Theoretical Upper Bounds on the Covering Radii of Boolean Functions

Michel Mitton
DCSSI/SDS/Crypto. Lab.
18, rue du docteur Zamenhof
92131 Issy-les-Moulineaux cedex, France
e-mail: michel.mitton@sgdn.pm.gouv.fr

November 26, 2004

Abstract

We prove new upper bounds for the covering radii $\rho(n)$ and $\rho_B(n)$ of the first order Reed-Muller code R(1,n). Although these bounds be actually theoretical, they improve the classical Helleseth-Kløve-Mykkeltveit (H.K.M.) bound $2^{n-1} - 2^{\frac{n}{2}-1}$.

Keywords

Boolean functions, covering radius, balanced covering radius, Walsh and Fourier transforms, non-linearity, Reed-Muller codes.

1 Introduction

This paper investigates the covering radius $\rho(n)$ and the balanced covering radius $\rho_B(n)$ for Boolean functions in dimension n. From Rothaus [1], the covering radius is known for even dimension n, contrary to the balanced covering radius which is unknown for $n \geq 8$. In odd dimension, the exact values of both $\rho(n)$ and $\rho_B(n)$ are unknown, except a finite number of small dimensions n=3,5,7 where $\rho(n)=\rho_B(n)=2^{n-1}-2^{\frac{n-1}{2}}$. From H.K.M. [2], for odd or even n, we know that

$$\rho(n) < 2^{n-1} - 2^{\frac{n}{2} - 1}.\tag{1}$$

We prove new theoretical bounds b(n) and $b_B(n)$ such that for even n, $\rho_B(n) \le b_B(n) \le 2^{n-1} - 2^{\frac{n}{2}-1} - 2$, and for odd n, $\rho(n) \le b(n) \le \lfloor 2^{n-1} - 2^{\frac{n}{2}-1} \rfloor$, $\rho_B(n) \le b(n) \le \lfloor 2^{n-1} - 2^{\frac{n}{2}-1} \rfloor$.

2 Preliminaries: Basic Définitions and Notation

In this paper, the finite field $(\mathbf{Z}/2\mathbf{Z}, \oplus, .)$ with its additive and multiplicative laws will be denoted by \mathbf{F}_2 and the \mathbf{F}_2 -algebra of Boolean functions in n variables will be denoted by $\mathcal{F} = \mathcal{F}(\mathbf{F}_2^n, \mathbf{F}_2)$.

For $f \in \mathcal{F}$ and $a \in \mathbf{F}_2$, recall that $f^{-1}(a)$ is the set defined by $f^{-1}(a) =$ $\{u \in \mathbf{F}_2^{\mathrm{n}} | f(u) = a\}.$

We will use #E to denote the number of elements of the set E.

A function $f \in \mathcal{F}$ is called balanced if $\#f^{-1}(0) = \#f^{-1}(1) = 2^{n-1}$.

The Hamming distance between f and g defined by $\#(f \oplus g)^{-1}(1)$ will be denoted by d(f, g).

 $W_f(a)$ is the Walsh spectrum of $f \in \mathcal{F}$ to a point $a=(a_0,...,a_{n-1})\in \mathbf{F}_2^{\mathrm{n}}$ defined by

$$W_f(a) = \sum_{x \in \mathbf{F}_2^n} f(x)(-1)^{\langle a, x \rangle}.$$
 (2)

In this formula, the sum on the right is calculated in **Z**, and $\langle a, x \rangle =$ $a_0x_0 \oplus ... \oplus a_{n-1}x_{n-1}$ is the scalar product on \mathbf{F}_2^n . In the sequel, δ_a^b is the Kronecker's symbol, and we will use the notation

$$W_f^*(a) = 2^{n-1}\delta_0^a - W_f(a). (3)$$

Between Walsh and Fourier transforms we have the relation $2W_f^* = f$. Each $f \in \mathcal{F}$ verifies the important Parseval's relation

$$\sum_{a \in \mathbf{F}_n^n} (W_f^*(a))^2 = 2^{2(n-1)}. \tag{4}$$

|x| denotes the absolute value of the real number x, and |x| the integer $\max\{n \in \mathbf{N} | n \le x\}.$

For each integer $i \in [0, 2^{n-1}]$, we will have to consider the sets $|W_f^*|^{-1}(i) =$ $\{a \in \mathbf{F}_2^n | |W_f^*(a)| = i\}.$

The affine function defined by $f(x) = \langle \alpha, x \rangle \oplus \lambda$, with $\alpha, x \in \mathbf{F}_2^n$ and $\lambda \in \mathbf{F}_2$, will be denoted by $l_{\alpha} \oplus \lambda$.

