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Abstract. We prove a new sufficient condition for a Boolean function to
be extremal balanced or maximally nonlinear, in odd or even dimension. Under
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1 Introduction

This paper investigates the covering radius and the balanced covering radius
for Boolean functions. From Rothaus [8], the covering radius is known in even
dimension. The exact value of balanced covering radius is unknown in both
even or odd dimension except a finite number of small dimensions, but it has
been previously studied by Dobbertin [3] and Seberry, Zhang, Zheng [9] where
a lower bound, which is the best achieved so far, was derived.

This problem is known to be difficult, and any new approach to it potentially
brings the problem closer to its solution. In this respect, we present a new
condition for the study of maximally nonlinear Boolean functions. The condition
takes two forms (P) and (Q) depending on whether the functions are balanced
or not, respectively. In particular, in even dimension this condition gives a new
characterization of bent functions.

However, for the balanced functions in even dimension and for the maximally
nonlinear functions in odd dimension, the condition is generally only sufficient
and we prove that it is only verified in low dimensions. Under this condition, we
compute the values of the covering and balanced covering radii. We finish with



an application to even weights Boolean functions in which we link the distance
to the affine functions set with the degree of the algebraic normal form of these
functions.

Our approach is based on the study of the kernel of the Walsh spectrum.
In Carlet [1], the size of this kernel was previously shown to be relevant in the
context of partially-bent functions. It is interesting to see that it comes up again
in the context of our paper.

2 Basic Definitions and Notation

In this document, the finite field (Z/2Z, +,.) with his addititive and multiplica-
tive laws will be denoted by F5 and the Fo— algebra of Boolean functions in n
variables will be denoted by F(F%,Fs).

For f € F(F3,Fs) and a € Fy, recall that the set f~1(a) is defined by
fHa) = {u e F3| f(u) = a}.

We will use #F to denote the number of elements of the set F. A function
f € F(F5,Fy) is said balanced if #f~1(0) = #f~1(1) = 27~ 1. The Hamming
distance between f and g € F(F%, Fy) defined by #(f +g) (1) will be denoted
by d(f, g).

W¢(a) is the Walsh spectrum of f € F(F3,F2) to a point

a = (ag, ..., an—1) € Fy defined by Wy (a Z fla y<asa>, (1)
TEFY

In this formula, the sum is calculated in Z, and
<a,r >=agro+ ...+ Apn—1Tp—1

is the scalar product on F%. The knowledge of the spectrum (Wf(a))ang is
equivalent to the knowledge of f by the following inversion theorem valid for
each z € F3

—9n Z Wf <a x> (2)

acFy

Walsh and Fourier spectrums are equivalent since we have the following
passage formula

A
2(2"7165 — Wy(a)) = f(a) (3)
valid for each a € F%,in which 6° is the Kronecker’s symbol
In the sequel, we will use the notation W7 (a) = 2"~'65 — Wy(a).
Each f € F(Fy, Fy) verifies the Parseval’s relation Y (Wj(a))* = 22(n=1)
aeF’ll
|z| denotes the absolute value of the real number z, and [z] the integer

min {n € N| n > z} for  positive real number.
For each integer i € [0, 2"7'], we will have to consider the sets |[W|~' (i)

defined by [WF|~'(i) = {a € F3| [W}(a)| = i}.



The affine function f € F(F%,Fq)defined by f(z) =< a,z > +\, with
o,z € Fy and A € Fy, will be denoted by I, + .

The distance defined by eFmi}\leF d(f,la + X) between f € F(Fy,Fy) and
[0} S’, 2

the affine functions set, will be denoted by 6(f).
It is easy to prove that §(f) = 2"~ — max |W#(a)|. Thus when f is balanced
acFy
§(fl=2""1— m W .
() wemx  Wi(a)]

The integer  max _ 6(f) will be denoted by p(n). In theory of Error-
fEF(F},F2)

Correcting codes [6], p(n)is called the covering radius of the first Reed-Muller
code of length 2.
A function f will be called maximally nonlinear if 6(f) = p(n).

