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Abstract

We prove new upper bounds for the covering radii ρ(n) and ρB(n) of
the first order Reed-Muller code R(1, n). Although these bounds be ac-
tually theoretical, they improve the classical Helleseth-Kløve-Mykkeltveit
(H.K.M.) bound 2n−1 − 2n2−1.
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1 Introduction
This paper investigates the covering radius ρ(n) and the balanced covering ra-
dius ρB(n) for Boolean functions in dimension n. From Rothaus [1], the covering
radius is known for even dimension n, contrary to the balanced covering radius
which is unknown for n ≥ 8. In odd dimension, the exact values of both ρ(n)
and ρB(n) are unknown, except a finite number of small dimensions n = 3, 5, 7
where ρ(n) = ρB(n) = 2n−1 − 2n−12 . From H.K.M. [2], for odd or even n, we
know that

ρ(n) ≤ 2n−1 − 2n2−1. (1)

We prove new theoretical bounds b(n) and bB(n) such that for even n, ρB(n) ≤
bB(n) ≤ 2n−1−2n2−1−2, and for odd n, ρ(n) ≤ b(n) ≤ b2n−1−2n2−1c, ρB(n) ≤
bB(n) ≤ b2n−1 − 2n2−1c.
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2 Preliminaries: Basic Définitions and Notation
In this paper, the finite field (Z/2Z,⊕, .) with its additive and multiplicative laws
will be denoted by F2 and the F2−algebra of Boolean functions in n variables
will be denoted by F = F(Fn2 ,F2).
For f ∈ F and a ∈ F2 , recall that f−1(a) is the set defined by f−1(a) =

{u ∈ Fn2 | f(u) = a}.
We will use #E to denote the number of elements of the set E.
A function f ∈ F is called balanced if #f−1(0) = #f−1(1) = 2n−1.
The Hamming distance between f and g defined by #(f ⊕ g)−1 (1) will be

denoted by d(f, g).
Wf (a) is the Walsh spectrum of f ∈ F to a point
a = (a0, ..., an−1) ∈ Fn2 defined by

Wf (a) =
X
x∈Fn2

f(x)(−1)<a,x>. (2)

In this formula, the sum on the right is calculated in Z, and < a, x >=
a0x0 ⊕ ...⊕ an−1xn−1 is the scalar product on Fn2 .
In the sequel, δba is the Kronecker’s symbol, and we will use the notation

W ∗f (a) = 2
n−1δa0 −Wf (a). (3)

Between Walsh and Fourier transforms we have the relation 2W ∗f =
∧
f.

Each f ∈ F verifies the important Parseval’s relationX
a∈Fn2

(W ∗f (a))
2 = 22(n−1). (4)

|x| denotes the absolute value of the real number x, and bxc the integer
max{n ∈ N|n ≤ x}.
For each integer i ∈ [0, 2n−1], we will have to consider the sets |W ∗f |−1(i) =

{a ∈ Fn2 | |W ∗f (a)| = i}.
The affine function defined by f(x) =< α, x > ⊕λ, with α, x ∈ Fn2 and

λ ∈ F2 , will be denoted by lα ⊕ λ.
The distance defined by min

α∈Fn2 , λ∈F2
d(f, lα⊕λ), between f ∈ Fand the affine

functions set, will be denoted by δ(f).
It is easy to prove that δ(f) = 2n−1 − max

a∈Fn2
|W ∗f (a)|.

The integer max
f∈F

δ(f) will be denoted by ρ(n). In the theory of error-

correcting codes [3], ρ(n) is called the covering radius of the first order Reed-
Muller code R(1, n) of length 2n.
The integer max

f balanced
δ(f) will be denoted by ρB(n) and will be called the

balanced covering radius in dimension n. Of course, we have ρB(n) ≤ ρ(n).
A function f ∈ F will be called maximally nonlinear (resp. extremal bal-

anced) if δ(f) = ρ(n) (resp. δ(f) = ρB(n)). When n is even, bent functions
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[1], [3], [4] are defined as boolean functions f having uniform Walsh spectrum
|W ∗f (a)| = 2

n
2−1 for each a ∈ Fn2 . For even n, it is easy to prove that f is

maximally nonlinear if and only if f is bent.
The subset of F containing all the maximally nonlinear (resp. extremal

balanced) functions will be denoted by C(n) (resp. E(n)).
For a study on related topics, see [5].