The distance defined by $\min_{\alpha \in \mathbf{F}_2^n, \ \lambda \in \mathbf{F}_2} d(f, l_{\alpha} \oplus \lambda)$, between $f \in \mathcal{F}$ and the affine functions set, will be denoted by $\delta(f)$.

It is easy to prove that $\delta(f) = 2^{n-1} - \max_{a \in \mathbf{F}_2^n} |W_f^*(a)|$.

The integer $\max_{f \in \mathcal{F}} \delta(f)$ will be denoted by $\rho(n)$. In the theory of errorcorrecting codes [3], $\rho(n)$ is called the covering radius of the first order Reed-Muller code R(1, n) of length 2^n .

The integer $\max_{f \ balanced} \delta(f)$ will be denoted by $\rho_B(n)$ and will be called the balanced covering radius in dimension n. Of course, we have $\rho_B(n) \leq \rho(n)$.

A function $f \in \mathcal{F}$ will be called maximally nonlinear (resp. extremal balanced) if $\delta(f) = \rho(n)$ (resp. $\delta(f) = \rho_B(n)$). When n is even, bent functions

[1], [3], [4] are defined as boolean functions f having uniform Walsh spectrum $|W_f^*(a)| = 2^{\frac{n}{2}-1}$ for each $a \in \mathbb{F}_2^n$. For even n, it is easy to prove that f is maximally nonlinear if and only if f is bent.

The subset of \mathcal{F} containing all the maximally nonlinear (resp. extremal balanced) functions will be denoted by C(n) (resp. E(n)).

For a study on related topics, see [5].

3 Theoretical Results

Proposition 1

$$\rho(n) \leq 2^{n-1} - \max_{f \in A} \left(\frac{2^{2(n-1)} - \sum_{q=1}^{k} i_q^2 \# |W_f^*|^{-1}(i_q)}{2^n - \sum_{q=1}^{k} \# |W_f^*|^{-1}(i_q)} \right)^{\frac{1}{2}}$$

$$with A = \{ f \in C(n) | \exists (i_1, ..., i_k) \in [0, 2^{n-1}]^k, \\
i_1 < ... < i_k, \bigcup_{1 \leq q \leq k} |W_f^*|^{-1}(i_q) \subsetneq \mathbf{F}_2^n \} \tag{5}$$

Proof. Consider $f \in \mathcal{F}$ and k integers $i_1, ..., i_k$ such that

$$0 \le i_1 < \dots < i_k \le 2^{n-1}$$
. We denote $B = \bigcup_{1 \le q \le k} |W_f^*|^{-1}(i_q)$.

Rewriting Parseval's relation (4), we have
$$2^{2(n-1)} = \sum_{a \in B} (W_f^*(a))^2 + \sum_{a \notin B} (W_f^*(a))^2 \text{ and finally}$$

$$2^{2(n-1)} - \sum_{q=1}^{k} \#|W_f^*|^{-1}(i_q) = \sum_{a \notin B} (W_f^*(a))^2.$$

On the other hand, $\mathbf{F}_{2}^{n} = \bigcup_{0 \le i \le 2^{n-1}} \# |W_{f}^{*}|^{-1}(i)$, so

$$2^{n} - \sum_{q=1}^{k} \#|W_{f}^{*}|^{-1}(i_{q}) = \sum_{i \notin \{i_{1}, \dots, i_{k}\}} \#|W_{f}^{*}|^{-1}(i).$$

