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Abstract

We analyse asymptotically performances and convergence of fast iterative
correlation attacks for the cryptanalysis of stream ciphers using linear feedback
shift registers as autonomous stages. Finally, we describe and analyse an im-
provement for this class of cryptanalytical algorithms.
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1 Introduction
Stream ciphers are a special class of encryption algorithms. They encrypt plain-
text bits one at a time, contrary to the block ciphers which encrypt blocks of
plaintext bits. A synchronous stream cipher is a stream cipher where the ci-
phertext is produced by bitwise adding the plaintext bits with a stream of
bits, named the keystream, produced by the stream cipher independently of the
plaintext and depending only of the secret key and of one initialization vector.
A large number of stream ciphers use autonomous Linear Feedback Shift

Registers (LFSR) as components, the initialization of these LFRSs being related
to the secret key and the initialization vector. The most popular academic
stream ciphers use some LFSRs combined through one or several nonlinear
Boolean functions for building the keystream. Many variations exist where the
registers are irregulary clocked or multiplexed.
Synchronous stream ciphers using LFSRs are the main target of fast corre-

lation attacks.
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Figure 1: m LFSRs combined by a nonlinear Boolean function

Among the different kinds of attacks against stream ciphers, correlation at-
tacks are one of the most important [9, 10]. They require the existence of cor-
relations between linear combination of internal and output bits of keystream.
These correlations need to be good enough for the attack to be succesful. A
fundamental fact is that correlations always exist [9]. When nonlinear Boolean
functions are used as internal components of stream cipher, correlations can be
found by analyzing the Walsh-Fourier spectrum of these functions, but gener-
ally, the main method to find these correlations is by statistical analysis. Once
a correlation is found, it can be written as a probability:

p = Pr(x
0
n = xn(i1)⊕ xn(i2)⊕ ...⊕ xn(im)) 6= 0.5

where x
0
n is the n-th bit of keystream and xn(ij) is the n-th output bit

of the LFSR ij . The keystream can thus be considered as a noisy version of
the corresponding linear combination of output bits of one or more LFSR of
stream cipher. The quality of the correlation is mesured by the parameter
ε = 1 − 2p. Without loss of generality, and if necessary after complementation
of the sequence (x

0
n)n≥1, we suppose in the sequel ε ∈ [−1, 0]. If ε is close to

−1, the correlation is very good and the stream cipher is not very strong. On
the contrary, if ε is close to 0, the linear combinaison of LFSR’s output is very
noisy and the correlation attacks will probably be inefficient. Since the LFSR
output is produced by linear relations, we can always write the sum of output
bits xn(i1)⊕xn(i2)⊕...⊕xn(im) as the output of one only larger LFSR. Without
loss of generality, the stream cipher can be represented as in Fig. 2, where this
sum is remplaced by xi output of one only register, and the Boolean function
by a BSC (binary symmetric channel), i.e. by a channel introducing noise on
xi with probability 1− p.
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Figure 2: Equivalent schema where the keystream x0i is correlated with the output
xi : Pr(x

0
i = xi) 6= 0.5

Fast correlation attacks [1, 2, 3, 4, 5, 6, 7] are improvements of basic correla-
tion attack [10] which essentially consists in mounting an hypothesis statistical
test in an exhaustive key search procedure. In this article, we present a new
asymptotic analysis of iterative fast correlation attacks and a new improvement
of these algorithms.

2 Fast correlation attacks
Fast correlation attacks are usually studied in the binary symmetric channel
model of Fig. 2. In this model, we consider the keystream as a noisy version of
the output of some LFSR. The cryptanalysis then becomes a decoding problem:
given a noisy output, find the exact output of the registers or reconstruct the
initialization of these registers.
The common point of all the fast correlation attacks is the use of parity-check

equations, i.e. linear relations beween register output bits xi. Once found, these
relations are evaluated on the noisy bits x

0
i. This evaluation give us a family of

estimation on each bit of output register which helps to reconstruct the exact
sequence of the LFSR.
Fast correlation attacks are divided into iterative and one-pass algorithms. In

iterative algorithms, the parity-checks are used to modify the sequence x
0
i and to

obtain a new noisyless sequence which converges towards the sequence xi [1, 5].
In one-pass algorithms, the parity-checks values enable us to directly compute
the correct value of a small number of LFSR output xi from the sequence (x

0
i)i≥1

[2, 3, 4, 5, 6, 7].
Our paper investigates the iterative algorithms but it’s clear that the prob-

abilist analysis developped here is also adapted to one-pass algorithms.
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3 Notation and problems
In the sequel, we use the following notations:
x⊕ y represents the addition modulo 2 (XOR) of two binary variables x, y.

(Z/2Z,⊕, .) represents the finite field of characteristic 2 denoted F2.
We suppose known the noisy sequence (x

0
n)1≤n≤L where x

0
n = xn ⊕ en, and

(xn)1≤n≤L the sequence generated by a LFSR of length r, of transition matrix
T, and initialization vector R.
(en)1≤n≤L is a sequence of realization of independent and identically distrib-

uted Bernoulli random variables (iid), of parameter q = 1 − p = Pr(en = 1) =
1
2 (1 + ε) with −1 < ε < 0.
|a| denotes the absolute value of the real number a.
P (X) = det(T ⊕XIr) ∈ F2[X] representents the characteristic polynomial

of the LFSR. This polynomial is, unless explicit hypothesis, supposed primitive
in the ring F2[X].
For Q(X), R(X) ∈ F2[X], we denote Q(X)|R(X) when Q(X) divides R(X).
H(p) = −p log2(p)−(1−p) log2(1−p) is the binary entropy of the distribution

probability of a Bernoulli random variable X such that Pr(X = 1) = p.
The isomorphism between two isomorphic fields K and K0 will be denoted

K u K0.
The problem of the estimation of R is the basic problem of fast correlation

attacks. Another problem is the estimation of the length L necessary to solve
this basic problem.