3 Theoretical Results
Proposition 1

ρ(n) ≤ 2n−1 −max
f∈A


22(n−1) −

kP
q=1
i2q#|W ∗f |−1(iq)

2n −
kP
q=1
#|W ∗f |−1(iq)


1
2

with A = {f ∈ C(n)|∃(i1,..., ik) ∈ [0, 2n−1]k,
i1 < ... < ik,

◦
∪

1≤q≤k
|W ∗f |−1(iq) Ã Fn2} (5)

Proof. Consider f ∈ F and k integers i1, ..., ik such that

0 ≤ i1 < ... < ik ≤ 2n−1. We denote B =
◦
∪

1≤q≤k
|W ∗f |−1(iq).

Rewriting Parseval’s relation (4), we have
22(n−1) =

P
a∈B

(W ∗f (a))
2 +

P
a/∈B

(W ∗f (a))
2 and finally

22(n−1) −
kP
q=1
#|W ∗f |−1(iq) =

P
a/∈B

(W ∗f (a))
2.

On the other hand, Fn2 =
◦
∪

0≤i≤2n−1
#|W ∗f |−1(i), so

2n −
kP
q=1
#|W ∗f |−1(iq) =

P
i/∈{i1,...,ik}

#|W ∗f |−1(i).

If 2n −
kP
q=1
#|W ∗f |−1(iq) 6= 0, i.e.B ( Fn2 , there exists b /∈ B such that

(W ∗f (b))
2 ≥

22(n−1)−
kP

q=1
#|W∗f |−1(iq)

2n−
kP

q=1
#|W∗f |−1(iq)

. Since δ(f) ≤ 2n−1 − |W ∗f (b)|,we obtain

δ(f) ≤ 2n−1 −
22(n−1)−

kP
q=1

#|W∗f |−1(iq)

2n−
kP

q=1
#|W∗f |−1(iq)


1
2

, with this inequality in

particular true for each f ∈ A. This proves the Proposition.

Observe that this proof, suitably adjusted, is valid when replacing C(n) by
E(n). Therefore, we have also the below result:
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Proposition 2

ρB(n) ≤ 2n−1 −max
f∈B


22(n−1) −

kP
q=1
i2q#|W ∗f |−1(iq)

2n −
kP
q=1
#|W ∗f |−1(iq)


1
2

with B = {f ∈ E(n)|∃(i1, ..., ik) ∈ [0, 2n−1]k,
i1 < ... < ik,

◦
∪

1≤q≤k
|W ∗f |−1(iq) Ã Fn2} (6)

Proof. The same as Proposition 1.

Since ρ(n) = 2n−1 − 2n2−1 for even n, the only unknown values of ρ(n) are
these for odd n. So, in the sequel, we can suppose n odd, although generally
Proposition 1 implies the following result:

Corollary 3 Let us consider the set I defined by I = [0, 2n−1] − {2n2−1} for
even n, and I = [0, 2n−1] for odd n. We have the following inequalities

ρ(n) ≤ 2n−1 − max
f∈C(n),i∈I

Ã
22(n−1) − i2#|W ∗f |−1(i)
2n − #|W ∗f |−1(i)

! 1
2

≤ 2n−1 − 2n−1

(2n − max
f∈C(n)

#W ∗−1f (0))
1
2

(7)

