Theoretical Upper Bounds on the Covering Radii of Boolean Functions

Michel Mitton
DCSSI/SDS/Crypto. Lab.
18, rue du docteur Zamenhof
92131 Issy-les-Moulineaux cedex, France
e-mail: michel.mitton@sgdn.pm.gouv.fr

November 26, 2004

Abstract

We prove new upper bounds for the covering radii $\rho(n)$ and $\rho_{B}(n)$ of the first order Reed-Muller code $R(1, n)$. Although these bounds be actually theoretical, they improve the classical Helleseth-Kløve-Mykkeltveit (H.K.M.) bound $2^{n-1}-2^{\frac{n}{2}-1}$.

Keywords

Boolean functions, covering radius, balanced covering radius, Walsh and Fourier transforms, non-linearity, Reed-Muller codes.

1 Introduction

This paper investigates the covering radius $\rho(n)$ and the balanced covering radius $\rho_{B}(n)$ for Boolean functions in dimension n. From Rothaus [1], the covering radius is known for even dimension n, contrary to the balanced covering radius which is unknown for $n \geq 8$. In odd dimension, the exact values of both $\rho(n)$ and $\rho_{B}(n)$ are unknown, except a finite number of small dimensions $n=3,5,7$ where $\rho(n)=\rho_{B}(n)=2^{n-1}-2^{\frac{n-1}{2}}$. From H.K.M. [2], for odd or even n, we know that

$$
\begin{equation*}
\rho(n) \leq 2^{n-1}-2^{\frac{n}{2}-1} . \tag{1}
\end{equation*}
$$

We prove new theoretical bounds $b(n)$ and $b_{B}(n)$ such that for even $n, \rho_{B}(n) \leq$ $b_{B}(n) \leq 2^{n-1}-2^{\frac{n}{2}-1}-2$, and for odd $n, \rho(n) \leq b(n) \leq\left\lfloor 2^{n-1}-2^{\frac{n}{2}-1}\right\rfloor, \rho_{B}(n) \leq$ $b_{B}(n) \leq\left\lfloor 2^{n-1}-2^{\frac{n}{2}-1}\right\rfloor$.

2 Preliminaries: Basic Définitions and Notation

In this paper, the finite field $(\mathbf{Z} / 2 \mathbf{Z}, \oplus,$.$) with its additive and multiplicative laws$ will be denoted by \mathbf{F}_{2} and the \mathbf{F}_{2}-algebra of Boolean functions in n variables will be denoted by $\mathcal{F}=\mathcal{F}\left(\mathbf{F}_{2}^{\mathrm{n}}, \mathbf{F}_{2}\right)$.

For $f \in \mathcal{F}$ and $a \in \mathbf{F}_{2}$, recall that $f^{-1}(a)$ is the set defined by $f^{-1}(a)=$ $\left\{u \in \mathbf{F}_{2}^{\mathrm{n}} \mid f(u)=a\right\}$.

We will use $\# E$ to denote the number of elements of the set E.
A function $f \in \mathcal{F}$ is called balanced if $\# f^{-1}(0)=\# f^{-1}(1)=2^{n-1}$.
The Hamming distance between f and g defined by $\#(f \oplus g)^{-1}(1)$ will be denoted by $d(f, g)$.
$W_{f}(a)$ is the Walsh spectrum of $f \in \mathcal{F}$ to a point
$a=\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbf{F}_{2}^{\mathrm{n}}$ defined by

$$
\begin{equation*}
W_{f}(a)=\sum_{x \in \mathbf{F}_{2}^{\mathrm{n}}} f(x)(-1)^{<a, x>} . \tag{2}
\end{equation*}
$$

In this formula, the sum on the right is calculated in \mathbf{Z}, and $<a, x\rangle=$ $a_{0} x_{0} \oplus \ldots \oplus a_{n-1} x_{n-1}$ is the scalar product on $\mathbf{F}_{2}^{\mathrm{n}}$.

In the sequel, δ_{a}^{b} is the Kronecker's symbol, and we will use the notation

$$
\begin{equation*}
W_{f}^{*}(a)=2^{n-1} \delta_{0}^{a}-W_{f}(a) \tag{3}
\end{equation*}
$$

Between Walsh and Fourier transforms we have the relation $2 W_{f}^{*}=\hat{f}$.
Each $f \in \mathcal{F}$ verifies the important Parseval's relation

$$
\begin{equation*}
\sum_{a \in \mathbf{F}_{2}^{\mathrm{n}}}\left(W_{f}^{*}(a)\right)^{2}=2^{2(n-1)} . \tag{4}
\end{equation*}
$$

$|x|$ denotes the absolute value of the real number x, and $\lfloor x\rfloor$ the integer $\max \{n \in \mathbf{N} \mid n \leq x\}$.