4 Basic algorithm for fast correlation attacks

4.1 An estimation problem

Let X,E1, ..., Em be m + 1 independent Bernoulli random variables such that
p0 = 1− q0 = Pr(X = 0) and pi = 1− qi = Pr(Ei = 0) for i = 1, ...,m.
We consider the new Bernoulli random variables Yi = X ⊕ Ei, 1 ≤ i ≤ m,

and we want to compute Q = Pr(X = 1|Y1 = y1, ..., Ym = ym) form realizations
yi of Yi.
From the definition of the conditional probability we have

Q =
Pr(X = 1, Y1 = y1, ..., Ym = ym)

Pr(Y1 = y1, ..., Ym = ym)

=
Pr(X = 1, Y1 = y1, ..., Ym = ym)

Pr(X = 0, Y1 = y1, ..., Ym = ym) + Pr(X = 1, Y1 = y1, ..., Ym = ym)

=
1

1 + Pr(X=0,Y1=y1,...,Ym=ym)
Pr(X=1,Y1=y1,...,Ym=ym)

.

The independance hypothesis implies
Pr(X = 0, Y1 = y1, ..., Ym = ym) = Pr(X = 0, E1 = y1, ..., Em = ym) =

p0
mQ
i=1
Pr(Ei = yi) and Pr(X = 1, Y1 = y1, ..., Ym = ym) =
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Pr(X = 1, E1 = y1 ⊕ 1, ..., Em = ym ⊕ 1) = q0
mQ
i=1

Pr(Ei = yi ⊕ 1).
But Pr(Ei = yi) = qiyi + pi(yi ⊕ 1), so we obtain Q = 1

1+
p0
q0

mQ
i=1

qiyi+pi(yi⊕1)
qi(yi⊕1)+piyi

.

Moreover, we see that qiyi+pi(yi⊕1)qi(yi⊕1)+piyi = (
pi
qi
)1−2yi , and finallyQ = 1

1+
p0
q0

mQ
i=1

(
pi
qi
)1−2yi

.

We can write Q = 1
1+R with R = p0

q0

mQ
i=1

(piqi )
1−2yi , so Log(R) = Log(p0q0 ) +

mP
i=1
(1− 2yi)Log(piqi ).

If we denote θi = 1
2Log(

qi
pi
), we obtain Log(R) = −2(θ0 +

mP
i=1
(1 − 2yi)θi),

and then, if we denote
∧
θ = −Log(R)2 , i.e. R = e−2

∧
θ ,we have the final formula:

Pr(X = 1|Y1 = y1, ..., Ym = ym) = 1

1 + e−2
∧
θ

, (1)

with
∧
θ = θ0 +

mX
i=1

(1− 2yi)θi and θi =
1

2
Log(

qi
pi
). (2)

This result constitutes one of the fondations of iterative or one-pass corre-
lation attacks. Knowing noisy values y1, ..., ym, it enables to estimate X by
maximum likehood.

4.2 Sketch of the algorithm

Another foundation of one-pass or iterative fast correlation attacks on stream
ciphers, builded with autonomous LFSRs, lies on algebraic relations (or parity-
checks) satisfied by bits of the sequence generated by the LFSR. We don’t
develop this point and refer to [1, 3, 8] for details.
We use the notations of §3 and define k-omials multiples of P (X) as poly-

nomials Q(X) = 1 ⊕Xi1⊕Xi2⊕ ...⊕Xik−1 , with 1 ≤ i1 < ... < ik−1 and k ≥ 2,
verifying P (X)|Q(X) in F2[X].
Associated to Q(X), the sequence (xn)n≥1 verifies the algebraic relation

xn = xn+i1 ⊕ ...⊕xn+ik−1 for each n and each initialization R. We deduce from
this that

x
0
n+i1 ⊕ ...⊕ x

0
n+ik−1 = xn ⊕ en+i1 ⊕ ...⊕ en+ik−1 (3)

Pr(en+i1 ⊕ ...⊕ en+ik−1 = 1) =
1

2
(1− (−1)k−1εk−1). (4)

The relations xn = xn+i1 ⊕ ... ⊕ xn+ik−1 constructed from k-omials Q(X) will
be called k-omials relations, or parity-checks, associated to xn.
If we have a sequence of keystream bits x

0
n, 1 ≤ n ≤ L, correlated with

a binary sequence xn of same length generated by a LFSR, and if we know a
certain number of k-omials relations xn = xn+i1 ⊕ ...⊕xn+ik−1 , 1 ≤ n+ ij ≤ L,
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the value of x
0
n+i1

⊕ ...⊕ x0n+ik−1 gives us an information on xn. In the sequel,
we denote Nk(n) the number of k-omials relations associated to xn and usable
for the length L << 2r − 1, and

N0,k(xn) = #

 (i1, ..., ik−1) such that
1 ≤ i1 < ... < ik−1 ≤ L
and 1 ≤ n+ ij ≤ L

| P (X)|1⊕Xi1 ⊕ ...⊕Xik−1

and x
0
n+i1

⊕ ...⊕ x0n+ik−1 = 0

.
Remark 1 The primitivity’s hypothesis of P (X) implies k ≥ 3 to have Nk(n) ≥
1, but if P (X) is only irreductible not primitive (so if 2r − 1 is not a prime
number), it’s possible to have N2(n) ≥ 1.
Inspecting the different values N0,k(xn) ∈ [0, Nk(n)], with 3 ≤ k ≤ d for

d << L, we want to estimate the xn value. If we consider xn and N0,k(xn)
as random variables, our aim is to calculate Pr(xn = 1|N0,k(xn), 3 ≤ k ≤ d),
therefore we are bringing back to the estimation’s problem of 4.1. Using (1),
(2) we obtain Pr (xn = 1|N0,k(xn), 3 ≤ k ≤ d) = 1

1+e−2
∧
θ(n)

with

∧
θ(n) = θ0(n)+

dX
k=3


X

1 ≤ i1 < ... < ik ≤ L,
P (X)|1⊕Xi1 ⊕ ...⊕Xik−1

1− 2(x0n+i1 ⊕ ...⊕ x
0
n+ik−1)

 θk(n)

= θ0(n) +
dP
k=3

(2N0,k(xn) − Nk(n))θk(n) and θk(n) =
1
2Log(

qk(n)
pk(n)

) with

qk(n) = Pr(Ek(n) = 1) = Pr(en+i1 ⊕ ... ⊕ en+ik−1 = 1) so, from (4) we ob-

tain θk(n) =
1
2Log(

1−(−1)k−1εk−1
1+(−1)k−1εk−1 ) = arg tanh((−1)kεk−1).