The int 6 ill be denoted b, d will b
e integer fET(Fg,FI‘I;ﬁ); N (f) will be denoted by pg(n)and will be

called the balanced covering radius in dimension n.

Of course, we have pg(n) < p(n). A balanced function f € F(F%, Fy) will
be called extremal if §(f) = pg(n). The subset of F(F%,Fy) containing all the
the maximally nonlinear (resp. extremal balanced) functions will be denoted by

C(n) (resp. E(n)).

3 A Sufficient Condition for Maximally Nonlin-
earity and Extremality

3.1 The case of extremal balanced functions
Theorem 1 Let g€ F(F5,F2) be a balanced function such that

*|—1/on—1 n *—1
AW @ o) 2 2 s g0 ()

Then g€ E(n).

Proof. Consider a balanced function g € F(F%,F2) which verifies the
condition (P).
If a € [Wi~1 (27" = §(g)),we have [W;(a)] = 2"~' = 6(g) # 0,and thus
|VV;|’1(2"’1 —0(g9)) CFy =Wy ~1(0). This implies the inequality
2" — #WyH0) = #W, 72"~ 6(9)) (4)
On the other hand, the Parseval’s identity implies for each f, g € F(F%,F5)
2o YW@= Y (e
ag Wy ~*(0) bgW; =1 (0)

Now, we choose f € E(n) such that

#W;TH0) = max #W;™(0) (5)



If we denote p = 2" — #Wy ~'(0) and ¢ = 2" — #W; ~1(0), (P), (4) and (5)
imply g < p. Therefore for each indexation of p elements of Fy — Wy ~1(0) and
q elements of Fj — W7 ~1(0), we have from Parseval’s relation

P q
> Wy (ar)? = (Wf (b))

k=1 k=1

which implies successively

D olWy (@)? = (Wi (b)) + (Wy (ax))* =0

k=1 k=q+1

DOIWE 00 = (W (ar)’] = D (Wy (ar))? =0 (6)
k=1 k=q+1

q
(when p = g, > [(WF (bx))* — (Wy (ax))?] = 0). We also remark that the

choice of f verifying (5), together with the inequality (P), implies the following
property:
#IW, 712" = 8(9) 2 ¢ (7)

Now, we choose the indexation of p elements of F5 — W ~*(0) by decreasing
values of [W(ax)|. So from (6) we have at least one mteger k* € [1,q] such that
(W7 (bx+))? = (Wy (ax))? > 0.

Then it follows from (7) that for any k € [1,q], [W; (ax)| = 2"~ — 6(g). For
k=k Wi = [Wg(ag=)| = 27 L — §(g) and we obtain the following
three properties:

n—1 _ * < = * *
2 max (Wi @) < W5 (bk-)
2" — (Wi (o)l < 6(9)
2"~ _ max Wi ()| = 6(f) =pp(n) since f is extremal balanced

beFy

These properties imply pg(n) < §(g), and thus since g is balanced,

pp(n) = 6(g). Finally g is balanced with 6(g) = pg(n), therefore g € E(n).
]

At section 3, we will see that there exists functions verifying (P). From
Theorem 1, we can deduce the following Corollary:

Corollary 2 If there exists a balanced function g verifying (P), then

W* —1 2n—1 _ > 9n W*—l 0).
#Wgl( pp(n)) = f?ﬁé)# ;(0)

Proof. Obvious. ®m



3.2 The case of maximally nonlinear functions

Now, consider a function g € F(F}, F3) which verifies the new condition

W* —1 277,71 o 5 > 2n o W*—l
#IWg |~ ( (9)) Jnax # (0)
Then we observe that the proof of Theorem 1, suitably adjusted, is valid when
replacing E(n) by C(n). We get:

Theorem 3 Let g€ F(F3,F2) be a function such that

W@~ 8l)) = 2" — max #W;(0) Q

Then ge C(n).
Proof. The same as Theorem 1. m

As seen previously at Corollary 2, we have the following result:
Corollary 4 If there exists a function g verifying (Q), then

#IWG 112" = p(n) > 2" — max #W;H0).