For each integer $i \in\left[0,2^{n-1}\right]$, we will have to consider the sets $\left|W_{f}^{*}\right|^{-1}(i)=$ $\left\{a \in \mathbf{F}_{2}^{\mathrm{n}}| | W_{f}^{*}(a) \mid=i\right\}$.

The affine function defined by $f(x)=<\alpha, x>\oplus \lambda$, with $\alpha, x \in \mathbf{F}_{2}^{\mathrm{n}}$ and $\lambda \in \mathbf{F}_{2}$, will be denoted by $l_{\alpha} \oplus \lambda$.

The distance defined by $\min _{\alpha \in \mathbf{F}_{2}^{n}, \lambda \in \mathbf{F}_{2}} d\left(f, l_{\alpha} \oplus \lambda\right)$, between $f \in \mathcal{F}$ and the affine functions set, will be denoted by $\delta(f)$.

It is easy to prove that $\delta(f)=2^{n-1}-\max _{a \in \mathbf{F}_{2}^{n}}\left|W_{f}^{*}(a)\right|$.
The integer $\max _{f \in \mathcal{F}} \delta(f)$ will be denoted by $\rho(n)$. In the theory of errorcorrecting codes [3], $\rho(n)$ is called the covering radius of the first order ReedMuller code $R(1, n)$ of length 2^{n}.

The integer $\max _{f \text { balanced }} \delta(f)$ will be denoted by $\rho_{B}(n)$ and will be called the balanced covering radius in dimension n. Of course, we have $\rho_{B}(n) \leq \rho(n)$.

A function $f \in \mathcal{F}$ will be called maximally nonlinear (resp. extremal balanced) if $\delta(f)=\rho(n)$ (resp. $\delta(f)=\rho_{B}(n)$). When n is even, bent functions
[1], [3], [4] are defined as boolean functions f having uniform Walsh spectrum $\left|W_{f}^{*}(a)\right|=2^{\frac{n}{2}-1}$ for each $a \in \mathbf{F}_{2}^{\mathrm{n}}$. For even n, it is easy to prove that f is maximally nonlinear if and only if f is bent.

The subset of \mathcal{F} containing all the maximally nonlinear (resp. extremal balanced) functions will be denoted by $C(n)$ (resp. $E(n)$).

For a study on related topics, see [5].

3 Theoretical Results

Proposition 1

$$
\begin{align*}
\rho(n) & \leq 2^{n-1}-\max _{f \in A}\left(\frac{2^{2(n-1)}-\sum_{q=1}^{k} i_{q}^{2} \#\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right)}{2^{n}-\sum_{q=1}^{k} \#\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right)}\right)^{\frac{1}{2}} \\
\text { with } A & =\left\{f \in C(n) \mid \exists\left(i_{1, \cdots}, i_{k}\right) \in\left[0,2^{n-1}\right]^{k},\right. \\
i_{1} & \left.<\ldots<i_{k}, \underset{1 \leq q \leq k}{\cup}\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right) \nsubseteq \mathbf{F}_{2}^{n}\right\} \tag{5}
\end{align*}
$$

Proof. Consider $f \in \mathcal{F}$ and k integers i_{1}, \ldots, i_{k} such that
$0 \leq i_{1}<\ldots<i_{k} \leq 2^{n-1}$. We denote $B=\underset{1 \leq q \leq k}{\cup}\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right)$.
Rewriting Parseval's relation (4), we have

$$
\begin{aligned}
& 2^{2(n-1)}=\sum_{a \in B}\left(W_{f}^{*}(a)\right)^{2}+\sum_{a \notin B}\left(W_{f}^{*}(a)\right)^{2} \text { and finally } \\
& 2^{2(n-1)}-\sum_{q=1}^{k} \#\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right)=\sum_{a \notin B}\left(W_{f}^{*}(a)\right)^{2}
\end{aligned}
$$