If
$$2^n - \sum_{q=1}^k \#|W_f^*|^{-1}(i_q) \neq 0$$
, i.e. $B \subsetneq \mathbf{F}_2^n$, there exists $b \notin B$ such that

$$(W_f^*(b))^2 \ge \frac{2^{2(n-1)} - \sum\limits_{q=1}^k \#|W_f^*|^{-1}(i_q)}{2^n - \sum\limits_{q=1}^k \#|W_f^*|^{-1}(i_q)}. \text{ Since } \delta(f) \le 2^{n-1} - |W_f^*(b)|, \text{we obtain}$$

$$\delta(f) \leq 2^{n-1} - \left(\frac{2^{2(n-1)} - \sum\limits_{q=1}^k \#|W_f^*|^{-1}(i_q)}{2^n - \sum\limits_{q=1}^k \#|W_f^*|^{-1}(i_q)}\right)^{\frac{1}{2}}, \text{ with this inequality in }$$

Observe that this proof, suitably adjusted, is valid when replacing C(n) by E(n). Therefore, we have also the below result:

Proposition 2

$$\rho_{B}(n) \leq 2^{n-1} - \max_{f \in B} \left(\frac{2^{2(n-1)} - \sum_{q=1}^{k} i_{q}^{2} \# |W_{f}^{*}|^{-1}(i_{q})}{2^{n} - \sum_{q=1}^{k} \# |W_{f}^{*}|^{-1}(i_{q})} \right)^{\frac{1}{2}}$$

$$with B = \{ f \in E(n) | \exists (i_{1}, ..., i_{k}) \in [0, 2^{n-1}]^{k},$$

$$i_{1} < ... < i_{k}, \bigcup_{1 \leq q \leq k} |W_{f}^{*}|^{-1}(i_{q}) \subsetneq \mathbf{F}_{2}^{n} \} \tag{6}$$

Proof. The same as Proposition 1.

Since $\rho(n) = 2^{n-1} - 2^{\frac{n}{2}-1}$ for even n, the only unknown values of $\rho(n)$ are these for odd n. So, in the sequel, we can suppose n odd, although generally Proposition 1 implies the following result:

Corollary 3 Let us consider the set I defined by $I = [0, 2^{n-1}] - \{2^{\frac{n}{2}-1}\}$ for even n, and $I = [0, 2^{n-1}]$ for odd n. We have the following inequalities

$$\rho(n) \leq 2^{n-1} - \max_{f \in C(n), i \in I} \left(\frac{2^{2(n-1)} - i^2 \# |W_f^*|^{-1}(i)}{2^n - \# |W_f^*|^{-1}(i)} \right)^{\frac{1}{2}} \\
\leq 2^{n-1} - \frac{2^{n-1}}{(2^n - \max_{f \in C(n)} \# W_f^{*-1}(0))^{\frac{1}{2}}}$$
(7)

Proof. Consider $i \in I$, and $f \in C(n)$. If $|W_f^*|^{-1}(i) = \mathbf{F}_2^n$, we must have $|W_f^*|(a) = i$ for each $a \in \mathbf{F}_2^n$, and by Parseval's relation (4) we must have also $2^n i^2 = 2^{2(n-1)}$. So, $i^2 = 2^{n-2}$ and this contradicts the hypothesis $i \in I$. Consequently, $|W_f^*|^{-1}(i) \subsetneq \mathbf{F}_2^n$ and the first inequality results of the Propo-

sition 1 applied for k = 1 and $i_1 = i$.

$$\begin{split} &\max_{f \in C(n), i \in I} \left(\frac{2^{2(n-1)} - i^2 \# |W_f^*|^{-1}(i)}{2^n - \# |W_f^*|^{-1}(i)} \right)^{\frac{1}{2}} \ge \max_{f \in C(n), i = 0} \left(\frac{2^{2(n-1)} - i^2 \# |W_f^*|^{-1}(i)}{2^n - \# |W_f^*|^{-1}(i)} \right)^{\frac{1}{2}} \\ &= \max_{f \in C(n)} \left(\frac{2^{2(n-1)}}{2^n - \# |W_f^*|^{-1}(0)} \right)^{\frac{1}{2}} = \left(\frac{2^{2(n-1)}}{2^n - \max_{f \in C(n)} \# W_f^{*-1}(0)} \right)^{\frac{1}{2}} \blacksquare \end{split}$$