Proof. Consider i ∈ I, and f ∈ C(n). If |W ∗f |−1(i) = Fn2 , we must have
|W ∗f |(a) = i for each a ∈ Fn2 , and by Parseval’s relation (4) we must have also
2ni2 = 22(n−1). So, i2 = 2n−2 and this contradicts the hypothesis i ∈ I.
Consequently, |W ∗f |−1(i) Ã Fn2 and the first inequality results of the Propo-

sition 1 applied for k = 1 and i1 = i.
The second inequality results of

max
f∈C(n),i∈I

µ
22(n−1)−i2#|W∗f |−1(i)

2n− #|W∗f |−1(i)

¶ 1
2

≥ max
f∈C(n),i=0

µ
22(n−1)−i2#|W∗f |−1(i)

2n− #|W∗f |−1(i)

¶ 1
2

= max
f∈C(n)

³
22(n−1)

2n− #|W∗f |−1(0)
´ 1
2

=

µ
22(n−1)

2n− max
f∈C(n)

#W∗f
−1(0)

¶ 1
2

It is easy to deduce of Proposition 2 the following properties:

Corollary 4 Let us consider the set I defined by I = [0, 2n−1] − {2n2−1} if n
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even, and I = [0, 2n−1] if n odd.We have the inequalities

ρB(n) ≤ 2n−1 − max
f∈E(n),i∈I

Ã
22(n−1) − i2#|W ∗f |−1(i)
2n − #|W ∗f |−1(i)

! 1
2

≤ 2n−1 − 2n−1

(2n − max
f∈E(n)

#W ∗−1f (0))
1
2

(8)

Proof. The same as Corollary 3.

Remark 5 Since 2n−1

(2n− max
f∈C(n)

#W∗−1f (0))
1
2
≥ 2n2−1 and

2n−1

(2n− max
f∈E(n)

#W∗−1f (0))
1
2
≥ 2n−1

(2n−1) 12
, we have

2n−1 − 2n−1

(2n− max
f∈C(n)

#W∗−1f (0))
1
2
≤ 2n−1 − 2n2−1and

2n−1 − 2n−1

(2n− max
f∈E(n)

#W∗−1f (0))
1
2
≤ 2n−1 − 2n−1

(2n−1) 12
.

4 Upper bounds for ρ(n) and ρB(n)

Theoretical upper bounds on ρ(n) and ρB(n) have been obtained. These bounds
on ρ(n) are better than the well-known value 2n−1 − 2n2−1 but very theoretical
and nonconstructive. Using some additional properties, we can prove now new
upper bounds on ρ(n) and ρB(n) that we hope more usable.
As seen previously, the new bounds of corollaries 3 and 4 are formally iden-

tical for C(n) and E(n). So, in the sequel, we denote A(n) the set C(n) (respec-
tively E(n)), and ρA(n) the integer ρ(n) (respectively ρB(n)) when A(n) = C(n)
(respectively A(n) = E(n)).
Recall that I = [0, 2n−1]− {2n2−1} for even n, and I = [0, 2n−1] for odd n.
From

◦
∪

0≤i≤2n−1
|W ∗f |−1(i) = Fn2 and from Parseval’s relation (4), we have, for

each i ∈ I − {0} and for each f ∈ A(n), #|W ∗f |−1(i) < 2n.
Finally, for f ∈ F , we denote Jf the set defined by

Jf = {i ∈ I − {0}|#|W ∗f |−1(i) < 4i2} (9)

Proposition 6 Let us consider f ∈ A(n) for n ≥ 3. If Jf Ã I − {0}, there
exists at least one integer i ∈ I − Jf , i 6= 0, such that

2n − 2i(#|W ∗f |−1(i))
1
2

2n −#|W ∗f |−1(i)
≥ 1 (10)
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Proof. If this result was false, there would exist at least one fonction f ∈
A(n) such that for each i ∈ I − Jf , i 6= 0, we should have 2n−2i(#|W∗f |−1(i))

1
2

2n−#|W∗f |−1(i) <

1. This last inequality implies #|W ∗f |−1(i) < 4i2 so i ∈ Jf and we see that
I − Jf ⊆ Jf . Then we obtain ∅ = (I − Jf ) ∩ Jf ⊇ (I − Jf ) ∩ (I − Jf ) = I − Jf
and finally I − Jf = ∅ which proves the assertion.