Moreover θ0(n) = 1
2Log(

q0(n)
p0(n)

) = 1
2Log(

1+ε0
1−ε0 ). But (xn)n≥1, generated by a

LFSR, is such that 12(1+ ε0) = Pr(xn = 1) ≈ 1
2 . So ε0 ≈ 0, and we may assume

θ0(n) = 0.

Therefore, as 1

1+e−2
∧
θ(n)
≥ 1

2 if and only if
∧
θ(n) ≥ 0 (see Fig. 3), we have an

estimation process of xn summarized by
∧
xn = 1 if and only if

∧
θ(n) ≥ 0.

From definition of
∧
θ(n) and θk(n), we obtain the following equivalence:

∧
xn = 1 if and only if

dX
k=3

N0,k(xn) arg tanh((−1)kεk−1) ≥ 1
2

dX
k=3

Nk(n) arg tanh((−1)kεk−1). (5)

Considered as random variables, N0,k(xn) for each k ∈ [3, d], are binomial
variables: for each i ∈ [0, Nk(n)],Pr(N0,k(xn) = i) =³

Nk(n)

i

´
( 12(1 + (−1)xn(−1)k−1εk−1))i( 12(1− (−1)xn(−1)k−1εk−1))Nk(n)−i.
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Figure 3: The graph of θ 7−→ 1
1+e−2θ

Let q be the integer min{k ≥ 3|Nk(n) ≥ 1}, i.e. N2(n) = ... = Nq−1(n) = 0,
Nq(n) ≥ 1.
From (5), if we denote S = 1

2

dP
k=q

Nk(n) arg tanh((−1)kεk−1), we get

∧
xn = 1 if and only if

dX
k=q

N0,k(xn) arg tanh((−1)kεk−1) ≥ S. (6)

From (3, 4) the expectation and variance of N0,k(xn) are
mk(xn) = Nk(n) Pr(x

0
n+i1
⊕...⊕x0n+ik−1 = 0) = Nk(n)

2 (1+(−1)xn(−1)k−1εk−1),
σ2k =

Nk(n)
4 (1 + ε2(k−1)).

Let us consider now N0(xn) =
dP
k=q

N0,k(xn) arg tanh((−1)kεk−1) as a random
variable. The linearity of the expectation implies

E(N0(xn)) =
dP
k=q

arg tanh((−1)kεk−1)E(N0,k(xn)) =
dP
k=q

mk(xn) arg tanh((−1)kεk−1).
If we suppose that N0,q(xn), ..., N0,d(xn) are independent random variables,

we get

σ2(N0(xn)) = σ2[
dP
k=q

N0,k(xn) arg tanh((−1)kεk−1)]

=
dP
k=q

[arg tanh2((−1)kεk−1)]σ2(N0,k(xn)) =
dP
k=q

σ2k arg tanh
2((−1)kεk−1) (be-

cause σ2(X + Y ) = σ2(X) + σ2(Y ) when X and Y are independent, and
σ2(λX) = λ2σ2(X)).
We denote N0 = N0(xn), N0,k = N0,k(xn) and mk = mk(xn).
From central limit theorem, when Nk(n) is enough large, N0,k v N (mk,σk),

so λkN0,k v N (λkmk, |λk|σk).
Therefore N0 =

dP
k=q

λkN0,k, which is asymptotically a sum of d − q + 1
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independent normal laws N (λkmk, |λk|σk), is also asymptotically a normal law

N (m,σ) : Pr(N0 ≤ x) ∼
Nq(n),...,Nd(n) larges

1√
2π

x−m
σR
−∞

exp(− t22 )dt, with

m(xn) =
dX
k=q

mk arg tanh((−1)kεk−1),mk =
Nk(n)

2
(1 + (−1)xn(−1)k−1εk−1),

(7)

and σ2 =
dX
k=q

σ2k arg tanh
2((−1)kεk−1),σ2k =

Nk(n)

4
(1− ε2(k−1)). (8)

It is now possible to evaluate the error between the estimation
∧
xn obtained

using (6) and xn.

Pr(
∧
xn 6= xn) = Pr( ∧xn 6= xn|xn = 0)Pr(xn = 0)+

Pr(
∧
xn 6= xn|xn = 1)Pr(xn = 1)

= 1
2(Pr(

∧
xn = 1|xn = 0) + Pr( ∧xn = 0|xn = 1))

∼ 1
2

 1√
2π

+∞R
S−m0
σ

exp(− t22 )dt+ 1√
2π

S−m1
σR
−∞

exp(− t22 )dt
 and finally

Pr(
∧
xn 6= xn) ∼ 1

2

Ã
1− 1√

2π

Z S−m0
σ

S−m1
σ

exp(− t
2

2
)dt

!
. (9)

We have

S −m0 =
1
2

dP
k=q

Nk(n) arg tanh((−1)kεk−1)−
dP
k=q

mk(0) arg tanh((−1)kεk−1)

= 1
2

dP
k=q

(Nk(n)− 2mk(0)) arg tanh((−1)kεk−1),

S−m1 =
1
2

dP
k=q

(Nk(n)−2mk(1)) arg tanh((−1)kεk−1), and from (7) we obtain

S −m0 = −12
dP
k=q

(−1)k−1εk−1 arg tanh((−1)kεk−1),

S −m1 =
1
2

dP
k=q

(−1)k−1εk−1 arg tanh((−1)kεk−1) = −(S −m0).