Proof. Obvious. m

Remark that these results are independant of the hypothesis on n to be odd
or even.
We also have the following result:

Corollary 5 If there exists a function g € F(¥FY,Fs) such that

oan _ 1> W*—l 2n—1_5 >2n_ W*fl
= #W 7 ( (9)) [max # (0),

then p(n) = pp(n).

Proof. We know that g verifies (Q) and therefore we have
* —1 *|—1 —1

Jmax # Wy (0) =27 — #[Wg [~ (2" - 6(9))-

But g also verifies the condition 2" — #[Wy|~'(2"~" = 6(g)) > 1, then
fmax #W; ~1(0) > 1. Thus there exists one function f € C(n) at least such

eC

that W;i (0) # @.

Therefore, let a be an element in F3 such that Wy (a) = 0. Then it is easy to
prove that the function f+1, is balanced and such that 6(f +1,) = 6(f) = p(n).
Thus this function is balanced and maximally nonlinear and we have proved the

result. m

Our aim is now to use these results to compute pz(n) and p(n) under (P) and
(Q) hypothesis, respectively. But before, we give some examples of functions
which verify these (P) and (Q) conditions.



3.3 Some examples of functions
3.3.1 For even n :

When n is even, bent functions [6, 8] are defined as boolean functions f having
uniform Walsh spectrum W7 (a)| = 221 for each a € F4. Then it is easy to
see that f is bent if and only if f is maximally nonlinear.

We have seen, from Theorem 3, that if a function verifies (Q), this function
is maximally nonlinear. We have the following converse result:

Corollary 6 If n> 2 is even, g€ F(F3,Fs) is bent if and only if g verifies (Q).

Proof. From Theorem 3, when g verifies (Q) g is maximally nonlinear (for
even or odd n) and in particular bent for even n.

Now, let g be a bent function. In this case, we know that his Walsh spectrum
is such that [W;(a)| = 2% ~'for each a € Fj. So we have §(g) = 2"~ — 251
and #|W; |21 - 8(f)) = #IWg| (281 = 2

On the other hand, we also have frencf}(x) #W; ~1(0) = 0 since for even n > 2,

Wi(a)| = 2571 £ 0 for each a € F¥ and each f € C(n). Then we obtain
#Wr~H@2 ! = 6(g) = 2" = 2" — max)#Wf ~1(0) which proves that g

feCn
verifies (Q). ®

3.3.2 For odd n :

Using classical constuctions of bent functions in even dimension, for instance
Maiorana-MacFarland functions [2, 5], we are able to construct two bent func-
tions

g1, 92 € F(F5~1 Fy)such that W5 (0) = =W, (0) = 2" 1. Let us con-
sider the new function g € F(F4,F3) defined by

9(x1, ey ) = Tpg1(z1, ., Xn1) + (Tn + 1)g2(z1, ..., 2n—1). Then we have
the following properties for g:

g is balanced, [W; (a)] = 0 or 27 for each a € Fy, #W;~1(0) = 21,

8(g) = 2771 — 277 W71 (2" — 6(g)) = 2" 1. Moreover, it is known
from [5] that p(3) =2 =231 —2°% p(5) =12 =2°"1 — 2"

p(7) =56 =271 —27%, and thus the functions g for n = 3,5, 7 are extremal
balanced.

For these three values of n, since g € E(n) we have

Wi=10) > #W~1(0) = 2"~ ! and finall
max #W; (0) = #Wy~(0) and finally
2"~ max #W;H0) < #Wg 12t = 6(g) =21
Therefore, when n = 3,5, 7 these functions g verify (P).