On the other hand, $\mathbf{F}_{2}^{n}=\underset{0 \leq i \leq 2^{n-1}}{\cup} \#\left|W_{f}^{*}\right|^{-1}(i)$, so
$2^{n}-\sum_{q=1}^{k} \#\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right)=\sum_{i \notin\left\{i_{1}, \ldots, i_{k}\right\}} \#\left|W_{f}^{*}\right|^{-1}(i)$.
If $2^{n}-\sum_{q=1}^{k} \#\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right) \neq 0$, i.e. $B \subsetneq \mathbf{F}_{2}^{n}$, there exists $b \notin B$ such that
$\left(W_{f}^{*}(b)\right)^{2} \geq \frac{2^{2(n-1)}-\sum_{q=1}^{k} \#\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right)}{2^{n}-\sum_{q=1}^{k} \#\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right)}$. Since $\delta(f) \leq 2^{n-1}-\left|W_{f}^{*}(b)\right|$, we obtain
$\delta(f) \leq 2^{n-1}-\left(\frac{2^{2(n-1)}-\sum_{q=1}^{k} \#\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right)}{2^{n}-\sum_{q=1}^{k} \#\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right)}\right)^{\frac{1}{2}}$, with this inequality in
particular true for each $f \in A$. This proves the Proposition.
Observe that this proof, suitably adjusted, is valid when replacing $C(n)$ by $E(n)$. Therefore, we have also the below result:

Proposition 2

$$
\begin{align*}
\rho_{B}(n) & \leq 2^{n-1}-\max _{f \in B}\left(\frac{2^{2(n-1)}-\sum_{q=1}^{k} i_{q}^{2} \#\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right)}{2^{n}-\sum_{q=1}^{k} \#\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right)}\right)^{\frac{1}{2}} \\
\text { with } B & =\left\{f \in E(n) \mid \exists\left(i_{1}, \ldots, i_{k}\right) \in\left[0,2^{n-1}\right]^{k},\right. \\
i_{1} & \left.<\ldots<i_{k}, \underset{1 \leq q \leq k}{\cup}\left|W_{f}^{*}\right|^{-1}\left(i_{q}\right) \nsubseteq \mathbf{F}_{2}^{n}\right\} \tag{6}
\end{align*}
$$

Proof. The same as Proposition 1.
Since $\rho(n)=2^{n-1}-2^{\frac{n}{2}-1}$ for even n, the only unknown values of $\rho(n)$ are these for odd n. So, in the sequel, we can suppose n odd, although generally Proposition 1 implies the following result:

Corollary 3 Let us consider the set I defined by $I=\left[0,2^{n-1}\right]-\left\{2^{\frac{n}{2}-1}\right\}$ for even n, and $I=\left[0,2^{n-1}\right]$ for odd n. We have the following inequalities

$$
\begin{align*}
\rho(n) & \leq 2^{n-1}-\max _{f \in C(n), i \in I}\left(\frac{2^{2(n-1)}-i^{2} \#\left|W_{f}^{*}\right|^{-1}(i)}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(i)}\right)^{\frac{1}{2}} \\
& \leq 2^{n-1}-\frac{2^{n-1}}{\left(2^{n}-\max _{f \in C(n)} \# W_{f}^{*-1}(0)\right)^{\frac{1}{2}}} \tag{7}
\end{align*}
$$

Proof. Consider $i \in I$, and $f \in C(n)$. If $\left|W_{f}^{*}\right|^{-1}(i)=\mathbf{F}_{2}^{n}$, we must have $\left|W_{f}^{*}\right|(a)=i$ for each $a \in \mathbf{F}_{2}^{n}$, and by Parseval's relation (4) we must have also $2^{n} i^{2}=2^{2(n-1)}$. So, $i^{2}=2^{n-2}$ and this contradicts the hypothesis $i \in I$.

Consequently, $\left|W_{f}^{*}\right|^{-1}(i) \varsubsetneqq \mathbf{F}_{2}^{n}$ and the first inequality results of the Proposition 1 applied for $k=1$ and $i_{1}=i$.

The second inequality results of

$$
\begin{aligned}
& \max _{f \in C(n), i \in I}\left(\frac{2^{2(n-1)}-i^{2} \#\left|W_{f}^{*}\right|^{-1}(i)}{2^{n}-\#\left|W_{f}^{*}\right|-1(i)}\right)^{\frac{1}{2}} \geq \max _{f \in C(n), i=0}\left(\frac{2^{2(n-1)}-i^{2} \#\left|W_{f}^{*}\right|^{-1}(i)}{2^{n}-\# \mid W_{f}^{*}-1-1(i)}\right)^{\frac{1}{2}} \\
& =\max _{f \in C(n)}\left(\frac{2^{2(n-1)}}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(0)}\right)^{\frac{1}{2}}=\left(\frac{2^{2(n-1)}}{2^{n}-\max _{f \in C(n)} \# W_{f}^{*-1}(0)}\right)^{\frac{1}{2}}
\end{aligned}
$$

It is easy to deduce of Proposition 2 the following properties:

Corollary 4 Let us consider the set I defined by $I=\left[0,2^{n-1}\right]-\left\{2^{\frac{n}{2}-1}\right\}$ if n
even, and $I=\left[0,2^{n-1}\right]$ if n odd. We have the inequalities

$$
\begin{align*}
\rho_{B}(n) & \leq 2^{n-1}-\max _{f \in E(n), i \in I}\left(\frac{2^{2(n-1)}-i^{2} \#\left|W_{f}^{*}\right|^{-1}(i)}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(i)}\right)^{\frac{1}{2}} \\
& \leq 2^{n-1}-\frac{2^{n-1}}{\left(2^{n}-\max _{f \in E(n)} \# W_{f}^{*-1}(0)\right)^{\frac{1}{2}}} \tag{8}
\end{align*}
$$

Proof. The same as Corollary 3.