We deduce from this and from (8) that

S−m0

σ = −
dP

k=q

(−1)k−1εk−1Nk(n) arg tanh((−1)kεk−1)Ã
dP

k=q

Nk(n)(1−ε2(k−1)) arg tanh2((−1)kεk−1)
! 1
2
= −S−m1

σ .

On the other hand, it’s easy to prove thatZ r

0

exp(− t
2

2
)dt = r

¡
1 + r2R(r)

¢
with R(r) →

r→0
R(0) = −1

6
. (10)
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When ε→ 0−, we have S−m0

σ −→ 0, so from (9) and (10) we asymptotically
obtain

1
2

1− 1√
2π

S−m0
σR

S−m1
σ

exp(− t22 )dt
 ∼

ε→0−
1
2

³
1− 1√

2π
m0−m1

σ

´
, and finally from

(8),

Pr(
∧
xn 6= xn) ∼

Nq(n),...,Nd(n) larges and ε−→0−

1

2


1 +

r
2

π

dP
k=q

(−1)k−1εk−1Nk(n) arg tanh((−1)kεk−1)"
dP
k=q

¡
1− ε2(k−1)

¢
Nk(n) arg tanh

2 ((−1)kεk−1)
# 1
2


The computation of the estimation

∧
xn, for each n ∈ [1, L], is the first iter-

ation of the algorithm. Therefore, from (xn)1≤n≤L, we obtain the new binary
sequence (xn(1))1≤n≤L defined by xn(1) =

∧
xn, and we may write, for |ε| small

and Nq(n), ..., Nd(n) larges, Pr(xn(1) 6= xn) = 1
2(1 + εn(1)) with

εn(1) ∼
r
2

π

dP
k=q

(−1)k−1εk−1Nk(n) arg tanh((−1)kεk−1)"
dP
k=q

¡
1− ε2(k−1)

¢
Nk(n) arg tanh

2 ((−1)kεk−1)
# 1
2

. (11)

.

Remark 2 As ε < 0, we also have εn(1) < 0.

A sufficient condition for convergence of the algorithm is the decreasing of the
noise after the first iteration: Pr(xn(1) 6= xn) < Pr(x0n 6= xn) , i.e. εn(1) < ε.
Translating this condition for |ε| small, Nk(n) large (q ≤ k ≤ d), and using

the equivalent arg tanh(ε) ∼ ε, the value (9) gives us the following inequalityq
2
π

dP
k=q

(−1)k−1εk−1Nk(n)(−1)kεk−1"
dP

k=q
(1−ε2(k−1))Nk(n)((−1)kεk−1)2

# 1
2
< ε.

After simplification we obtain
dP
k=q

ε2(k−1)Nk(n) > −
p

π
2 ε

"
dP
k=q

¡
1− ε2(k−1)

¢
Nk(n)ε

2(k−1)
# 1
2

or equivalently,

if we denote U =
dP
k=q

ε2(k−1)Nk(n) and V =
dP
k=q

ε4(k−1)Nk(n),

U > −
r

π

2
(εU − V ) 12

9



with U > 0, V > 0, and U − V > 0.
A sufficient condition to realize this last inequality is U > −pπ

2 εU
1
2 , i.e.

U > π
2 ε
2.

Consequently, we obtain the asymptotical sufficient convergence condition

dX
k=q

ε2(k−2)Nk(n) >
π

2
. (12)

We have seen that S − m1 = −(S − m0), so, from (9), it’s easy to see

that Pr(
∧
xn 6= xn) ∼ 1

2

1−q 2
π

S−m0
σR
0

exp(− t22 )dt
 because S−m0

σR
S−m1
σ

exp(− t22 )dt =

2

S−m0
σR
0

exp(− t22 )dt.
In the following, the function ϕ :]− 1, 0[→]− 1, 0[ is defined by ε 7−→ ϕ(ε) =

−
q

2
π

S−m0
σR
0

exp(− t22 )dt, and we study, for each n ∈ [1, L], the recurrent sequence
of real numbers εn(k) = ϕ(εn(k − 1)) for k ≥ 1, with εn(0) = ε.
The iterative algorithm at iteration k ≥ 1 generates the sequence (xn(k))1≤n≤L

defined by xn(k) =
∧
xn with the estimation process (6) applied on sequence

(xn(k − 1))1≤n≤L and xn(k − 1) = xn ⊕ en(k − 1), with the initial values
xn(0) = x

0
n, en(0) = en, and the condition for convergence εn(1) < ε real-

ized. In this case, using the central limit theorem for Nq(n), ...,Nd(n) enough
large, we have Pr(xn(k) 6= xn) ∼ 1

2(1 + εn(k)).
Now, the problem is to prove that lim

k−→+∞
εn(k) = −1, i.e. that xn(k) con-

verges to xn.

From S−m0

σ = −
dP

k=q

(−1)k−1εk−1Nk(n) arg tanh((−1)kεk−1)Ã
dP

k=q

Nk(n)(1−ε2(k−1)) arg tanh2((−1)kεk−1)
! 1

2
seen p. 8, we de-

duce lim
ε→0−

S−m0

σ = 0+ and lim
ε→−1+

S−m0

σ = +∞, so lim
ε→0−

ϕ(ε) = 0−, lim
ε→−1+

ϕ(ε) =

−1+. Moreover, the sufficient condition for convergence is ϕ(ε) < ε.

ϕ is derivable on ] − 1, 0[, we have ϕ0
(ε) = −

q
2
π (

S−m0

σ )
0
exp(− 12(S−m0

σ )2)

and we denote S−m0

σ = N
D . Using arg tanh(ε) ∼ ε, the above formula implies

N =
dP
k=q

ε2(k−1)Nk(n) and

D =

Ã
dP
k=q

Nk(n)(1− ε2(k−1))ε2(k−1)
! 1

2

.