4 p(n) and pz(n) Computations



Theorem 7 If there exists a balanced (resp. any) function geF (Fy, Fa) veri-

fying (P) (resp. (Q)), we have

2n71
pp(n) = 2"7' - e (8)
2 — wr 2
(2" — maz #W; = (0 )7
2n71
(resp. p(n) = 2"7' - 1) (9)
(2n - fggt(rgl)#Wf (0))2
Proof. Let f be a function in F(F4,Fy). The Parseval’s relation
¢W;1(0)(W;(a))2 = 22=1) implies the existence of a ¢ w; ()
Wy
« 2(n—1) n—1
such that (Wf(CI)) = m, SO |Wf( )| > m
We have §(f) =271 — ggvr;l*a*}{l(o) Wi(a)| < PACEE m
a f f
If we choose f € E(n) (resp. f € C(n)), we see that
n—1
pB(n) S 2n_1 — m for each f S E( )
. < 9gn—1 _ 2! '
(resp. p(n) <2 R for each f € C(n))
From this, one can deduce the first inequality
2n71
n) < min |27 —
ool )‘few( (20 — #WF (0 )ﬁ)
e gn— 1
Sl CT— T (0
resm”
2n71
resp. p(n) < min | 2" —
e feC(n)< @' —#W; (0 ))%>
e gn— 1
=2 (2" — max #W*_I(O))%) (11)
feC(n)

We now suppose the existence of g € F(F%,Fs), balanced (resp. any) func-
tion verifying (P):

#IWG 112"~ 6(g)) > 2" — max #W7H(0).

feE(n)
(resp. (Q):#|Wy 12" = 6(g9)) > 2" — max #W ~1(0))
This function g satisfies
2" —6(g)
20 = S W@y = Y #WT )
acFy i=1
> (2" = 8(9))2 #W, 712" - 8(9)) (12)



and from theorem 1(resp. theorem 3), g is such that 6(g) = pg(n) (resp.
8(g) = p(n)). So we obtain 22"~V > (2"~ — pp(n))* #|Wy |~ (2" — pp(n))

(resp. 22" 1) > (2771 — p(n))* #[Wy| 1 (2" = p(n)) ).

As (P) (resp. (Q)) is verified, the Corollary 2 (resp. Corollary 4) applied to
the above inequality implies

2200 > (27— ()2 (2" — e 47 (0))

fEE(n)
(resp. 2271 > (2771 — p(n))? (2" — max #W}1(0)).
feC(n)
Thus we get
271,—1 > 2n—1 _ on _ W*_l 0 %
> ( p(n)) ( fgl;g)# 7 (0)
(resp. 2"~ > (2" — p(n)) (2" — max #W; '(0))?)
feC(n)
and finally
() > 2! i (13)
pp(n) >2""" — — - 13
on — 3
( frengggl)#Wf (0))
2n—1
res >on—t = ). 14
(resp. p(n) @ — max #W**l( 5t ) (14)

feC(n)

Combining the inequalities (10) and (13) (resp. (11) and (14)), we have
proved the theorem. m

Remark 8 When n is even, from corollary 6, we recover the well-known value
p(n) =271 — 231 because #W;_l(()) =0 for any fe C(n).

5 Consequences for Balanced and Maximally Non-
linear Functions

Proposition 9 For any odd integer n > 1, we have

w*=10) < 2" ! and w* L) < 2n 1, 15
gren]g(ﬁ)# , (0)< an gléngﬁ)# , (0)< (15)

Proof. Suppose there exists a balanced function f € F(F%,F3) such that
the absolute value of his Walsh spectrum is constant on his support:
Jee N—{0},Ya ¢ W;~1(0), [Wj(a)| =c.
Then any function g € E(n) is such that §(g) > 6(f) = 2"~! — ¢,and thus
max W (a)| < c
agWg = (0)
By the Parseval’s relation we also have



2
22=D = S (Wi(a)” < (2" — #W;r~H(0) ¢,
agWy ~1(0)
22(7171)
2n Wy 1 (0)”
On the other hand, the same Parseval’s relation on f implies the existence

2
* * —1 . * (% 92(n—1)
of a* ¢ W;~(0) such that (Wf (a )) < AT and the hypothesis on
2
f implies (W}‘(a*)) =%

These properties give us the inequalities

then ¢ >

22(7171)

21 —#Wg ~H(0)
that imply #W;~1(0) < #W; ~(0) for any g € E(n).
If we denote

A(n) ={f € F(F%,F3)| f balanced and

Jee N—{0},Ya ¢ W;~1(0), [Wj(a)| = ¢},
the above result implies #W,; ~1(0) < fn114i? )#W? ~1(0) for each g € E(n),
€EA(n ‘

and thus

2(n—1)
<A< 2
=7 T 23w )

