1
2n ∼ 2ne−1 (resp.

wt(f) = (2n!)
1
2n e−

1
2n ∼ 2ne−1).

Remark 6 Obviously,
2n∑

q=0

(−1)q

q! ∼ e−1 for n → +∞.

The propositions 3 and 5 give us the possibility to clarify and improve the
lower bound on #S(f) of the proposition 4 of [1] where we have proved that
#S(f) ≥ 22

n

when jointly, wt(f) is even and
∏

a∈Fn2

Wf (a) �= 0.
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Proposition 7 For n ≥ 1 and for each f ∈ F such that wt(f) even and
∏

a∈Fn2

Wf (a) �= 0, if we denote λn = (
2n∑

q=0

(−1)q

q! )f(0) + f(0), we have the two

following cases:

- If A(f) ≥ 0,min(wt(f)2
n

, 2n!λn) ≥ #S(f) ≥ 22
n−1wt(f), (6)

- If A(f) ≤ −1,min(wt(f)2
n

, 2n!λn) ≥ #S(f) ≥
(
22

n−1wt(f)
)2
+ 2 (7)

Proof. As wt(f) is even and
∏

a∈Fn2

Wf (a) �= 0, from [1], Lemma 3, we have

necessarily |Wf (a)| ≥ 2 for each a ∈ Fn2 , which implies

∏

a∈Fn2

|Wf (a)| ≥ 2
2n−1wt(f). (8)

Moreover, it is clear that f �= 0, so we are under the hypothesis of the
proposition 3, and consequently we have two cases A(f) ≥ 0 or A(f) ≤ −1.

If A(f) ≥ 0, the propositions 3 and 5 give us
∏

a∈Fn2

|Wf (a)| ≤ #S(f) ≤

min(wt(f)2
n

, 2n!λn), and combining this first inequality with
∏

a∈Fn2

|Wf (a)| ≥

22
n−1wt(f), we obtain the first result.

Now, if we are in the case A(f) ≤ −1, then
∏

a∈Fn2

|Wf (a)| ≤ (#S(f)− 2)
1
2

and, from the above inequality (8), we obtain finally (#S(f)− 2)
1
2 ≥ 22

n−1wt(f)
which, combined with Proposition 5, proves the result.

Corollary 8 For each f ∈ F balanced such that
∏

a∈Fn2

Wf (a) �= 0, we have for

n ≥ 2 and n enough large, min(wt(f)2
n

, 2n!λn) = 2
n!λn and

- If A(f) ≥ 0, 2n!λn ≥ #S(f) ≥ 22
n+n−2, (9)

- If A(f) ≤ −1, 2n!λn ≥ #S(f) ≥ 22(2
n+n−2) + 2. (10)

Proof. If n ≥ 2, wt(f) = 2n−1 is even, so we are under the hypothesis of
Proposition 7. Consequently we obtain firstly min(wt(f)2

n

, 2n!λn) ≥ #S(f) for
each n ≥ 2.

For n → +∞, we have seen that (2n!)
1
2n ∼ 2ne−1 and

lim
n→+∞

λ
1
2n
n = lim

n→+∞
((
2n∑

q=0

(−1)q

q! )f(0) + f(0))
1
2n = (e−1f(0) + f(0))0 = 1, so

we obtain lim
n→+∞

(2n!)
1
2n λ

1
2n
n

2n−1 = 2e−1 < 1.

Denote un =
(2n!)

1
2n λ

1
2n
n

2n−1 for n ≥ 1. The properties lim
n→+∞

un = 2e−1 and

1 − 2e−1 > 0 implies the existence of an integer N ≥ 1 such that, for each

6



n ≥ N , |un − 2e−1| ≤ 1 − 2e−1. We deduce of this last inequality un ≤ 1, i.e.

(2n!)
1
2n λ

1
2n
n

2n−1 ≤ wt(f)
2n−1 and equivalently (2n!)λn ≤ wt(f)2

n

for each n ≥ N.

So, for n ≥ N we have necessarily min(wt(f)2
n

, 2n!λn) = 2n!λn, and the
upper bounds on #S(f) are proved.

Finally, the lower bounds on #S(f) results dircctly from Proposition 7 with
wt(f) = 2n−1.

For n ≥ 2, say that there exits f balanced with
∏

a∈Fn2

Wf (a) �= 0 implicetely

implies that n ≥ 3 because, for n = 2 it is easy to see that the only existing
balanced functions are the non-constant affine functions (we have

(
2n

2n−1

)
=
(
4
2

)
=

6 balanced functions which coincide with the 2(22− 1) = 6 non-constant affine
functions lα ⊕ λ with λ ∈ F2 and α ∈ Fn2 − {0}).