It is easy to deduce of Proposition 2 the following properties:

Corollary 4 Let us consider the set I defined by $I = [0, 2^{n-1}] - \{2^{\frac{n}{2}-1}\}$ if n

even, and $I = [0, 2^{n-1}]$ if n odd. We have the inequalities

$$\rho_{B}(n) \leq 2^{n-1} - \max_{f \in E(n), i \in I} \left(\frac{2^{2(n-1)} - i^{2} \# |W_{f}^{*}|^{-1}(i)}{2^{n} - \# |W_{f}^{*}|^{-1}(i)} \right)^{\frac{1}{2}} \\
\leq 2^{n-1} - \frac{2^{n-1}}{(2^{n} - \max_{f \in E(n)} \# W_{f}^{*-1}(0))^{\frac{1}{2}}} \tag{8}$$

Proof. The same as Corollary 3.

$$\begin{aligned} & \mathbf{Remark \ 5} \ \ Since \ \frac{2^{n-1}}{(2^n - \max\limits_{f \in C(n)} \#W_f^{*-1}(0))^{\frac{1}{2}}} \geq 2^{\frac{n}{2}-1} \ \ and \\ & \frac{2^{n-1}}{(2^n - \max\limits_{f \in E(n)} \#W_f^{*-1}(0))^{\frac{1}{2}}} \geq \frac{2^{n-1}}{(2^n - 1)^{\frac{1}{2}}}, \ we \ have \\ & 2^{n-1} - \frac{2^{n-1}}{(2^n - \max\limits_{f \in C(n)} \#W_f^{*-1}(0))^{\frac{1}{2}}} \leq 2^{n-1} - 2^{\frac{n}{2}-1} and \\ & 2^{n-1} - \frac{2^{n-1}}{(2^n - \max\limits_{f \in E(n)} \#W_f^{*-1}(0))^{\frac{1}{2}}} \leq 2^{n-1} - \frac{2^{n-1}}{(2^n - 1)^{\frac{1}{2}}}. \end{aligned}$$

Upper bounds for $\rho(n)$ and $\rho_B(n)$ 4

Theoretical upper bounds on $\rho(n)$ and $\rho_B(n)$ have been obtained. These bounds on $\rho(n)$ are better than the well-known value $2^{n-1}-2^{\frac{n}{2}-1}$ but very theoretical and nonconstructive. Using some additional properties, we can prove now new upper bounds on $\rho(n)$ and $\rho_B(n)$ that we hope more usable.

As seen previously, the new bounds of corollaries 3 and 4 are formally identical for C(n) and E(n). So, in the sequel, we denote A(n) the set C(n) (respectively E(n), and $\rho_A(n)$ the integer $\rho(n)$ (respectively $\rho_B(n)$) when A(n) = C(n)(respectively A(n) = E(n)).

Recall that $I = [0, 2^{n-1}] - \{2^{\frac{n}{2}-1}\}$ for even n, and $I = [0, 2^{n-1}]$ for odd n.

From $\bigcup_{0 \le i \le 2^{n-1}}^{\circ} |W_f^*|^{-1}(i) = \mathbf{F}_2^n$ and from Parseval's relation (4), we have, for each $i \in I - \{0\}$ and for each $f \in A(n)$, $\#|W_f^*|^{-1}(i) < 2^n$. Finally, for $f \in \mathcal{F}$, we denote J_f the set defined by

$$J_f = \{i \in I - \{0\} | \#|W_f^*|^{-1}(i) < 4i^2\}$$
(9)

Proposition 6 Let us consider $f \in A(n)$ for $n \geq 3$. If $J_f \subsetneq I - \{0\}$, there exists at least one integer $i \in I - J_f, i \neq 0$, such that

$$\frac{2^n - 2i(\#|W_f^*|^{-1}(i))^{\frac{1}{2}}}{2^n - \#|W_f^*|^{-1}(i)} \ge 1 \tag{10}$$

Proof. If this result was false, there would exist at least one fonction $f \in A(n)$ such that for each $i \in I - J_f, i \neq 0$, we should have $\frac{2^n - 2i(\#|W_f^*|^{-1}(i))^{\frac{1}{2}}}{2^n - \#|W_f^*|^{-1}(i)} < 1$. This last inequality implies $\#|W_f^*|^{-1}(i) < 4i^2$ so $i \in J_f$ and we see that $I - J_f \subseteq J_f$. Then we obtain $\emptyset = (I - J_f) \cap J_f \supseteq (I - J_f) \cap (I - J_f) = I - J_f$ and finally $I - J_f = \emptyset$ which proves the assertion.