It’s clear that sign(ϕ
0
) = −sign(N 0

D −ND0
), and after simplification, we

get N
0
D −ND0

=
P

q≤k,l≤d
(k − 1)Nk(n)Nl(n)ε2(k+l−2)−1 < 0, so ϕ is increasing

on ]− 1, 0[. From the definition of ϕ we have εn(k) = ϕk(ε), and we have seen,
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from (12), that ϕ(ε) < ε. The increasing of ϕ implies ϕk+1(ε) < ϕk(ε), therefore
(εn(k))k is a decreasing sequence of negative real numbers, lower bounded by
−1, so ln = lim

k→+∞
εn(k) exists and ln ≥ −1. On the other hand, ϕ is clearly a

continuous function on ]−1, 0[, so, if ln > −1, the continuity at point ln implies
ϕ(ln) = ϕ( lim

k→+∞
εn(k)) = lim

k→+∞
ϕ(εn(k)) = lim

k→+∞
εn(k + 1) = ln.

But, for each ε0 ∈]−1, ε] and from (12) we deduce
dP
k=q

ε
02(k−2)Nk(n) > π

2 , and

then ϕ(ε0) < ε0. Consequently, the hypothesis ln > −1 implies a contradiction
with the fact that ln is a fixed point of ϕ. So, the only other possibility is
ln = −1, which proves that lim

k−→+∞
εn(k) = −1.

5 An improvement of the basic algorithm

5.1 Description

We have seen at Remark 1 that, in the case P (X) primitive, we have N2(n) = 0.
However, if we consider the n-th bit of keystream x0n = xn⊕en as an estimation
of xn, we may integrate this value in the estimation process described § 4.2.
This is equivalent to compute Pr (xn = 1|N0,k(xn), 2 ≤ k ≤ d) with N2(n) =

1 and we must rewrite (6) with Nq(n) ≥ 1 for q ≥ 3.
More exactly, together with N2(n) = 1, when q ≥ 4 we have Nk(n) = 0 for

k ∈ [3, q − 1], and when q = 3 we have N3(n) ≥ 1.
Remark that if x0n = 0 (resp. 1) we have N0,2(n) = 1 (resp. 0), therefore

2N0,2(xn)−N2(n) = 2N0,2(xn)− 1 = (−1)x0n .
Using this remark to rewrite (6) we obtain

∧
xn = 1 if and only if

dX
k=q

N0,k(xn) arg tanh((−1)kεk−1) ≥

1

2

 dX
k=q

Nk(n) arg tanh((−1)kεk−1)− (−1)x0n arg tanh(ε)
 . (13)

In the following, as precedently, we use the approximation arg tanh(ε) ∼ ε.
With this approximation, and because ε < 0, we obtain

∧
xn = 1 if and only if

dX
k=q

N0,k(xn)(−1)kεk−2 ≤ S0 (14)

with

S0 =
1

2

 dX
k=q

Nk(n)(−1)kεk−2 − (−1)x0n
 . (15)

Therefore, we have now a new estimation scheme leading on a new fast
iterative algorithm. Our aim is now to compare him with the basic algorithm.

11



5.2 Performance and comparison

We consider N0,q(n), ..., N0,d(n) as d− q+1 binomial variables, and we suppose
these variables independent. Using central limit theorem for Nk(n) enough large
for q ≤ k ≤ d, we have N0,k(xn) ∼ N (mk(xn),σk) and, as already seen at §4.2,

N0(xn) =
dP
k=q

N0,k(xn)(−1)kεk−2 ∼ N (m(xn),σ) with

m(xn) =
dX
k=q

(−1)kεk−2mk(xn), mk(xn) =
Nk(n)

2

³
1 + (−1)x0n(−1)k−1εk−1

´
,

σ2 =
dX
k=q

ε2(k−2)σ2k, and σ2k =
Nk(n)

4
(1− ε2(k−1)) (16)

because N0(xn), considered as random variable, is a linear combination of
d− q + 1 binomial independent variables N0,k(xn).
As S0 depends of x0n = xn ⊕ en, we have
Pr(

∧
xn 6= xn) = Pr( ∧xn 6= xn|xn = 0 and en = 0)Pr(xn = 0 and en = 0)+

Pr(
∧
xn 6= xn|xn = 0 and en = 1)Pr(xn = 0 and en = 1)+

Pr(
∧
xn 6= xn|xn = 1 and en = 0)Pr(xn = 1 and en = 0)+

Pr(
∧
xn 6= xn|xn = 1 and en = 1)Pr(xn = 1 and en = 1)

In the following, for each n ≥ 1, we suppose xn and en independent random
variables.
For i, j ∈ F2, if we denote pij = Pr(

∧
xn 6= xn|xn = i and en = j) and

S0 = S0(x0n), we have successively
p00 = Pr(

∧
xn = 1|xn = 0 and en = 0) = Pr(N0(0) ≤ S0(0)),

p01 = Pr(
∧
xn = 1|xn = 0 and en = 1) = Pr(N0(0) ≤ S0(1)),

p10 = Pr(
∧
xn = 0|xn = 1 and en = 0) = Pr(N0(1) > S0(1)),

p11 = Pr(
∧
xn = 0|xn = 1 and en = 1) = Pr(N0(1) > S0(0)),

with

S0(0) = 1
2

"
dP
k=q

Nk(n)(−1)kεk−2 − (−1)0
#
= 1

2

"
dP
k=q

Nk(n)(−1)kεk−2 − 1
#
,

S0(1) = 1
2

"
dP
k=q

Nk(n)(−1)kεk−2 − (−1)1
#
= 1

2

"
dP
k=q

Nk(n)(−1)kεk−2 + 1
#
,

and
Pr(

∧
xn 6= xn) = 1

4(1− ε)(p00 + p10) +
1
4(1 + ε)(p01 + p11).