W*=1(0) < min #W: 10 16
gren%)# p ()_fg%)# ;(0) (16)

Therefore, if A(n) # @, each f € A(n) verifies
(2" — #W; 71(0)) ¢? = 22("=1) Tn that case, there exists an integer 4 which
verifies the following two conditions

=2 (17)
2" — #WrTH0) = 22D (18)

It follows from (17) thati is even, and from (18 ) that
#W}‘_l(O) =27 — 22(n=D=1 5 ( since 0 € Wi ~1(0) (f is balanced). Thus
we have ¢ > n — 1 and, if there exists a function f € A(n)such that ¢ = 2"
we see that fnzil(a )#VVJ}k ~1(0) equals #W; ~1(0) = 27 — 22(»=1D~i calculated for
€A(n

i=n— 1. So n is necessarily odd.

But as seen at § 2.3.2, we are able to construct such functions f € A(n) when
nis odd: the functions f(x1,...,2n) = Tpf1(x1, .o, Tn_1)H@n+1) fo(@1, .oy Tn_1),
with fy, f» € F(F3 ", F3) bent functions and W}, (0) = W7}, (0) = 2% 1, are
clements of A(n) with ¢ = 27", so A(n) # @ when n is odd.

We deduce from this that fénAi? )#W; ~1(0) =[2n — 22(n=D)=i],_ | = on-1

for odd n. It implies from (16 ) the first inequality proof

w* 1) < 2n L 19
ggl}%)# . (0) < (19)

Now, considerer the set

B(n) = {f € F(F},Fy)|3c € N—{0},Va ¢ W;(0), (Wi (a)] = c}.

B(n) is never empty since, if n even C'(n) C B(n),and if n odd A(n) C B(n).
So let’s f € B(n).



For any function g € C(n) we have 6(g) > 6(f) = 2"~! — ¢ and thus
max |W7 (a)| < c. Therefore, we have
)

agwy ~(0
2D =Y (Wia) < (20 - #WrH0) &
agwy ='(0) ‘
so ¢2 > 22 )

= 2n—gwy TN 0)
The same Parseval’s relation on f implies the existence of a* ¢ W; —10)
2
. « « 22(71,71)
such that (Wf (a )) S oW T
W (a* 2 _ 2 Th 2 < 22(n—1)
( ila )) = ¢ Then ¢* < o=,
22(71,71) ) 22(7171)
w0 = ¢ S Tgw o)

#W;—l(o) < H#W; ~1(0) for any g € C(n). so we have

and from the hypothesis on f,

and therefore

which implies

W*=1(0) < min #W: (0 20
oyt Wy O < e #Wr O 2

But, for each f € B(n), we have (2” — #W; _1(0)) 2 = 2201 which

implies the existence of an integer 7 such that

=2 (21)
2" — #W;H(0) = 2D (22)

It follows from (21) that 4 is even, and from (22) that

#W;~1(0) = 2m — 22("=D=1 > 0. This implies i > n — 2.

The three conditions n is odd, ¢ is even and ¢ > n — 2, imply ¢ > n — 1, and
A(n) C B(n) with A(n) # @ implies also i = n — 1.

Therefore, from (20) we obtain

mda(x)#Wq* “1(0) < [27—22(»=D=,_, ; = 2" ! and the second inequality
gelC(n b

is proved. m

Corollary 10 For odd n> 1,
if (P) truefor g € E(n), then #|[W; 712" — pg(n)) > 2",
If (P) false, we have max #W}‘_l(()) < 2n-L,
feE(n)

If (Q) true for g € C(n), then #|W; |~ (2" — p(n))| > 2.
If (Q) false, we have fm(?f‘)#w}kfl(o) < gn—1
cC(n

Proof. From Corollary 2 (resp. Corollary 4), if (P) (resp. (Q)) true for g

balanced, we have #H/Vé;k |=1(2n1 — pp(n)) > 2" — fgl]g(};)#w}k —1(0)