Remark 7 For $f \in A(n)$, consider an integer $i \in I - J_f$, $i \neq 0$. The definition (9) of J_f implies $2^n > \#|W_f^*|^{-1}(i) \geq 4i^2$ and consequently $0 < i < 2^{\frac{n}{2}-1}$.

Consider the case A(n)=C(n) for even n. For $i \in I-\{0\}$ and $f \in A(n)$, we have $|W_f^*|^{-1}(i)=\varnothing(|W_f^*(a)|=2^{\frac{n}{2}-1}$ for each $a \in \mathbf{F}_2^n$) and then $\#|W_f^*|^{-1}(i)=0<4i^2$, so $i \in J_f$ and finally $J_f=I-\{0\}$.

Consequently, we see that the hypothesis of the Proposition 6, in the case A(n) = C(n) with n even, is not satisfied. Is it also true for A(n) = E(n) or when n is odd? We give below two functions for n = 6 and A(n) = E(n) where the two possible cases are realised. The tables below represent the elements

$$f(0).....f(31)$$

 $f(32)....f(63)$

Case $J_f \subsetneq I - \{0\}$:

The balanced function $f \in E(6)$ defined by

is such that $W_f^{*-1}(0)=\{0,13,18,31,36,41,54,59\}$ and $\#W_f^{*-1}(0)=8,$ $\#|W_f^*|^{-1}(2)=16,$ $\#|W_f^*|^{-1}(4)=24,$ $\#|W_f^*|^{-1}(6)=16,$ so $2\notin J_f$ because $\#|W_f^*|^{-1}(2)\geq 4\times 2^2.$

Case $J_f = I - \{0\}$:

The balanced function $f \in E(6)$ defined by

is such that

 $W_f^{*-1}(0) = \{0, 12, 14, 15, 23, 26, 34, 47, 53, 57, 58, 59\}$ and $\#W_f^{*-1}(0) = 12$, $\#|W_f^*|^{-1}(2) = 14$, $\#|W_f^*|^{-1}(4) = 20$, $\#|W_f^*|^{-1}(6) = 18$.

From this, we can suppose that generally, except for n even and A(n) = C(n), the two cases $J_f \subseteq I - \{0\}$ and $J_f = I - \{0\}$ are possible for certain functions $f \in A(n)$.

Now, we have all the necessery elements to prove our principal result.

Theorem 8 Let us consider $f \in A(n)$ for $n \geq 3$.

If $J_f \subsetneq I - \{0\}$, there exists at least one integer $i \in I - J_f$ verifying $0 < i < 2^{\frac{n}{2}-1}$ and $\#|W_f^*|^{-1}(i) \geq 4i^2$, such that

$$\rho_A(n) \le 2^{n-1} - \left[2^{n-2} + \frac{i}{2} \left(\# |W_f^*|^{-1}(i) \right)^{\frac{1}{2}} \right]^{\frac{1}{2}}$$
(11)

If $J_f = I - \{0\}$, we have

$$\rho_A(n) \le 2^{n-1} - \max_{0 \le i < 2^{\frac{n}{2}-1}} \left(\frac{2^{2(n-1)} - 4i^4}{2^n - \#|W_f^*|^{-1}(i)} \right)^{\frac{1}{2}} \tag{12}$$

Proof. From Proposition 6, if $J_f \subsetneq I - \{0\}$ for $f \in A(n)$, $n \geq 3$, there exists at least one integer $i \in I - J_f$, $i \neq 0$ verifying (10). We have seen in the Remark 7 that $0 < i < 2^{\frac{n}{2}-1}$ and $\#|W_f^*|^{-1}(i) \geq 4i^2$. Rewriting the inequalities of Corollaries 3 and 4, we obtain

$$\rho_A(n) \le 2^{n-1} - \max_{g \in A(n), j \in I} \left(\frac{2^{2(n-1)} - j^2 \# |W_g^*|^{-1}(j)}{2^n - \# |W_g^*|^{-1}(j)} \right)^{\frac{1}{2}}.$$

