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Abstract

From the representation of Boolean functions based on the Cayley
graph adjacency matrix, we evaluate, for each Boolean function, the prod-
uct of all the values of his Walsh spectrum. An application to the extremal
balanced Boolean functions is given.
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1 Introduction

This paper investigates the harmonic analysis of Boolean functions, more pre-
cisely a new property of the Walsh-Fourier spectrum of these functions.

For each Boolean function, our problem is to evaluate the product of all the
Walsh-Fourier spectrum values because the parity of this product is linked to
the weight of the function, and so, perhaps could gives us some new information
on the weight parities of the maximally nonlinear Boolean functions.

This calculus uses the adjacency matrix of the Cayley graph of the Boolean
function. With this tool, the Walsh-Fourier spectrum of a Boolean function can
be viewed as the set of the eigenvalues of the adjacency matrix of his Cayley
graph, and this property facilitates the solution of our problem.
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2 Preliminaries: basic définitions and notation

In this paper, the finite field (Z/2Z,⊕, .) with its additive and multiplicative laws
will be denoted by F2 and the F2−algebra of Boolean functions in n variables
will be denoted by F = F(Fn

2 ,F2).
The additive law ⊕ on F2 is extended from componants to define the additive

law ⊕ on Fn
2 by x⊕ y = (x0 ⊕ y0, ..., xn−1 ⊕ yn−1) with x, y ∈ Fn

2 .
For f ∈ F and a ∈ F2 , recall that f−1(a) is the set defined by f−1(a) =

{u ∈ Fn
2 | f(u) = a}.

We will use #E to denote the number of elements of the set E. The weight
wt(f) of f ∈ F is defined by wt(f) = #f−1(1).

A function f ∈ F is called balanced if #f−1(0) = #f−1(1) = 2n−1.

The Hamming distance between f and g defined by #(f ⊕ g)−1 (1) will be
denoted by d(f, g).

Wf (a) is the Walsh spectrum of f ∈ F to a point
a = (a0, ..., an−1) ∈ Fn

2 defined by

Wf (a) =
∑

x∈Fn
2

f(x)(−1)<a,x>. (1)

In this formula, the sum on the right is calculated in Z, and < a, x >=
a0x0 ⊕ ...⊕ an−1xn−1 is the scalar product on Fn

2 .
In the sequel, δba is the Kronecker’s symbol, and we will use the notation

W ∗
f (a) = 2

n−1δa0 −Wf (a). (2)

Between Walsh and Fourier transforms, we have the relation 2W ∗
f =

∧

f with
∧

f(a) =
∑

x∈Fn
2

(−1)f(x)+<a,x>.

Each f ∈ F verifies the important Parseval’s relation

∑

a∈Fn
2

(W ∗
f (a))

2 = 22(n−1). (3)

Let K be a field. If X = (x0, ..., xn−1) ∈ Kn is an arbitrary vector, we
denote (X)i = xi−1 the i th componant of X for each i ∈ [1, n].

In [1][2], the Walsh-Fourier analysis is viewed as a Cayley graph adjacency
matrix eigenvalue problem.

For f ∈ F , we consider the set f−1(1) and the following graph Gf where the
vertex set is Fn

2 , and the edge set is defined by

{
(a, b) ∈ Fn

2 ×F
n
2 |a⊕ b ∈ f−1(1)

}
.

This definition implies that Gf = G(Fn
2 , f−1(1)) is the Cayley graph of

F
n
2 with respect to the Cayley set f−1(1), and the symmetric matrix Mf =
(mi,j)i,j∈[0,2n−1]×[0,2n−1] with mi,j = f(i ⊕ j) is the adjacency matrix of Gf ,
where we identify [0, 2n − 1] with Fn

2 .
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For a detailed study on this topic, see [1] and [2].
We denote Sym(E) the group of permutations on the set E, and for each

σ ∈ Sym(E), ε(σ) the parity +1 or −1 of σ.
We denote m|n if the integer m divides the integer n. |x| is the absolute

value of the real number x.
The affine function defined by f(x) =< α, x > ⊕λ, with α, x ∈ F

n
2 and

λ ∈ F2 , will be denoted by lα ⊕ λ.
The semi-norm on F defined by min

α∈Fn
2 , λ∈F2

d(f, lα ⊕ λ), will be denoted by

δ(f).
It is easy to prove that δ(f) = 2n−1 − max

a∈Fn
2

|W ∗
f (a)|.