Remark 5 Since $\frac{2^{n-1}}{\left(2^{n}-\max _{f \in C(n)} \# W_{f}^{*-1}(0)\right)^{\frac{1}{2}}} \geq 2^{\frac{n}{2}-1}$ and

$$
\begin{aligned}
& \frac{2^{n-1}}{\left(2^{n}-\max _{f \in E(n)} \# W_{f}^{*-1}(0)\right)^{\frac{1}{2}}} \geq \frac{2^{n-1}}{\left(2^{n}-1\right)^{\frac{1}{2}}}, \text { we have } \\
& 2^{n-1}-\frac{2^{n-1}}{\left(2^{n}-\max _{f \in C(n)} \# W_{f}^{*-1}(0)\right)^{\frac{1}{2}}} \leq 2^{n-1}-2^{\frac{n}{2}-1} \text { and } \\
& 2^{n-1}-\frac{2^{n-1}}{\left(2^{n}-\max _{f \in E(n)} \# W_{f}^{*-1}(0)\right)^{\frac{1}{2}}} \leq 2^{n-1}-\frac{2^{n-1}}{\left(2^{n}-1\right)^{\frac{1}{2}}}
\end{aligned}
$$

4 Upper bounds for $\rho(n)$ and $\rho_{B}(n)$

Theoretical upper bounds on $\rho(n)$ and $\rho_{B}(n)$ have been obtained. These bounds on $\rho(n)$ are better than the well-known value $2^{n-1}-2^{\frac{n}{2}-1}$ but very theoretical and nonconstructive. Using some additional properties, we can prove now new upper bounds on $\rho(n)$ and $\rho_{B}(n)$ that we hope more usable.

As seen previously, the new bounds of corollaries 3 and 4 are formally identical for $C(n)$ and $E(n)$. So, in the sequel, we denote $A(n)$ the set $C(n)$ (respectively $E(n)$), and $\rho_{A}(n)$ the integer $\rho(n)$ (respectively $\rho_{B}(n)$) when $A(n)=C(n)$ (respectively $A(n)=E(n)$).

Recall that $I=\left[0,2^{n-1}\right]-\left\{2^{\frac{n}{2}-1}\right\}$ for even n, and $I=\left[0,2^{n-1}\right]$ for odd n.
From $\underset{0 \leq i \leq 2^{n-1}}{\cup}\left|W_{f}^{*}\right|^{-1}(i)=\mathbf{F}_{2}^{\mathrm{n}}$ and from Parseval's relation (4), we have, for each $i \in I-\{0\}$ and for each $f \in A(n), \#\left|W_{f}^{*}\right|^{-1}(i)<2^{n}$.

Finally, for $f \in \mathcal{F}$, we denote J_{f} the set defined by

$$
\begin{equation*}
J_{f}=\left\{i \in I-\left.\{0\}|\#| W_{f}^{*}\right|^{-1}(i)<4 i^{2}\right\} \tag{9}
\end{equation*}
$$

Proposition 6 Let us consider $f \in A(n)$ for $n \geq 3$. If $J_{f} \varsubsetneqq I-\{0\}$, there exists at least one integer $i \in I-J_{f}, i \neq 0$, such that

$$
\begin{equation*}
\frac{2^{n}-2 i\left(\#\left|W_{f}^{*}\right|^{-1}(i)\right)^{\frac{1}{2}}}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(i)} \geq 1 \tag{10}
\end{equation*}
$$

Proof. If this result was false, there would exist at least one fonction $f \in$ $A(n)$ such that for each $i \in I-J_{f}, i \neq 0$, we should have $\frac{2^{n}-2 i\left(\#\left|W_{f}^{*}\right|^{-1}(i)\right)^{\frac{1}{2}}}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(i)}<$ 1. This last inequality implies $\#\left|W_{f}^{*}\right|^{-1}(i)<4 i^{2}$ so $i \in J_{f}$ and we see that $I-J_{f} \subseteq J_{f}$. Then we obtain $\emptyset=\left(I-J_{f}\right) \cap J_{f} \supseteq\left(I-J_{f}\right) \cap\left(I-J_{f}\right)=I-J_{f}$ and finally $I-J_{f}=\emptyset$ which proves the assertion.