So, for g = f and $j = i \in I - J_f, i \neq 0$, the above inequality

$$\rho_A(n) \le 2^{n-1} - \left(\frac{2^{2(n-1)} - i^2 \# |W_f^*|^{-1}(i)}{2^n - \# |W_f^*|^{-1}(i)}\right)^{\frac{1}{2}}$$

is valid. On the other hand, if we denote $B_i = \#|W_f^*|^{-1}(i)$, we have also

$$\frac{2^{2(n-1)} - i^2 B_i}{2^n - B_i} = \frac{1}{4} \frac{2^{2n} - 4i^2 B_i}{2^n - B_i}$$
$$= \frac{1}{4} \frac{\left(2^n - 2iB_i^{\frac{1}{2}}\right) \left(2^n + 2iB_i^{\frac{1}{2}}\right)}{2^n - B_i}.$$

From Proposition (6), the integers i and B_i are such that $\frac{\left(2^n-2iB_i^{\frac{1}{2}}\right)}{2^n-B_i} \geq 1$, and thus

 $\frac{2^{2(n-1)}-i^2B_i}{2^n-B_i} \geq \frac{1}{4} \left(2^n+2iB_i^{\frac{1}{2}}\right) = 2^{n-2} + \frac{i}{2}B_i^{\frac{1}{2}}.$

Using the inequality $\rho_A(n) \leq 2^{n-1} - \left(\frac{2^{2(n-1)} - i^2 B_i}{2^n - B_i}\right)^{\frac{1}{2}}$ we obtain the first result.

Now, suppose $J_f = I - \{0\}$. From definition (9), we have $B_i < 4i^2$ for each $i \in I - \{0\}$ or equivalently for each $i \in [1, 2^{\frac{n}{2}-1}[$. From Corollaries 3 and 4,

$$\begin{split} \rho_A(n) & \leq 2^{n-1} - \max_{i \in I} \left(\frac{2^{2(n-1)} - i^2 B_i}{2^n - B_i} \right)^{\frac{1}{2}} = \\ & 2^{n-1} - \max \left\{ \max_{i \in I - \{0\}} \left(\frac{2^{2(n-1)} - i^2 B_i}{2^n - B_i} \right)^{\frac{1}{2}}, \right. \\ & \left. \left(\frac{2^{2(n-1)}}{2^n - B_0} \right)^{\frac{1}{2}} \right\}. \end{split}$$

 $B_i < 4i^2$ for each $i \in I - \{0\}$ implies $2^{2(n-1)} - i^2 B_i > 2^{2(n-1)} - 4i^4$ and finally

$$\rho_A(n) \le 2^{n-1} - \max_{0 \le i < 2^{\frac{n}{2}-1}} \left(\frac{2^{2(n-1)} - 4i^4}{2^n - B_i} \right)^{\frac{1}{2}}$$

for each $n \geq 3$.

From this, we deduce immediately a classification of different possible cases.

Corollary 9 Let us consider $f \in E(n)$ (resp. C(n)) for even $n \geq 6$, or odd $n \geq 5$ (resp. odd $n \geq 3$).

* If $J_f \subseteq I - \{0\}$, there exists at least one even (resp. arbitrary) integer i verifying $1 \le i < 2^{\frac{n}{2}-1}$ and $\#|W_f^*|^{-1}(i) \ge 4i^2$, such that $\rho_B(n)$ (resp. $\rho(n)$)

$$\leq 2^{n-1} - \left[2^{n-2} + \frac{i}{2} \left(\#|W_f^*|^{-1}(i)\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}$$

$$\leq 2^{n-1} - \left(2^{n-2} + i^2\right)^{\frac{1}{2}} \tag{13}$$

* If $J_f = I - \{0\}$, we have the following two cases:

- If there exits at least one even (resp. arbitrary) integer $j \in [1,2^{\frac{n}{2}-1}[$ such that

$$\frac{2^n - \#|W_f^*|^{-1}(j)}{2^n - \#W_f^{*-1}(0)} < 1 - \frac{j^4}{2^{2n-4}}$$
(14)

then

$$\rho_B(n) \ (resp. \ \rho(n)) \le 2^{n-1} - \left(\frac{2^{2n-2} - 4j^4}{2^n - \#|W_f^*|^{-1}(j)}\right)^{\frac{1}{2}} \\
< 2^{n-1} - \frac{2^{n-1}}{(2^n - \#W_f^{*-1}(0))^{\frac{1}{2}}} \tag{15}$$

- If not,

$$\rho_B(n) \ (resp. \ \rho(n)) \le 2^{n-1} - \frac{2^{n-1}}{\left(2^n - \#W_f^{*-1}(0)\right)^{\frac{1}{2}}}$$
(16)

Proof. Let be $f \in E(n)$, $n \ge 6$ even or $n \ge 5$ odd, and suppose $J_f \subsetneq I - \{0\}$. From Theorem 8 with A(n) = E(n), we have

$$\rho_B(n) \le 2^{n-1} - \left[2^{n-2} + \frac{i}{2} \left(\# |W_f^*|^{-1}(i) \right)^{\frac{1}{2}} \right]^{\frac{1}{2}}$$

for a certain integer i verifying $0 < i < 2^{\frac{n}{2}-1}$ and $\#|W_f^*|^{-1}(i) \ge 4i^2$. This proves the first inequality.

Using now the balancedness of f, we have $W_f^*(0) = 0$, and consequently, it's easy to prove that $W_f^*(a)$ is necessary even for each $a \in \mathbf{F}_2^n$. On the other hand, the integer i is such that $\#|W_f^*|^{-1}(i) \ge 4i^2 > 0$ and therefore i is necessary even because the precedent property implies $\#|W_f^*|^{-1}(j) = 0$ for each odd j.

Let us consider the case $J_f = I - \{0\}$ and suppose verified the condition (14) for an integer $j \in [1, 2^{\frac{n}{2}-1}[$. This condition is equivalent to the inequality

$$\frac{2^{2n-2}-4j^4}{2^n-\#|W_f^*|^{-1}(j)}>\frac{2^{2n-2}}{2^n-\#W_f^{*-1}(0)}.$$

Therefore,

$$\max_{0 \le i < 2^{\frac{n}{2} - 1}} \left(\frac{2^{2(n-1)} - 4i^4}{2^n - \#|W_f^*|^{-1}(i)} \right)^{\frac{1}{2}} \ge \left(\frac{2^{2n-2} - 4j^4}{2^n - \#|W_f^*|^{-1}(j)} \right)^{\frac{1}{2}} > \frac{2^{n-1}}{(2^n - \#W_f^{*-1}(0))^{\frac{1}{2}}}$$

and combining these inequalities with the inequality (12) of Theorem 8, we obtain the result (15).

Now, if we have (14) false for each $j \in [1, 2^{\frac{n}{2}-1}[$, as seen previously this property is equivalent to

$$\frac{2^{2n-2}-4j^4}{2^n-\#|W_f^*|^{-1}(j)} \leq \frac{2^{2n-2}}{2^n-\#W_f^{*-1}(0)},$$

and (16) is again the consequence of the inequality (12) of Theorem (8).

The proof of case $f \in C(n)$ is the same as previously. \blacksquare

Corollary 10 Let be $f \in E(n)$ for $n \geq 5$.

If $J_f \subsetneq I - \{0\}$ (resp. $J_f = I - \{0\}$), we denote

$$r_n = 2^{n-1} - \left[2^{n-2} + \frac{i}{2} \left(\#|W_f^*|^{-1}(i)\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} (resp. \ r_n = 2^{n-1} - \frac{2^{n-1}}{\left(2^n - \#W_f^{*-1}(0)\right)^{\frac{1}{2}}}).$$

For even $n \ge 6$ (resp. odd $n \ge 5$), let be $b_B(n) = \lfloor r_n \rfloor - (\lfloor r_n \rfloor \mod 2)$. We have $\rho_B(n) \le b_B(n) \le 2^{n-1} - 2^{\frac{n}{2}-1} - 2$ (resp. $\rho_B(n) \le b_B(n) \le \lfloor 2^{n-1} - 2^{\frac{n}{2}-1} \rfloor$).