The integer max
f∈F

δ(f) will be denoted by ρ(n). In the theory of error-

correcting codes [4], ρ(n) is called the covering radius of the first order Reed-
Muller code R(1, n) of length 2n.

The integer max
f balanced

δ(f) will be denoted by ρB(n) and will be called the

balanced covering radius in dimension n. Of course, we have ρB(n) ≤ ρ(n).
A function f ∈ F will be called maximally nonlinear (resp. extremal bal-

anced) if δ(f) = ρ(n) (resp. δ(f) = ρB(n)). When n is even, bent functions
[3][4][5] are defined as Boolean functions f having uniform Walsh spectrum
|W ∗

f (a)| = 2
n
2
−1 for each a ∈ F

n
2 . For even n, it is easy to prove that f is

maximally nonlinear if and only if f is bent.
The subset of F containing all the maximally nonlinear (resp. extremal

balanced) functions will be denoted by C(n) (resp. E(n)).
For a study on related topics, see [6].

3 Evaluation of the Walsh spectra product

Our problem is the evaluation of the product

∏

a∈Fn
2

Wf (a) (4)

considered as a tool for the study of the parity of f.
In fact, we prove a more general result. Namely we obtain the polynomial

expression of

P (X) =
∏

a∈Fn
2

(X −Wf (a)).

So, we obtain (4) as corollary.

We have the following result:

Theorem 1 For each f ∈ F , each j ∈ [1, 2n] and each i1, ..., ij verifying
0 ≤ i1 < ... < ij ≤ 2n − 1, if we denote
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S(i1,..., ij) ={
σ ∈ Sym(Fn2 )|∀i /∈ {i1, ..., ij}, σ(i) �= i and f(i⊕ σ(i)) = 1,

and ∀i ∈ {i1, ..., ij} σ(i) = i

}

(5)

and

S0 = {σ ∈ Sym(Fn2 )|∀i ∈ [0, 2
n − 1] σ(i) �= i and f(i⊕ σ(i)) = 1} , (6)

we have

∏

a∈Fn
2

(X −Wf (a)) =
2n∑

j=1




∑

0≤i1<...<ij≤2n−1




∑

σ∈S(i1,...,ij)

ε(σ)







 (f(0)−X)j +

∑

σ∈S0

ε(σ). (7)

Proof. Consider the adjacency matrix Mf of the Cayley graph Gf of f ∈ F .
For a ∈ F n

2 , if we denote χa =
t
(
(−1)<a,0>, (−1)<a,1>, ..., (−1)<a,2

n−1>
)
, it is

easy to see that the vector χa is, for Mf , an eigenvector associated to the
eigenvalue Wf (a) since, for each i ∈ [0, 2n − 1],
(Mfχa)i+1 =

∑

0≤j≤2n−1

f(i⊕ j)(−1)<a,j>

=

(
∑

0≤u≤2n−1

f(u)(−1)<a,u>

)

(−1)<a,i>.

Therefore Mfχa = Wf (a)χa. So, if we consider Mf as element of M2n(R),
we can consider its characteristic polynomial

P (X) = detR(Mf −XI2n) =
∏

a∈Fn
2

(X −Wf (a)).

But, if K is an arbitrary field and if M = (mi,j)i,j∈[1,r] with mi,j ∈ K,

we have detR(M) =
∑

σ∈Sym([1,r])

ε(σ)
r∏

i=1
mi,σ(i). In the case M = Mf −XI2n =

(f(i⊕ j)− δjiX)i+1,j+1, we obtain

P (X) =
∑

σ∈Sym(Fn
2 )

ε(σ)
2n−1∏

i=0

[
f(i⊕ σ(i))− δ

σ(i)
i X

]
.

If we denote ΩF = {σ ∈ Sym(Fn
2 )|∃i ∈ [0, 2

n − 1], σ(i) = i}
and ΩF = Sym(Fn

2 )−ΩF , we can write

P (X) =
∑

σ∈ΩF

ε(σ)
2n−1∏

i=0

[
f(i⊕ σ(i))− δ

σ(i)
i X

]
+
∑

σ∈ΩF

ε(σ)
2n−1∏

i=0

[
f(i⊕ σ(i))− δ

σ(i)
i X

]
.