Furthermore, N0(xn) ∼ N (m(xn),σ) implies
Pr(N0(xn) ≤ x) ∼ 1

σ
√
2π

xR
−∞

exp(−12( t−m(xn)σ )2)dt with m(xn) and σ given

by (16). From this we obtain Pr(
∧
xn 6= xn) ∼

1
4
√
2π
(1− ε)

 S0(0)−m(0)
σR
−∞

exp(− t22 )dt+
+∞R

S0(1)−m(1)
σ

exp(− t22 )dt
+

12



1
4
√
2π
(1 + ε)

 S0(1)−m(0)
σR
−∞

exp(− t22 )dt+
+∞R

S0(0)−m(1)
σ

exp(− t22 )dt
.

After simplification, we have

S0(0)−m(0)
σ =

dP
k=q

Nk(n)ε
2k−3−1Ã

dP
k=q

ε2(k−2)(1−ε2(k−1))Nk(n)

! 1
2
= −S0(1)−m(1)σ , and

S0(1)−m(0)
σ =

dP
k=q

Nk(n)ε
2k−3+1Ã

dP
k=q

ε2(k−2)(1−ε2(k−1))Nk(n)

! 1
2
= −S0(0)−m(1)σ , so finally

Pr(
∧
xn 6= xn) ∼

1

4
(1− ε)

1− 2√
2π

Z −S0(0)−m(0)
σ

0

exp(− t
2

2
)dt

+
1

4
(1 + ε)

1 + 2√
2π

Z S0(1)−m(0)
σ

0

exp(− t
2

2
)dt

 . (17)

On the other hand, for |ε| small,
S0(1)−m(0)

σ =
1+ε

dP
k=q

Nk(n)ε
2k−4

Ã
dP

k=q

ε2(k−2)(1−ε2(k−1))Nk(n)

! 1
2
∼ 1+4εσ2

2σ = 1
2σ + 2εσ and

−S0(0)−m(0)σ =
1−ε

dP
k=q

Nk(n)ε
2k−4

Ã
dP

k=q

ε2(k−2)(1−ε2(k−1))Nk(n)

! 1
2
∼ 1−4εσ2

2σ = 1
2σ −2εσ, therefore,

we obtain the following asymptotic development:
1
4 (1− ε)

µ
1− 2√

2π

R−S0(0)−m(0)
σ

0
exp(− t22 )dt

¶
+

1
4 (1 + ε)

µ
1 + 2√

2π

R S0(1)−m(0)
σ

0
exp(−t2)dt

¶
∼

1
2 +

q 2
πσ exp(− 1

8σ2 ) +
1
2
2√
π

1
2
√
2σR
0

exp(−t2)dt
 ε+O(ε3).

Finally, using (17) we obtain

Pr(
∧
xn 6= xn) ∼ 1

2
+

r 2

π
σ exp(− 1

8σ2
) +

1√
π

1
2
√
2σZ
0

exp(−t2)dt

 ε. (18)

The sufficient convergence condition studied was Pr(xn(1) 6= xn) < 1
2 (1 + ε) .

With our modification, we shall see that this condition is automatically veri-
fied. Let α be a real negative number such that −1 < α ≤ ε, and consider the

13



new condition Pr(xn(1) 6= xn) <
1
2 (1 + α) . From (18) we can translate this

condition by

(2
q

2
πσ exp(− 1

8σ2 ) +
2√
π

1
2
√
2σR
0

exp(−t2)dt)ε < α which gives us

2

r
2

π
σ exp(− 1

8σ2
) +

2√
π

1
2
√
2σZ
0

exp(−t2)dt > α

ε
. (19)

This condition can be interpreted as an inequation’s family parameterized
by λ = α

ε ≥ 1 and with unkwown factor σ.
For each λ ≥ 1, this inequation can be graphically solved with a com-

puter algebra system. The inequation (19) can be write as 2
q

2
πσ exp(− 1

8σ2 ) +

erf( 1
2
√
2σ
)− λ > 0 and, for λ = 7

6 , we obtain (see Figure 4) σ >
1
2 .

Figure 4: The graph of σ 7→ 2
q

2
πσ exp(− 1

8σ2 ) + erf(
1

2
√
2σ
)− 7/6

From (16) we have σ = 1
2(

dP
k=q

ε2(k−2)(1−ε2(k−1))Nk(n)) 12 , therefore an equiv-

alent condition to realize σ > 1
2 is

dP
k=q

ε2(k−2)(1− ε2(k−1))Nk(n) > 1.

So, if
dP
k=q

ε2(k−2)(1−ε2(k−1))Nk(n) > 1, i.e. approximatively
dP
k=q

ε2(k−2)Nk(n) >

1 for |ε| small, we have Pr(xn(1) 6= xn) < 1
2

¡
1 + 7

6ε
¢
< 1

2 (1 + ε) while, without
our modification we have seen at §4.2 that Pr(xn(1) 6= xn) < 1

2 (1 + ε) only ifP
k=q

ε2(k−2)Nk(n) > π
2 .

This property proves that our modification improves the efficacity of the
algorithm.
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Figure 5: The graph of σ 7→ 2
q

2
πσ exp(− 1

8σ2 ) + erf(
1

2
√
2σ
)− 1

Another property, which confirms the precedent conclusion, is that the in-

equation 2
q

2
πσ exp(− 1

8σ2 )+
2√
π

1
2
√
2σR
0

exp(−t2)dt−1 ≥ 0 is verified for each σ > 0
(see Fig. 5).

Indeed, if Ψ(σ) = 2
q

2
πσ exp(− 1

8σ2 )+
2√
π

1
2
√
2σR
0

exp(−t2)dt−1, it’s easy to see

that Ψ
0
(σ) = 2

q
2
π exp(− 1

8σ2 ) > 0. As Ψ is an increasing function and because
+∞R
0

exp(−t2)dt =
√
π
2 (i.e. erf(+∞) = 1) we obtain finally Ψ(σ) ≥ lim

u→0+
Ψ(u) =

0.
Then, from (19) with λ = 1, we see that our modification implies always

Pr(xn(1) 6= xn) ≤ 1
2 (1 + ε) .