Remark 7 For $f \in A(n)$, consider an integer $i \in I-J_{f}, i \neq 0$. The definition (9) of J_{f} implies $2^{n}>\#\left|W_{f}^{*}\right|^{-1}(i) \geq 4 i^{2}$ and consequently $0<i<2^{\frac{n}{2}-1}$.

Consider the case $A(n)=C(n)$ for even n. For $i \in I-\{0\}$ and $f \in A(n)$, we have $\left|W_{f}^{*}\right|^{-1}(i)=\varnothing\left(\left|W_{f}^{*}(a)\right|=2^{\frac{n}{2}-1}\right.$ for each $\left.a \in \mathbf{F}_{2}^{\mathrm{n}}\right)$ and then $\#\left|W_{f}^{*}\right|^{-1}(i)=$ $0<4 i^{2}$, so $i \in J_{f}$ and finally $J_{f}=I-\{0\}$.

Consequently, we see that the hypothesis of the Proposition 6 , in the case $A(n)=C(n)$ with n even, is not satisfied. Is it also true for $A(n)=E(n)$ or when n is odd ? We give below two functions for $n=6$ and $A(n)=E(n)$ where the two possible cases are realised. The tables below represent the elements

$$
\begin{aligned}
& f(0) \ldots \ldots f(31) \\
& f(32) \ldots . . . f(63)
\end{aligned}
$$

Case $J_{f} \nsubseteq I-\{0\}$:
The balanced function $f \in E(6)$ defined by

$$
00001001011101111011010111000101
$$

11011100011011011000100000011001
is such that $W_{f}^{*-1}(0)=\{0,13,18,31,36,41,54,59\}$ and $\# W_{f}^{*-1}(0)=8$, $\#\left|W_{f}^{*}\right|^{-1}(2)=16, \#\left|W_{f}^{*}\right|^{-1}(4)=24, \#\left|W_{f}^{*}\right|^{-1}(6)=16$, so $2 \notin J_{f}$ because $\#\left|W_{f}^{*}\right|^{-1}(2) \geq 4 \times 2^{2}$.

Case $J_{f}=I-\{0\}$:
The balanced function $f \in E(6)$ defined by

> 01100001011101111000111101011001
> 11100111101000110110010000000001
is such that
$W_{f}^{*-1}(0)=\{0,12,14,15,23,26,34,47,53,57,58,59\}$ and $\# W_{f}^{*-1}(0)=12$, $\#\left|W_{f}^{*}\right|^{-1}(2)=14, \#\left|W_{f}^{*}\right|^{-1}(4)=20, \#\left|W_{f}^{*}\right|^{-1}(6)=18$.

From this, we can suppose that generally, except for n even and $A(n)=C(n)$, the two cases $J_{f} \nsubseteq I-\{0\}$ and $J_{f}=I-\{0\}$ are possible for certain functions $f \in A(n)$.

Now, we have all the necessery elements to prove our principal result.

Theorem 8 Let us consider $f \in A(n)$ for $n \geq 3$.
If $J_{f} \nsubseteq I-\{0\}$, there exists at least one integer $i \in I-J_{f}$ verifying $0<i<$ $2^{\frac{n}{2}-1}$ and $\#\left|W_{f}^{*}\right|^{-1}(i) \geq 4 i^{2}$, such that

$$
\begin{equation*}
\rho_{A}(n) \leq 2^{n-1}-\left[2^{n-2}+\frac{i}{2}\left(\#\left|W_{f}^{*}\right|^{-1}(i)\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} \tag{11}
\end{equation*}
$$

If $J_{f}=I-\{0\}$, we have

$$
\begin{equation*}
\rho_{A}(n) \leq 2^{n-1}-\max _{0 \leq i<2^{\frac{n}{2}-1}}\left(\frac{2^{2(n-1)}-4 i^{4}}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(i)}\right)^{\frac{1}{2}} \tag{12}
\end{equation*}
$$

Proof. From Proposition 6, if $J_{f} \varsubsetneqq I-\{0\}$ for $f \in A(n), n \geq 3$, there exists at least one integer $i \in I-J_{f}, i \neq 0$ verifying (10). We have seen in the Remark 7 that $0<i<2^{\frac{n}{2}-1}$ and $\#\left|W_{f}^{*}\right|^{-1}(i) \geq 4 i^{2}$. Rewriting the inequalities of Corollaries 3 and 4, we obtain

$$
\rho_{A}(n) \leq 2^{n-1}-\max _{g \in A(n), j \in I}\left(\frac{2^{2(n-1)}-j^{2} \#\left|W_{g}^{*}\right|^{-1}(j)}{2^{n}-\#\left|W_{g}^{*}\right|^{-1}(j)}\right)^{\frac{1}{2}}
$$