(8)

When σ ∈ ΩF , we have δ
σ(i)
i = 0 for each i, therefore

P (X) =
∑

σ∈ΩF

ε(σ)
2n−1∏

i=0

[
f(i⊕ σ(i))− δ

σ(i)
i X

]
+
∑

σ∈ΩF

ε(σ)
2n−1∏

i=0

f(i⊕ σ(i)).
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On the other hand, for j ∈ [1, 2n] and 0 ≤ i1 < ... < ij ≤ 2n − 1, if we denote

Ω(i1, ..., ij) = {σ ∈ Sym(Fn
2 )|∀k ∈ [1, j] σ(ik) = ik, and σ(l) �= l ∀l /∈ [i1, ..., ij ]} ,

we have

ΩF =

◦⋃

1≤j≤2n




◦⋃

0≤i1<...<ij≤2n−1

Ω(i1, ..., ij)





so we can write
∑

σ∈ΩF

ε(σ)
2n−1∏

i=0

[
f(i⊕ σ(i))− δ

σ(i)
i X

]
=

2n∑

j=1

[
∑

0≤i1<...<ij≤2n−1

(
∑

σ∈Ω(i1,...,ij)

ε(σ)
2n−1∏

i=0

[
f(i⊕ σ(i))− δ

σ(i)
i X

])]

.

For each σ ∈ Ω(i1, ..., ij), we have
2n−1∏

i=0

[
f(i⊕ σ(i))− δ

σ(i)
i X

]
=

(
j∏

k=1

[
f(ik ⊕ σ(ik)− δ

σ(ik)
ik

X
])( ∏

i/∈{i1,...,ij}

[
f(i⊕ σ(i))− δ

σ(i)
i X

])

and,

since σ(ik) = ik for k ∈ [1, j], and σ(i) �= i for i /∈ {i1, ..., ij},
2n−1∏

i=0

[
f(i⊕ σ(i))− δ

σ(i)
i X

]
= (f(0)−X)j

(
∏

i/∈{i1,...,ij}

f(i⊕ σ(i))

)

.

From (8), if we denote for j ∈ [1, 2n]

Ω∗(i1, ..., ij) = {σ ∈ Ω(i1, ..., ij)|∀l /∈ [i1, ..., ij ] f(l ⊕ σ(l)) = 1 } ,

and Ω∗0 =
{

σ ∈ Ω_

F
|∀i ∈ [0, 2n − 1], f(i⊕ σ(i)) = 1

}
, we obtain finally

P (X) =
2n∑

j=1




∑

0≤i1<...<ij≤2n−1




∑

σ∈Ω∗(i1,...,ij)

ε(σ)







 (f(0)−X)j +

∑

σ∈Ω∗
0

ε(σ)

which proves the theorem.

From this result, we deduce immediately the value of the searched product
(4):

Corollary 2 For each f ∈ F, if we denote

S(f) = {σ ∈ Sym(Fn2 )|∀a ∈ F
n
2 , f(a⊕ σ(a)) = 1} (9)

we have ∏

a∈Fn
2

Wf (a) =
∑

σ∈S(f)

ε(σ). (10)
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In particular ∏

a∈Fn
2

|Wf (a)| ≤ #S(f). (11)

Proof. Firstly, remark that we have S0 ⊂ S(f).
From Theorem 1 and from the property f(0)j = f(0) for each j ≥ 1, we

deduce

P (0) =
∏

a∈Fn
2

Wf (a) = f(0)






2n∑

j=1




∑

0≤i1<...<ij≤2n−1




∑

σ∈S(i1,...,ij)

ε(σ)













+

∑

σ∈S0

ε(σ).

When f(0) = 0, we obtain
∏

a∈Fn
2

Wf (a) =
∑

σ∈S0

ε(σ). But as f(0) = 0, each

σ ∈ S(f) is such that, for each a ∈ Fn
2 , σ(a) �= a.

Therefore, in this case we have also S(f) ⊂ S0, so S(f) = S0 and the
corollary is proved in this first case.