(resp. #|W* =127 ' —p(n)) > 2" — max #W}; *(0)). On the other hand,
g recm” Y

since n is odd, from Proposition 9 we have fmagc)#W; —10) <2nt
€E(n

10



(resp. max #W7 ~1(0) < 27! and the results are proved when (P) (re-
fec)

spectively (Q)) is true. Now, if (P) (resp. (Q)) is false, there exists no balanced
function g (resp. no function g) such that

W ~t(@2nt - 6(g)) > 2" — w0

Wy 1= (9)) > fgl]g(ﬁ)# 7 (0)

resp. #|W* 71271 — §(g)) > 2" — max #W;H(0) ).
(resp. W [ (21 = 8(9) 2 2" — max #W;74(0))
So for any balanced function g (resp. any function g) we have

wW*|—1@n-1—-¢ < 2" — max #W: Y0
WG 7@ = 8(g) < 2"~ max #W](0)

o * |—1l(on—1 _ n __ * —1 .
(resp. Wy |~H(2 6(g9)) <2 flglca()fz)#wf (0)). In particular when

n is odd, we can use g balanced such that §(g) = 2"~ ! — 2”7 and
#Wr |12 “37) = 271 (generalized functions of A(n)). Therefore
* * | — n—1 _
Wy 17 = 6(9)) = 75 |5 = 27 < 20— e 417 10)
(resp. #[Wy |71(2" ' =6(g)) = #|W; | (2°7 ) = 277" < 27— max #W;'(0))
and the corollary is proved. m

fec(n)

Corollary 11 If there exists a balanced function g€ F(F5, Fq) verifying (P),
we have

for even n, pg(n) =271 — 2% and ernEaicl #W; o) =2"1 4272

dd n, =9n=1 2" gnd Wr=(0) = 2n1.
for odd n, pg(n) and max W '(0)

Proof. Consider g balanced verifying (P). From Theorems 1 and 7 we have

8(g) = —gn=1 2 d th
(9) = pp(n) T Ty d and thus
92(n—1) _ <2n - mea(X)#W; 1(0)> (2"~1— pp(n))?. Therefore, there exists
clk(n

an integer j such that

(207 = pg(n))? =2

2" — max #W*_l( ) = 22(n=1)=J
feE

Then j is even and fmggc)#W*fl(O) = 2" — 22(n=1)=J € ]0,2"] since the
ceE(n

balancedness of each f € F(n) implies 0 € W7 *(0) and f not everywhere
equal to zero. So we have j €ln —2,2(n — 1)], and finally j € [n — 1,2(n — 1)].
Therefore, pg(n) = 2”1 — 2% for an even integer j € [n —1,2(n — 1)].We have
the following two cases:

If n is odd, the Proposition 9 implies frenggc)#W; ~1(0) < 27 'and, since

fmg(x #W*_l( ) = 27— 22(»=1)=J for j even, j > n—1, we also obtain j < n—1
€
n—1

and finally j =n — 1. Thusfn?(x)#w* “10)=2""'and py(n) =271 — 277 .
cE(n

11



If n is even, since the integer j > n — 1 such that pg(n) = 2771 — 2% will
be also even, we have necessarily j # n — 1, and then j € [n,2(n — 1)]. Thus we
obtain pg(n) < 277! — 2%, But, as seen at § 2.3.2, for even n we are able to
construct balanced functions f such that [Wj(a)| = 2% for a ¢ Wi ~1(0). Thus
A(n) #£ 2.

The Parseval’s relation applied to functions f € A(n) give us the equality
(2" - #W}"l(o)) (2%)2 = 220171 which implies #W; ~'(0) = 2"~ 42772,
From this we deduce fmj{l )#Wf ~1(0) < 271 + 272 and from (16) we also

c€A(n
obtain mg(x)#W;_l(O) < 271 4 2772 Then 27 — 22(n=D—J < on=1 4 on=2,
gek(n

and therefore j < n. Finally j = n and we see that pg(n) = 2"~! — 2% and

max #W o) =2n — 22 —gn _gn2 —gnml g g2
FEE(n

Corollary 12 If n> 1 is odd, and if there exists a function ge F(F5, Fy)
verifying (Q), we have