So, for $g=f$ and $j=i \in I-J_{f}, i \neq 0$, the above inequality

$$
\rho_{A}(n) \leq 2^{n-1}-\left(\frac{2^{2(n-1)}-i^{2} \#\left|W_{f}^{*}\right|^{-1}(i)}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(i)}\right)^{\frac{1}{2}}
$$

is valid. On the other hand, if we denote $B_{i}=\#\left|W_{f}^{*}\right|^{-1}(i)$, we have also

$$
\begin{aligned}
\frac{2^{2(n-1)}-i^{2} B_{i}}{2^{n}-B_{i}} & =\frac{1}{4} \frac{2^{2 n}-4 i^{2} B_{i}}{2^{n}-B_{i}} \\
& =\frac{1}{4} \frac{\left(2^{n}-2 i B_{i}^{\frac{1}{2}}\right)\left(2^{n}+2 i B_{i}^{\frac{1}{2}}\right)}{2^{n}-B_{i}}
\end{aligned}
$$

From Proposition (6), the integers i and B_{i} are such that $\frac{\left(2^{n}-2 i B_{i}^{\frac{1}{2}}\right)}{2^{n}-B_{i}} \geq 1$, and thus

$$
\frac{2^{2(n-1)}-i^{2} B_{i}}{2^{n}-B_{i}} \geq \frac{1}{4}\left(2^{n}+2 i B_{i}^{\frac{1}{2}}\right)=2^{n-2}+\frac{i}{2} B_{i}^{\frac{1}{2}} .
$$

Using the inequality $\rho_{A}(n) \leq 2^{n-1}-\left(\frac{2^{2(n-1)}-i^{2} B_{i}}{2^{n}-B_{i}}\right)^{\frac{1}{2}}$ we obtain the first result.

Now, suppose $J_{f}=I-\{0\}$. From definition (9), we have $B_{i}<4 i^{2}$ for each $i \in I-\{0\}$ or equivalently for each $i \in\left[1,2^{\frac{n}{2}-1}[\right.$. From Corollaries 3 and 4,

$$
\begin{aligned}
\rho_{A}(n) \leq & 2^{n-1}-\max _{i \in I}\left(\frac{2^{2(n-1)}-i^{2} B_{i}}{2^{n}-B_{i}}\right)^{\frac{1}{2}}= \\
& 2^{n-1}-\max \left\{\max _{i \in I-\{0\}}\left(\frac{2^{2(n-1)}-i^{2} B_{i}}{2^{n}-B_{i}}\right)^{\frac{1}{2}}\right. \\
& \left.\left(\frac{2^{2(n-1)}}{2^{n}-B_{0}}\right)^{\frac{1}{2}}\right\}
\end{aligned}
$$

$B_{i}<4 i^{2}$ for each $i \in I-\{0\}$ implies $2^{2(n-1)}-i^{2} B_{i}>2^{2(n-1)}-4 i^{4}$ and finally

$$
\rho_{A}(n) \leq 2^{n-1}-\max _{0 \leq i<2^{\frac{n}{2}-1}}\left(\frac{2^{2(n-1)}-4 i^{4}}{2^{n}-B_{i}}\right)^{\frac{1}{2}}
$$

for each $n \geq 3$.
From this, we deduce immediately a classification of different possible cases.

Corollary 9 Let us consider $f \in E(n)$ (resp. $C(n)$) for even $n \geq 6$, or odd $n \geq 5$ (resp. odd $n \geq 3$).

* If $J_{f} \nsubseteq I-\{0\}$, there exists at least one even (resp. arbitrary) integer i verifying $1 \leq i<2^{\frac{n}{2}-1}$ and $\#\left|W_{f}^{*}\right|^{-1}(i) \geq 4 i^{2}$, such that $\rho_{B}(n)($ resp. $\rho(n)$)

$$
\begin{align*}
& \leq 2^{n-1}-\left[2^{n-2}+\frac{i}{2}\left(\#\left|W_{f}^{*}\right|^{-1}(i)\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} \\
& \leq 2^{n-1}-\left(2^{n-2}+i^{2}\right)^{\frac{1}{2}} \tag{13}
\end{align*}
$$