Suppose now f(0) = 1. In this case we obtain

∏

a∈Fn
2

Wf (a) =
2n∑

j=1




∑

0≤i1<...<ij≤2n−1




∑

σ∈S(i1,...,ij)

ε(σ)







+
∑

σ∈S0

ε(σ).

But we have S(f) = {σ|∀i ∈ Fn
2 , σ(i) �= i and f(i⊕ σ(i)) = 1}

◦⋃

1≤j≤2n
[

◦⋃

1≤i1<...<ij≤2n−1

{σ|∀k ∈ [1, j]σ(ik) = ik, and ,∀i /∈ [i1, ..., ij ]σ(i) �= i and f(i⊕ σ(i)) = 1}]

= S0

◦⋃

1≤j≤2n
[

◦⋃

1≤i1<...<ij≤2n−1

S(i1, ..., ij)]

so we obtain∏

a∈Fn
2

Wf (a) =
∑

σ∈S(f)

ε(σ), and the first part of the corollary is also proved

when f(0) = 1.

From this, we deduce
∏

a∈Fn
2

|Wf (a)| =

∣∣∣∣∣
∏

a∈Fn
2

Wf (a)

∣∣∣∣∣
=

∣∣∣∣∣
∑

σ∈S(f)

ε(σ)

∣∣∣∣∣
≤

∑

σ∈S(f)

|ε(σ)| = #S(f).

For each f ∈ F , remark that we have #f−1(1) ≤ #S(f):
this inequality is firstly verified for f = 0 and secondly, when f �= 0 and

for each λ ∈ f−1(1), the function a �−→ σλ(a) = a⊕ λ ∈ Sym(Fn
2 ) and verifies

f(a⊕σλ(a)) = 1 for each a ∈ Fn
2 . Therefore σλ ∈ S(f) and, finally, the function

Λ : f−1(1) −→ S(f) defined by Λ(λ) = σλ is injective.

We deduce from Theorem 1, another proposition which uses the following
lemma:

6



Lemma 3 For each f ∈ F ,
(∃b ∈ Fn2 , Wf (b) is even)⇐⇒ (∀a ∈ Fn2 , Wf (a) is even)

Proof. Suppose that Wf (b) is even for b ∈ Fn
2 . From the definition (1) and

using the formula (−1)u = 1− 2u when u ∈ F2, we obtain for each a ∈ Fn
2 ,

Wf (a) =
∑

x∈Fn
2

f(x)(−1)<b,x>(−1)<a⊕b,x>

=
∑

x∈Fn
2

f(x)(−1)<b,x>(1− 2 < a⊕ b, x >)

= Wf (b)− 2
∑

x∈Fn
2

f(x)(−1)<b,x> < a⊕ b, x >

therefore we have Wf (a) even and the lemma is proved.

Using this lemma, we obtain

Proposition 4 For each f ∈ F , wt(f) is even if and only if

∑

σ∈S(f)

ε(σ) = 0 or 22
n

|
∑

σ∈S(f)

ε(σ). (12)

In particular, if wt(f) is even and
∑

σ∈S(f)

ε(σ) �= 0, then #S(f) ≥ 22
n

.

Proof. If wt(f) is even, since wt(f) = #f−1(1) = Wf (0), we have also,
from the Lemma 3, Wf (a) even for each a ∈ Fn

2 . We deduce from this that, if∏

a∈Fn
2

Wf (a) �= 0 then 22
n

|
∏

a∈Fn
2

Wf (a). Then, (12) results of the formula (10) of

the Corollary 2.
Now suppose that we have (12). From (10) we have

∏

a∈Fn
2

Wf (a) = 0 or

22
n

|
∏

a∈Fn
2

Wf (a). So, there exists b ∈ Fn
2 such that Wf (b) = 0 or 2|Wf (b) (since

2|mn =⇒ 2|m or 2|n) and this assures that we have, as in the first part of the
proof, Wf (a) even for each a ∈ Fn

2 , therefore also Wf (0) = wt(f), and the proof
of (12) is complete.

Now, if we have
∑

σ∈S(f)

ε(σ) �= 0 and wt(f) even, (12) implies that there exists

an integer u such that
∑

σ∈S(f)

ε(σ) = 22
n

u, therefore
∑

σ∈S(f)

|ε(σ)| ≥ 22
n

|u| , with

u �= 0, and the result is proved.