In brief, for |ε| small, the integration of values x0n in the estimation process
implies always the condition Pr(xn(1) 6= xn) ≤ 1

2 (1 + ε) without condition

on the Nk(n). Moreover, if
dP
k=q

ε2(k−2)Nk(n) > 1, we have Pr(xn(1) 6= xn) <

1
2

¡
1 + 7

6ε
¢
< 1

2 (1 + ε) .

5.3 Convergence

The proof is the same than at § 4.2.

From (17), we can write Pr(xn(1) 6= xn) ∼ 1
2 (1 + φ(ε)) with

φ(ε) = 1√
2π

·
(1 + ε)

R S0(1)−m(0)
σ

0
exp(− t22 )dt− (1− ε)

R−S0(0)−m(0)
σ

0
exp(− t22 )dt

¸
,
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S0(0)−m(0)
σ = r − 1

σ ,
S0(1)−m(0)

σ = r + 1
σ and r =

dP
k=q

Nk(n)ε
2k−3

σ .
It’s easy to see that φ is derivable on ]− 1, 0[, and

√
2πφ

0
(ε) =

Z S0(1)−m(0)
σ

0

exp(− t
2

2
)dt+

Z −S0(0)−m(0)
σ

0

exp(− t
2

2
)dt+

(1 + ε)(
S0(1)−m(0)

σ
)0 exp(−1

2
(
S0(1)−m(0)

σ
)
2

) +

(1− ε)(
S0(0)−m(0)

σ
)0 exp(−1

2
(
S0(0)−m(0)

σ
)
2

) (20)

and after simplification we obtain

r
π

2
φ
0
(ε) = exp(−r

2

2
)

1
σZ
0

cosh(rt) exp(− t
2

2
)dt+

exp(−1
2
(r2 +

1

σ2
))(

σ0

σ2

h
sinh(

r

σ
)− ε cosh(

r

σ
)
i
+

r0
h
cosh(

r

σ
)− ε sinh(

r

σ
)
i
). (21)

Consider the term ∆ = σ0
σ2

£
sinh( rσ )− ε cosh( rσ )

¤
+ r0

£
cosh( rσ )− ε sinh( rσ )

¤
.

Our aim is to prove that ∆ > 0 because in this case the property φ
0
(ε) > 0 is

proved. We have

r = u
σ with u =

dP
k=q

Nk(n)ε
2k−3, and r0 = 1

σ2 (u
0σ − uσ0) = u0

σ − uσ0
σ2 , so

∆ > 0 if and only if
σ0
σ

£
sinh( rσ )− ε cosh( rσ )

¤
+ (u0 − uσ0

σ )
£
cosh( rσ )− ε sinh( rσ )

¤
=

σ0
σ

£
sinh( rσ )− ε cosh( rσ )− u(cosh( rσ )− ε sinh( rσ ))

¤
+u0

£
cosh( rσ )− ε sinh( rσ )

¤
> 0.
When ε→ 0− we have from (16) r

σ =
u
σ2 ∼

Nq(n)ε
2q−3

1
4Nq(n)ε2(q−2)

= 4ε and

u0 =
dP
k=q

(2k − 3)Nk(n)ε2k−4, so we obtain successively
cosh( rσ ) = 1 +O(ε

2), sinh( rσ ) = 4ε+O(ε
3),

cosh( rσ )− ε sinh( rσ ) = 1 +O(ε
2), sinh( rσ )− ε cosh( rσ ) = 3ε+O(ε

3),
u(cosh( rσ )− ε sinh( rσ )) = Nq(n)ε

2q−3 +O(ε2q−1),
u0(cosh( rσ )− ε sinh( rσ )) = (2q − 3)Nq(n)ε2q−4 +O(ε2q−2).
On the other hand, from σ = 1

2(
dP
k=q

ε2(k−2)(1− ε2(k−1))Nk(n))
1
2 , we have

σ0 = 1
2σ

dP
k=q

£
(k − 2)− (2k − 3)ε2k−2¤Nk(n)ε2k−5, and finally

σ0
σ =

1
4σ2 [(q − 2)Nq(n)ε2q−5 +O(ε2q−3)] = (q − 2)ε−1 +O(ε).
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It results from this that
∆ = [(q − 2)ε−1 +O(ε)][3ε+O(ε3)−Nq(n)ε2q−3 +O(ε2q−1)]+

(2q − 3)Nq(n)ε2q−4 +O(ε2q−2)
= 3(q − 2) +O(ε2).

As q ≥ 3, we see that ∆ > 0 for |ε| small, and, under this hypothesis, the
property φ

0
(ε) > 0 is proved .

At iteration k we can write Pr(xn(k) 6= xn) =
1
2 (1 + εn(k)) with εn(k)

such that, if Nq(n), ...,Nd(n) are large enough to use the central limit theorem,
εn(k) ∼ φk(ε). For |ε| small we have seen that φ :] − 1, 0[→] − 1, 0[, verifying
φ0 > 0, is increasing. We also have seen at §5.2 that, under this condition and
for each Nq(n), ..., Nd(n), Pr(xn(1) 6= xn) < 1

2(1 + ε) therefore φ(ε) < ε. Using
the increasing of φ we obtain φk+1(ε) < φk(ε) for each k ≥ 0,

From (16), we have lim
ε→0−

σ = lim
ε→−1+

σ = 0+, so lim
ε→0−

φ(ε) = 0 and lim
ε→−1+

φ(ε) =

−1 (because
+∞R
0

exp(− t22 )dt =
p

π
2 ). This last property, jointly with the increas-

ing of φ, also implies φ(ε) > −1. Therefore (εn(k))k is a decreasing sequence of
negative real numbers lower bounded by −1, so consequently ln = lim

k→+∞
εn(k)

exists and ln ≥ −1.
In the case where ln > −1, firstly we have φ(ln) < ln. But φ is a continuous

function on ] − 1, 0[, so at point ln we must have φ(ln) = φ( lim
k→+∞

εn(k)) =

lim
k→+∞

φ(εn(k)) = lim
k→+∞

εn(k+1) = ln which contradicts the property φ(ln) < ln.