* If $J_{f}=I-\{0\}$, we have the following two cases:
- If there exits at least one even (resp. arbitrary) integer $j \in$ [1, $2^{\frac{n}{2}-1}[$ such that

$$
\begin{equation*}
\frac{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(j)}{2^{n}-\# W_{f}^{*-1}(0)}<1-\frac{j^{4}}{2^{2 n-4}} \tag{14}
\end{equation*}
$$

then

$$
\begin{align*}
\rho_{B}(n)(\text { resp. } \rho(n)) \leq & 2^{n-1}-\left(\frac{2^{2 n-2}-4 j^{4}}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(j)}\right)^{\frac{1}{2}} \\
& <2^{n-1}-\frac{2^{n-1}}{\left(2^{n}-\# W_{f}^{*-1}(0)\right)^{\frac{1}{2}}} \tag{15}
\end{align*}
$$

- If not,

$$
\begin{equation*}
\rho_{B}(n)(\text { resp. } \rho(n)) \leq 2^{n-1}-\frac{2^{n-1}}{\left(2^{n}-\# W_{f}^{*-1}(0)\right)^{\frac{1}{2}}} \tag{16}
\end{equation*}
$$

Proof. Let be $f \in E(n), n \geq 6$ even or $n \geq 5$ odd, and suppose $J_{f} \nsubseteq I-\{0\}$. From Theorem 8 with $A(n)=E(n)$, we have

$$
\rho_{B}(n) \leq 2^{n-1}-\left[2^{n-2}+\frac{i}{2}\left(\#\left|W_{f}^{*}\right|^{-1}(i)\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}
$$

for a certain integer i verifying $0<i<2^{\frac{n}{2}-1}$ and $\#\left|W_{f}^{*}\right|^{-1}(i) \geq 4 i^{2}$. This proves the first inequality.

Using now the balancedness of f, we have $W_{f}^{*}(0)=0$, and consequently, it's easy to prove that $W_{f}^{*}(a)$ is necessary even for each $a \in \mathbf{F}_{2}^{n}$. On the other hand, the integer i is such that $\#\left|W_{f}^{*}\right|^{-1}(i) \geq 4 i^{2}>0$ and therefore i is necessary even because the precedent property implies $\#\left|W_{f}^{*}\right|^{-1}(j)=0$ for each odd j.

Let us consider the case $J_{f}=I-\{0\}$ and suppose verified the condition (14) for an integer $j \in\left[1,2^{\frac{n}{2}-1}[\right.$. This condition is equivalent to the inequality

$$
\frac{2^{2 n-2}-4 j^{4}}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(j)}>\frac{2^{2 n-2}}{2^{n}-\# W_{f}^{*-1}(0)}
$$

Therefore,

$$
\begin{aligned}
\max _{0 \leq i<2^{\frac{n}{2}-1}}\left(\frac{2^{2(n-1)}-4 i^{4}}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(i)}\right)^{\frac{1}{2}} & \geq\left(\frac{2^{2 n-2}-4 j^{4}}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(j)}\right)^{\frac{1}{2}} \\
& >\frac{2^{n-1}}{\left(2^{n}-\# W_{f}^{*-1}(0)\right)^{\frac{1}{2}}}
\end{aligned}
$$

and combining these inequalities with the inequality (12) of Theorem 8, we obtain the result (15).

Now, if we have (14) false for each $j \in\left[1,2^{\frac{n}{2}-1}[\right.$, as seen previously this property is equivalent to

$$
\frac{2^{2 n-2}-4 j^{4}}{2^{n}-\#\left|W_{f}^{*}\right|^{-1}(j)} \leq \frac{2^{2 n-2}}{2^{n}-\# W_{f}^{*-1}(0)}
$$

and (16) is again the consequence of the inequality (12) of Theorem (8).
The proof of case $f \in C(n)$ is the same as previously.
Corollary 10 Let be $f \in E(n)$ for $n \geq 5$.
If $J_{f} \nsubseteq I-\{0\}$ (resp. $J_{f}=I-\{0\}$), we denote
$r_{n}=2^{n-1}-\left[2^{n-2}+\frac{i}{2}\left(\#\left|W_{f}^{*}\right|^{-1}(i)\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}\left(\right.$ resp. $\left.r_{n}=2^{n-1}-\frac{2^{n-1}}{\left(2^{n}-\# W_{f}^{*-1}(0)\right)^{\frac{1}{2}}}\right)$.
For even $n \geq 6$ (resp. odd $n \geq 5)$, let be $b_{B}(n)=\left\lfloor r_{n}\right\rfloor-\left(\left\lfloor r_{n}\right\rfloor \bmod 2\right)$. We have $\rho_{B}(n) \leq b_{B}(n) \leq 2^{n-1}-2^{\frac{n}{2}-1}-2$ (resp. $\left.\rho_{B}(n) \leq b_{B}(n) \leq\left\lfloor 2^{n-1}-2^{\frac{n}{2}-1}\right\rfloor\right)$.