So, if f is balanced and n = 2,
∏

a∈Fn2

Wf (a) = 0 because, for f = lα ⊕ λ with

α ∈ Fn2 − {0} and λ ∈ F2 we obtain Wf (α) = ±2n−1 = ±2, Wf (0) = 2
n−1 = 2

and Wf (a) = 0 for each a ∈ Fn2 − {α, 0}.
This remark explains why (9) and (10) are not verified when n = 2: there

exits no function verifying the hypothesis of the corollary for n = 2.
Furthermore, one can verify that the corollary 8 is practically applicable as

soon as n ≥ 3.

Corollary 9 For each f ∈ F such that wt(f) even and
∏

a∈Fn2

Wf (a) �= 0,

- If n = 2, or wt(f) ≤ 5 for n = 3, or wt(f) ≤ 4 for each n ≥ 4, then
A(f) ≥ 0.

- For each n ≥ 2, if wt(f) = 2 then #S(f) = 22
n

.

Proof. By Proposition 7, if A(f) ≤ −1 we have seen that (7) is verified,

so we have wt(f)2
n

≥
(
22

n−1wt(f)
)2
+ 2 >

(
22

n−1wt(f)
)2
. Consequently we

obtain wt(f)2
n−2 > 22(2

n−1), i.e. wt(f) > 4.2
1

2n−1−1 > 4 if n ≥ 2.
If n = 2 then wt(f) > 8 which is impossible, so in this case we have A(f) ≥ 0.

If n = 3 then wt(f) > 4.2
1
3 = 5.039... > 5. So, when wt(f) ≤ 5 the only

possibility is A(f) ≥ 0.
If n ≥ 4 then wt(f) > 4, so we have again A(f) ≥ 0 when wt(f) ≤ 4.
Now, if wt(f) = 2, using Proposition 7 and the precedent result for each

n ≥ 2, we are necessarily in the case A(f) ≥ 0 and the inequalities wt(f)2
n

≥
#S(f) ≥ 22

n−1wt(f) deduced of (6) proves the result.

4 Lower bounds on ρ(n)

We finish with the following proposition which give us, under the hypothesis
ρ(n) > ρB(n), lower bounds on the covering radius ρ(n) using #S(f) for f ∈
C(n).
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Proposition 10 For each integer n ≥ 2, if ρ(n) > ρB(n), for each f ∈ C(n)
we have the two following cases:

- If A(f) ≥ 0 then ρ(n) ≥ 2n−1 −
(
|1− 2n−1

wt(f) |#S(f)
) 1
#|W∗

f
|−1(2n−1−ρ(n))

.

- If A(f) ≤ −1 then ρ(n) ≥ 2n−1−
(
|1− 2n−1

wt(f) |(#S(f)− 2)
1
2

) 1
#|W∗

f
|−1(2n−1−ρ(n))

.

Proof. Firstly, for each f �= 0, we have

∏

a∈Fn2

|W ∗
f (a)| = |1−

2n−1

wt(f)
|
∏

a∈Fn2

|Wf (a)|

so, from Proposition 3, if A(f) ≥ 0 (respectively A(f) ≤ −1) we obtain

∏

a∈Fn2

|W ∗
f (a)| ≤ |1−

2n−1

wt(f)
|#S(f) (11)

(resp.
∏

a∈Fn2

|W ∗
f (a)| ≤ |1−

2n−1

wt(f) |(#S(f)− 2)
1
2 ).

On the other hand, if we suppose that ρ(n) > ρB(n), each f ∈ C(n) is such
that W ∗−1

f (0) = ∅ ([1] Proposition 7) so we have |W ∗
f (a)| ≥ 1 for each a ∈ Fn2 .

Furthermore if n ≥ 2, for each f ∈ C(n) we have δ(f) = ρ(n) ≥ 1, so f �= 0.
Consequently, we can write

∏

a∈Fn2

|W ∗
f (a)| ≥ (2

n−1 − ρ(n))#|W
∗
f |

−1(2n−1−ρ(n)) (12)

and, combining (11) (12), we obtain for each f ∈ C(n) such that A(f) ≥ 0
(resp. A(f) ≤ −1),

|1−
2n−1

wt(f)
|#S(f) ≥ (2n−1 − ρ(n))#|W

∗
f |

−1(2n−1−ρ(n))

(resp. |1−
2n−1

wt(f)
|(#S(f)− 2)

1
2 ≥ (2n−1 − ρ(n))#|W

∗
f |

−1(2n−1−ρ(n))).

We obtain the result in the two cases by resolution of these inequations in
ρ(n).
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