Remark 7 For f ∈ A(n), consider an integer i ∈ I − Jf , i 6= 0. The definition
(9) of Jf implies 2n > #|W ∗f |−1(i) ≥ 4i2 and consequently 0 < i < 2

n
2−1.

Consider the case A(n) = C(n) for even n. For i ∈ I−{0} and f ∈ A(n), we
have |W ∗f |−1(i) = ∅ (|W ∗f (a)| = 2

n
2−1 for each a ∈ Fn2 ) and then #|W ∗f |−1(i) =

0 < 4i2, so i ∈ Jf and finally Jf = I − {0}.
Consequently, we see that the hypothesis of the Proposition 6, in the case

A(n) = C(n) with n even, is not satisfied. Is it also true for A(n) = E(n) or
when n is odd ? We give below two functions for n = 6 and A(n) = E(n) where
the two possible cases are realised. The tables below represent the elements

f(0).......f(31)

f(32).....f(63)

Case Jf Ã I − {0} :
The balanced function f ∈ E(6) defined by

00001001011101111011010111000101

11011100011011011000100000011001

is such that W ∗−1f (0) = {0, 13, 18, 31, 36, 41, 54, 59} and #W ∗f −1(0) = 8,

#|W ∗f |−1(2) = 16, #|W ∗f |−1(4) = 24, #|W ∗f |−1(6) = 16, so 2 /∈ Jf because
#|W ∗f |−1(2) ≥ 4× 22.

Case Jf = I − {0} :
The balanced function f ∈ E(6) defined by

01100001011101111000111101011001

11100111101000110110010000000001

is such that
W ∗−1f (0) = {0, 12, 14, 15, 23, 26, 34, 47, 53, 57, 58, 59} and #W ∗f −1(0) = 12,

#|W ∗f |−1(2) = 14, #|W ∗f |−1(4) = 20, #|W ∗f |−1(6) = 18.
From this, we can suppose that generally, except for n even andA(n) = C(n),

the two cases Jf Ã I − {0} and Jf = I − {0} are possible for certain functions
f ∈ A(n).

Now, we have all the necessery elements to prove our principal result.
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Theorem 8 Let us consider f ∈ A(n) for n ≥ 3.
If Jf Ã I − {0}, there exists at least one integer i ∈ I − Jf verifying 0 < i <

2
n
2−1 and #|W ∗f |−1(i) ≥ 4i2, such that

ρA(n) ≤ 2n−1 −
·
2n−2 +

i

2

¡
#|W ∗f |−1(i)

¢ 1
2

¸ 1
2

(11)

If Jf = I − {0}, we have

ρA(n) ≤ 2n−1 − max
0≤i<2n2 −1

Ã
22(n−1) − 4i4

2n −#|W ∗f |−1(i)

! 1
2

(12)

Proof. From Proposition 6, if Jf Ã I − {0} for f ∈ A(n), n ≥ 3, there
exists at least one integer i ∈ I − Jf , i 6= 0 verifying (10). We have seen in the
Remark 7 that 0 < i < 2

n
2−1 and #|W ∗f |−1(i) ≥ 4i2. Rewriting the inequalities

of Corollaries 3 and 4, we obtain

ρA(n) ≤ 2n−1 − max
g∈A(n),j∈I

Ã
22(n−1) − j2#|W ∗g |−1(j)
2n − #|W ∗g |−1(j)

! 1
2

.

So, for g = f and j = i ∈ I − Jf , i 6= 0, the above inequality

ρA(n) ≤ 2n−1 −
Ã
22(n−1) − i2#|W ∗f |−1(i)
2n − #|W ∗f |−1(i)

! 1
2

is valid. On the other hand, if we denote Bi = #|W ∗f |−1(i), we have also

22(n−1) − i2Bi
2n −Bi =

1

4

22n − 4i2Bi
2n −Bi

=
1

4

³
2n − 2iB 1

2
i

´³
2n + 2iB

1
2
i

´
2n −Bi .