Proof. Suppose even $n \geq 6$ and $J_{f} \nsubseteq I-\{0\}$ (resp. $J_{f}=I-\{0\}$). From Corollary 9 there exists an even integer $i \in\left[1,2^{\frac{n}{2}-1}[\right.$ (resp. j) with
$\#\left|W_{f}^{*}\right|^{-1}(i) \geq 4 i^{2}$ such that $\rho_{B}(n) \leq r_{n}$. Because $\frac{i}{2}\left(\#\left|W_{f}^{*}\right|^{-1}(i)\right)^{\frac{1}{2}}>0$ (resp. $2^{n-2} \# W_{f}^{*-1}(0)>0$ if $n \geqslant 2$), these conditions imply $r(n)<2^{n-1}-2^{\frac{n}{2}-1}$ and therefore $\rho_{B}(n) \leq\left\lfloor r_{n}\right\rfloor \leq 2^{n-1}-2^{\frac{n}{2}-1}-1$. But $\rho_{B}(n)$, as $2^{n-1}-2^{\frac{n}{2}-1}$ for $n \geq 4$, is always even, so $\rho_{B}(n) \leq\left\lfloor r_{n}\right\rfloor-\left(\left\lfloor r_{n}\right\rfloor \bmod 2\right) \leq 2^{n-1}-2^{\frac{n}{2}-1}-2$.

For odd $n \geq 5$, we have also $\rho_{B}(n) \leq r(n)<2^{n-1}-2^{\frac{n}{2}-1}$, but here $2^{n-1}-$ $2^{\frac{n}{2}-1}$ is not integer but just a real positive number. Consequently $\rho_{B}(n) \leq$ $\left\lfloor r_{n}\right\rfloor \leq\left\lfloor 2^{n-1}-2^{\frac{n}{2}-1}\right\rfloor$ and the Corollary is proved.

We have the following similar result for $\rho(n)$.
Corollary 11 Let be $f \in C(n)$ for odd $n \geq 3$.
If $J_{f} \nsubseteq I-\{0\}$ (resp. $J_{f}=I-\{0\}$), we denote
$r_{n}=2^{n-1}-\left[2^{n-2}+\frac{i}{2}\left(\#\left|W_{f}^{*}\right|^{-1}(i)\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}\left(\right.$ resp. $\left.r_{n}=2^{n-1}-\frac{2^{n-1}}{\left(2^{n}-\# W_{f}^{*-1}(0)\right)^{\frac{1}{2}}}\right)$.
Let be $b(n)=\left\lfloor r_{n}\right\rfloor-\left(\left\lfloor r_{n}\right\rfloor \bmod 2\right)$. We have $\rho(n) \leq b(n) \leq\left\lfloor 2^{n-1}-2^{\frac{n}{2}-1}\right\rfloor$.
Proof. The same as Corollary 10.

5 Conclusion

We have obtained theoretical upper bounds (7),(8) on $\rho(n)$ and $\rho_{B}(n)$. Except the already known $\rho(n)$ for even n, theses bounds minorate the H.K.M. bound. In the case where exists $f \in C(n)$ or $f \in E(n)$, according to $J_{f} \varsubsetneqq I-\{0\}$ or $J_{f}=I-\{0\}$, new upper bounds $b(n), b_{B}(n)$ deduced from(13), (15) and (16) have been derived. Although $b(n)$ and $b_{B}(n)$ be actually only theoretical, they improve the H.K.M. bound. So, in a further work, one may ask how to deduce from Corollary 9 more explicit results on these new bounds.

References

[1] O. S. Rothaus, "On 'bent' functions," J. Comb. Theory, ser. A, vol.20, pp. 300-305, 1976.
[2] T. Helleseth, T. Kløve, J. Mykkeltveit, "On the covering radius of binary codes," IEEE Trans. Inform. Theory, vol. IT-24, pp. 627-628, July 1978.
[3] F. J. Mac Williams and N. J. A. Sloane, The Theory of Error Correcting Codes Amsterdam, The Netherlands: North-Holland, 1977.
[4] J. F. Dillon, "Elementary difference sets," Ph. D. dissertation, Univ. of Maryland, 1974.
[5] M. Mitton, "On maximally non linear and extremal balanced boolean functions", J. Discr. Math. Sciences \& Crypto., vol. 5, no. 3, pp. 231-253, December 2002.