Proposition 5 For each f ∈ F with wt(f) even,

if #S(f) < wt(f)22
n−1 then

∑

σ∈S(f)

ε(σ) = 0.
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Proof. From the formula (10) of the Corollary 2, f = 0 implies Wf (0) = 0
and then

∑

σ∈S(f)

ε(σ) = 0.

So, we can suppose f �= 0. In this case, we have Wf (0) = wt(f) �= 0. This
property, jointly with the inequality (11) of the Corollary 2, implies∏

a∈Fn
2−{0}

|Wf (a)| ≤
#S(f)
wt(f) , so there exists b ∈ Fn

2 − {0} such that |Wf (b)| ≤

(
#S(f)
wt(f)

) 1

2n−1

.

Using now the hypothesis #S(f) < wt(f)22
n−1, we obtain

(
#S(f)
wt(f)

) 1

2n−1

< 2

and necessarily |Wf (b)| < 2. But wt(f) = Wf (0) is even, therefore from Lemma
3 we must also have Wf (b) even.

This last property, jointly with |Wf (b)| < 2, implies Wf (b) = 0 and finally,
from the formula (10) of Corollary 2,

∑

σ∈S(f)

ε(σ) = 0.

4 Application to the extremal balanced Boolean

functions

We will use the two following results:

Lemma 6 For each f ∈ F and each a, b ∈ Fn2 , W ∗
f⊕la

(b) = W ∗
f (a⊕ b).

Proof. We have

2W ∗
f (a) =

∧

f(a) =
∑

x
(−1)f(x)⊕<a,x> =

∧

f ⊕ la(0) = 2W ∗
f⊕la

(0), so we have

W ∗
f (a) = W ∗

f⊕la
(0), and therefore also W ∗

f (a⊕b) = W ∗
f⊕la⊕b

(0) = W ∗
f⊕la⊕lb

(0) =

W ∗
f⊕la

(b).

Proposition 7 For each integer n,

ρB(n) < ρ(n) if and only if, for each f ∈ C(n), W ∗−1
f (0) = ∅. (13)

Proof. Remark that an equivalent statement is:
ρB(n) = ρ(n) if and only if there exists f ∈ C(n) such that W ∗−1

f (0) �= ∅.
So, we can prove the proposition under this last form.

If ρB(n) = ρ(n), there exists at least one extremal balanced function f
verifying δ(f) = ρB(n) = ρ(n), so 0 ∈ W−1

f (2n−1), i.e. 0 ∈ W ∗−1
f (0).

Conversely, if W ∗−1
f (0) �= ∅ for f ∈ C(n), there exists a ∈ W ∗−1

f (0), so
W ∗
f (a) = 0. As W ∗

f (a) = W ∗
f⊕la

(0) (Lemma 6) and δ(f ⊕ la) = δ(f) = ρ(n), the
function f ⊕ la is balanced and maximally nonlinear so we have ρ(n) = ρB(n).

For j = ±1 and f ∈ F , we denote Sj(f) = {σ ∈ S(f)|ε(σ) = j} . With this
notation we obtain finally
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Proposition 8 For each integer n, if ρB(n) < ρ(n), we have #S1(f) �= #S−1(f)
for each f ∈ C(n).

Proof. Suppose ρB(n) < ρ(n) and consider f ∈ C(n).
We have from Proposition 7 Wf (a) �= 0 if a �= 0, and Wf (0) �= 2n−1. So, if

∏

a∈Fn
2

Wf (a) = Wf (0)

(
∏

a∈Fn
2−{0}

Wf (a)

)

= 0, necessarily

Wf (0) = #f−1(1) = 0 and then f = 0 which contradicts the hypothesis
f ∈ C(n) and ρB(n) < ρ(n).

Therefore, we obtain
∏

a∈Fn
2

Wf (a) �= 0 and, using the formula (10) of Corollary

2, also
∑

σ∈S(f)

ε(σ) �= 0.

But
∑

σ∈S(f)

ε(σ) =
∑

σ∈S1(f)

ε(σ) +
∑

σ∈S−1(f)

ε(σ) = #S1(f) −#S−1(f) and the

proof is complete.
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