Proof. Suppose even $n \geq 6$ and $J_f \subsetneq I - \{0\}$ (resp. $J_f = I - \{0\}$). From Corollary 9 there exists an even integer $i \in [1, 2^{\frac{n}{2}-1}[$ (resp. j) with

 $\#|W_f^*|^{-1}(i) \ge 4i^2$ such that $\rho_B(n) \le r_n$. Because $\frac{i}{2}(\#|W_f^*|^{-1}(i))^{\frac{1}{2}} > 0$ (resp. $2^{n-2}\#W_f^{*-1}(0) > 0$ if $n \ge 2$), these conditions imply $r(n) < 2^{n-1} - 2^{\frac{n}{2}-1}$ and therefore $\rho_B(n) \le \lfloor r_n \rfloor \le 2^{n-1} - 2^{\frac{n}{2}-1} - 1$. But $\rho_B(n)$, as $2^{n-1} - 2^{\frac{n}{2}-1}$ for $n \ge 4$, is always even, so $\rho_B(n) \le \lfloor r_n \rfloor - (\lfloor r_n \rfloor \mod 2) \le 2^{n-1} - 2^{\frac{n}{2}-1} - 2$.

For odd $n \geq 5$, we have also $\rho_B(n) \leq r(n) < 2^{n-1} - 2^{\frac{n}{2}-1}$, but here $2^{n-1} - 2^{\frac{n}{2}-1}$ is not integer but just a real positive number. Consequently $\rho_B(n) \leq |r_n| \leq |2^{n-1} - 2^{\frac{n}{2}-1}|$ and the Corollary is proved. \blacksquare

We have the following similar result for $\rho(n)$.

Corollary 11 Let be $f \in C(n)$ for odd $n \ge 3$. If $J_f \subsetneq I - \{0\}$ (resp. $J_f = I - \{0\}$), we denote $r_n = 2^{n-1} - \left[2^{n-2} + \frac{i}{2} \left(\#|W_f^*|^{-1}(i)\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} (resp. \ r_n = 2^{n-1} - \frac{2^{n-1}}{\left(2^n - \#W_f^{*-1}(0)\right)^{\frac{1}{2}}}).$ Let be $b(n) = \lfloor r_n \rfloor - (\lfloor r_n \rfloor \mod 2)$. We have $\rho(n) \le b(n) \le \lfloor 2^{n-1} - 2^{\frac{n}{2}-1} \rfloor$.

Proof. The same as Corollary 10.

5 Conclusion

We have obtained theoretical upper bounds (7),(8) on $\rho(n)$ and $\rho_B(n)$. Except the already known $\rho(n)$ for even n, theses bounds minorate the H.K.M. bound. In the case where exists $f \in C(n)$ or $f \in E(n)$, according to $J_f \subsetneq I - \{0\}$ or $J_f = I - \{0\}$, new upper bounds $b(n), b_B(n)$ deduced from (13), (15) and (16) have been derived. Although b(n) and $b_B(n)$ be actually only theoretical, they improve the H.K.M. bound. So, in a further work, one may ask how to deduce from Corollary 9 more explicit results on these new bounds.

References

- O. S. Rothaus, "On 'bent' functions," J. Comb. Theory, ser. A, vol.20, pp. 300-305, 1976.
- [2] T. Helleseth, T. Kløve, J. Mykkeltveit, "On the covering radius of binary codes," *IEEE Trans. Inform. Theory*, vol. IT-24, pp. 627-628, July 1978.
- [3] F. J. Mac Williams and N. J. A. Sloane, *The Theory of Error Correcting Codes* Amsterdam, The Netherlands: North-Holland, 1977.
- [4] J. F. Dillon, "Elementary difference sets," Ph. D. dissertation, Univ. of Maryland, 1974.
- [5] M. Mitton, "On maximally non linear and extremal balanced boolean functions", J. Discr. Math. Sciences & Crypto., vol. 5, no. 3, pp. 231-253, December 2002.