Therefore the only possibilty is ln = −1 and the convergence is proved.

5.4 Estimation of L

We search now to estimate the length L necessary to realize the condition
dP
k=q

ε2(k−2)Nk(n) > 1 under the hypothesis 3 ≤ q ≤ d << L.
To translate the precedent condition, we must evaluate the integers Nk(n).

An estimation of Nk(n) is given by kOk where Ok is the number of k−omials
Q(X) = 1 +

P
1≤j≤k−1

aijX
ij multiples of P (X) = det(T ⊕ XIr) and such

that d◦(Q) ≤ L. If P (X) is irreductible, each such Q(X) is characterized
by the relation 1 +

P
1≤j≤k−1

aijα
ij = 0 in the finite field F2[X]/(P (X)) =

F2(α) u F2r where α is a root of P (X). On the other hand, for each Q(X) =
1 +

P
1≤j≤k−1

aijX
ij ∈ F2[X], in F2[X]/(P (X)) we have Pr(Q(α) = 0) ≈ 2−r,

therefore an estimation of Ok is given by the formula
¡
L
k−1
¢
2−r.

Consequently, our problem is now to estimate L such that
dP
k=q

kε2(k−2)
¡
L
k−1
¢
2−r >
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1, and finally
dX
k=q

kε2(k−1)
µ

L

k − 1
¶
> 2rε2 (22)

A sufficient condition to verify (22) is qε2(q−1)
¡
L
q−1
¢
> 2rε2, and then

q

µ
L

q − 1
¶
> 2rε−2(q−2). (23)

When L is large and q << L, we can use Stirling’s formulam! ∼ mme−m(2πm)
1
2 to

evaluate
¡
L
q−1
¢
. If we denote n = q−1,we have ¡Ln¢ ∼ 1

n!
LLe−L(2πL)

1
2

(L−n)L−ne−(L−n)(2π(L−n)) 12

= 1
n!

³
L

L−n
´L+ 1

2 ¡L−n
e

¢n
, and using

³
L

L−n
´L+ 1

2

=
³
1 + n

L−n
´L+ 1

2

=

exp((L+ 1
2) ln(1+

n
L−n)) ∼ exp((L+

1
2)

n
L−n) = exp(n

1+ 1
2L

1− n
L
) ∼ en, we obtain

finally
¡
L
q−1
¢
∼ 1

(q−1)! (L− (q − 1))q−1 so q
¡
L
q−1
¢
∼ q

(q−1)! (L− (q − 1))q−1 .
Translating the condition (23), we obtain L−(q−1) > ( 1q (q−1)!)

1
q−1 2

r
q−1 ε−2

q−2
q−1 ,

and for sufficient final condition we may assume L > ((q − 2)!) 1
q−1 2

r
q−1 ε−2.

Remark that this length is an estimation of the number of bits of keystream
to obtain, from the iterative algorithm, the value xn. But, as each k-omial
Q(X) generating one of Nk(n) relations is also usuable for all the others xm,
i.e. generates one of Nk(m) relations verifying m 6= n, an estimation of length
of keystream, sufficient to obtain the initialisation of the LFSR of length r, is
also

L > ((q − 2)!) 1
q−1 2

r
q−1 ε−2. (24)

Information theory also gives us the possibility to compute a lower bound
for L. The information quantity on xn, given by one keystream bit x0n = xn⊕en,
is 1−H(p) with H(p) = −12

£
(1 + ε) log2(

1
2(1 + ε)) + (1− ε) log2(

1
2(1− ε))

¤
= −12

£
(1 + ε)(ε− 1

2ε
2 +O(ε3)− 1) + (1− ε) (−ε− 1

2ε
2 +O(ε3)− 1)¤

= 1− 1
2ε
2 +O(ε3). So, for |ε| small, 1−H(p) ∼ 1

2ε
2. So, the information

quantity given by L bits of keystream is L(1 − H(p)) ∼ L
2 ε

2 and we obtain a
lower bound for L when L(1−H(p)) > r, i.e. L > r

1−H(p) ∼
2r
ε2 .

We see that, if we use the lower bound (24) with q = r + 1, we obtain
L > ((r − 1)!) 1r 2ε−2 ≈ 1

e
2r
ε2 (because (r!)

1
r ∼ r

e for r → +∞) which is of the
same order O( rε2 ) than the bound from information theory.

5.5 Some experimental results

The results of simulation presented here are just given to illustrate theorical top-
ics developpped precedently. They absolutely don’t constitute an experimental
study of the algorithms which stays to make subsequently. In these simulations
we compare the behavior of the improved algorithm with trinomials relations
N3(n) (column IT), and the improved algorithm with trinomials-quadrinomials
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relations N3(n), N4(n) (column ITQ). For the LFSR of characteristic polyno-
mial P (X) = 1 ⊕ X ⊕ X63 we compute, for 100 random initializations of this
register, the minimal length expectation L necessary to converge from x0n to xn
for each n ∈ [1, L], for |ε| = 0.5, 0.4, 0.3, 0.2, 0.1.

IT ITQ
0.5 712 640
0.4 1144 1008
0.3 2096 1728
0.2 8816 5640
0.1 41048 28128

6 Conclusion
In this paper, we have presented an asymptotic analysis and an improvement of
fast iterative correlation attack algorithms. This improvement is theorically an-
alyzed and the new convergence condition clearly shows the gain obtained. Ex-
perimental illustration is given, but complementary experimental further work
is necessary to validate the probabilistic model developped here.
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