From Proposition (6), the integers i and Bi are such that

µ
2n−2iB

1
2
i

¶
2n−Bi

≥ 1,
and thus

22(n−1) − i2Bi
2n −Bi ≥ 1

4

³
2n + 2iB

1
2
i

´
= 2n−2 +

i

2
B

1
2
i .

Using the inequality ρA(n) ≤ 2n−1 −
³
22(n−1)−i2Bi

2n− Bi

´ 1
2

we obtain the first result.
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Now, suppose Jf = I − {0}. From definition (9), we have Bi < 4i2 for each
i ∈ I − {0} or equivalently for each i ∈ [1, 2n2−1[. From Corollaries 3 and 4,

ρA(n) ≤ 2n−1 −max
i∈I

µ
22(n−1) − i2Bi
2n −Bi

¶ 1
2

=

2n−1 −max { max
i∈I−{0}

µ
22(n−1) − i2Bi
2n −Bi

¶ 1
2

,µ
22(n−1)

2n −B0

¶ 1
2

}.

Bi < 4i
2 for each i ∈ I − {0} implies 22(n−1) − i2Bi > 22(n−1) − 4i4 and finally

ρA(n) ≤ 2n−1 − max
0≤i<2n2 −1

µ
22(n−1) − 4i4
2n −Bi

¶ 1
2

for each n ≥ 3.
From this, we deduce immediately a classification of different possible cases.

Corollary 9 Let us consider f ∈ E(n) (resp. C(n)) for even n ≥ 6, or odd
n ≥ 5 (resp. odd n ≥ 3).
* If Jf Ã I − {0}, there exists at least one even (resp. arbitrary) integer i

verifying 1 ≤ i < 2n2−1 and #|W ∗f |−1(i) ≥ 4i2, such that ρB(n) (resp. ρ(n))

≤ 2n−1 −
·
2n−2 +

i

2

¡
#|W ∗f |−1(i)

¢ 1
2

¸ 1
2

≤ 2n−1 − (2n−2 + i2) 12 (13)

* If Jf = I − {0}, we have the following two cases:
- If there exits at least one even (resp. arbitrary) integer j ∈

[1, 2
n
2−1[ such that

2n −#|W ∗f |−1(j)
2n −#W ∗f −1(0)

< 1− j4

22n−4
(14)

then

ρB(n) (resp. ρ(n)) ≤ 2n−1 −
Ã

22n−2 − 4j4
2n −#|W ∗f |−1(j)

! 1
2

< 2n−1 − 2n−1

(2n −#W ∗f −1(0))
1
2

(15)

- If not,

ρB(n) (resp. ρ(n)) ≤ 2n−1 −
2n−1³

2n −#W ∗f −1(0)
´ 1
2

(16)
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Proof. Let be f ∈ E(n), n ≥ 6 even or n ≥ 5 odd, and suppose Jf Ã I−{0}.
From Theorem 8 with A(n) = E(n), we have

ρB(n) ≤ 2n−1 −
·
2n−2 +

i

2

¡
#|W ∗f |−1(i)

¢ 1
2

¸ 1
2

for a certain integer i verifying 0 < i < 2
n
2−1 and #|W ∗f |−1(i) ≥ 4i2.This proves

the first inequality.
Using now the balancedness of f , we haveW ∗f (0) = 0, and consequently, it’s

easy to prove that W ∗f (a) is necessary even for each a ∈ Fn2 . On the other hand,
the integer i is such that #|W ∗f |−1(i) ≥ 4i2 > 0 and therefore i is necessary
even because the precedent property implies #|W ∗f |−1(j) = 0 for each odd j.
Let us consider the case Jf = I − {0} and suppose verified the condition

(14) for an integer j ∈ [1, 2n2−1[. This condition is equivalent to the inequality
22n−2 − 4j4

2n −#|W ∗f |−1(j)
>

22n−2

2n −#W ∗f −1(0)
.

Therefore,

max
0≤i<2n2−1

Ã
22(n−1) − 4i4

2n −#|W ∗f |−1(i)

! 1
2

≥
Ã

22n−2 − 4j4
2n −#|W ∗f |−1(j)

! 1
2

>
2n−1

(2n −#W ∗f −1(0))
1
2

and combining these inequalities with the inequality (12) of Theorem 8, we
obtain the result (15).
Now, if we have (14) false for each j ∈ [1, 2n2−1[, as seen previously this

property is equivalent to

22n−2 − 4j4
2n −#|W ∗f |−1(j)

≤ 22n−2

2n −#W ∗f −1(0)
,

and (16) is again the consequence of the inequality (12) of Theorem (8).
The proof of case f ∈ C(n) is the same as previously.

Corollary 10 Let be f ∈ E(n) for n ≥ 5.
If Jf Ã I − {0} (resp. Jf = I − {0}) , we denote

rn = 2
n−1−

·
2n−2 + i

2

³
#|W ∗f |−1(i)

´ 1
2

¸ 1
2

(resp. rn = 2n−1− 2n−1

(2n−#W∗f −1(0))
1
2
).

For even n ≥ 6 (resp. odd n ≥ 5), let be bB(n) = brnc − (brncmod2). We
have ρB(n) ≤ bB(n) ≤ 2n−1−2

n
2−1−2 (resp. ρB(n) ≤ bB(n) ≤ b2n−1−2

n
2−1c).

Proof. Suppose even n ≥ 6 and Jf Ã I − {0} (resp. Jf = I − {0}).
From Corollary 9 there exists an even integer i ∈ [1, 2

n
2−1[ (resp. j) with
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#|W ∗f |−1(i) ≥ 4i2 such that ρB(n) ≤ rn. Because i
2 (#|W ∗f |−1(i))

1
2 > 0 (resp.

2n−2#W ∗f
−1(0) > 0 if n > 2), these conditions imply r(n) < 2n−1 − 2n2−1 and

therefore ρB(n) ≤ brnc ≤ 2n−1−2
n
2−1−1. But ρB(n), as 2n−1−2

n
2−1 for n ≥ 4,

is always even, so ρB(n) ≤ brnc− (brncmod2) ≤ 2n−1 − 2
n
2−1 − 2.

For odd n ≥ 5, we have also ρB(n) ≤ r(n) < 2n−1 − 2
n
2−1, but here 2n−1 −

2
n
2−1 is not integer but just a real positive number. Consequently ρB(n) ≤
brnc ≤ b2n−1 − 2n2−1c and the Corollary is proved.

We have the following similar result for ρ(n).

Corollary 11 Let be f ∈ C(n) for odd n ≥ 3.
If Jf Ã I − {0} (resp. Jf = I − {0}) , we denote

rn = 2
n−1−

·
2n−2 + i

2

³
#|W ∗f |−1(i)

´ 1
2

¸ 1
2

(resp. rn = 2n−1− 2n−1

(2n−#W∗f −1(0))
1
2
).

Let be b(n) = brnc− (brncmod2). We have ρ(n) ≤ b(n) ≤ b2n−1 − 2n2−1c.
Proof. The same as Corollary 10.

5 Conclusion
We have obtained theoretical upper bounds (7),(8) on ρ(n) and ρB(n). Except
the already known ρ(n) for even n, theses bounds minorate the H.K.M. bound.
In the case where exists f ∈ C(n) or f ∈ E(n), according to Jf Ã I − {0} or
Jf = I − {0}, new upper bounds b(n), bB(n) deduced from(13), (15) and (16)
have been derived. Although b(n) and bB(n) be actually only theoretical, they
improve the H.K.M. bound. So, in a further work, one may ask how to deduce
from Corollary 9 more explicit results on these new bounds.
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