= —on=1_ 9" 1nd 1 ()
p(n) = pp(n) and max W (0)

Proof. For this function g, Theorems 3 and 7 imply

5(g) = p(n) =271 — T

(2= max #W;THO)®
s0 22(n—1) — (2" ~ jmex #Wi =0 )> (2nt = p(n))2 and thus we have an

€C(n) !
integer j such that
2"t =p(n)? = 2
2" — max #Wi H0) = 22D
max #W; = (0)

Therefore j is even, fmg(x)#W}k ~1(0) = 27 —22(»=D=J > 0 implies j > n—2,and
eC(n

p(n) = 2n71 — 2%, As n is odd, the two conditions j even and j > n —2
implijn—l.Sop(n)—T‘1—22<2"1—2 Butforoddn we
have construct balanced functions f such that §(f) = 27! — 2" " and thus
pp(n) >2n—1 — 2" Combining these properties, we obtain

271 =2 < py(n) < p(n) <20 =2"F 50 py(n) = p(n) =271 -2,
5 — * — — 9on—1
j=n—1land ﬁnallyféncfﬁcb)#wf 0)=2""1 m

We conclude this section by the two following results:

Corollary 13 For any even integer n, n> 6, and for any balanced function
g€ F(F3,F2) we have

#IWa 712" = 6(g)) < 2" — ,max #WiH0).

In particular, for any g € E(n)
*|—1/on—1 n * —1
WG = o) <2° = max 7 71(0),

12



Proof. From Corollary 11 for even n, we have pg(n) = 2"~1 — 2% if there
exists a balanced function g verifying (P). From [3, 9], if we write n = 25t for
s>1and t > 1 odd, we know that

pate) > 21 = (Y257 -2

Therefore if g verifies (P) we will have

2% < 221*1 F 1)

As this inequality is not verified for n > 6, we obtain the result. m

Therefore, for even n > 6, there exists no balanced functions verifying (P).
When n is odd, we have the following similar result:

Corollary 14 For any odd integer n, n> 15, and for any function g€ F(Fy Fy)
we have

#IWa 712" = 6(g)) < 2" — max #Wi—H0).

In particular, for any g € C(n)

W2~ pln) < 2" = max #W;(0)

Proof. From Corollary 12 for odd n, if there exists g function verifying (Q),
we have p(n) = 271 —2"%". On the other hand, Patterson-Wiedemann [7] have
proved that p(n) > 2"~! — 108.2"= =7 for any odd n > 15 So for odd n > 15,

if there exists a function g verifying (Q), we must have 2“7~ < 108.2" 7, and
we see that this is false. So (Q) is false for odd n > 15, and the corollary is
proved. m

Because (Q) false for odd n > 15, note that the result of the Corollary 10 is
verified.

6 Application to Boolean Functions of Degree
at most n — 1

6.1 Structure of §(f)

Let us consider f € F(F},Fs)as an element of Fao[zy, ..., 2,] and suppose that

d°(f) <m—1. Let l, + A be one of its nearest affine functions. We have (see

section 2) 8(f) = d(f Lo + A) = 271 — [W (a)] with [W} (a)] = max| W a)].
acts

Let us consider the functions family (fo)q.ry defined by
fa = f+ la+a. We will use the following technical lemma:

13



Lemma 15 W;(Q+a) = 2" =Wy, (0) for any Q € F§ — {0}.

Proof. For a € F} and X € Fy, let us consider g = f + 1, + A. If we denote
p = #g (1) the weight of g, we have g~'(1) = {x1,...,x,} for p elements
x; € F3. Then if we introduce the functions 6, defined by é,(y) = 6%, we can
write g = 0gy + .ot 0z, SO f =lo + A+ 0py + oo + bs,-

Moreover, for all a € Fy, a direct calculation proves the formula

Wi(a) = (& + (1) 16g) 2" + (—1)Ai(—1)<a+“’“‘>~ (23)
k=1

Since 8(f) = d(f, lo + A) =d(g+ o + A, lo + A), we also have
6(f) =pand if a =0,

Wp(0) = (L+ (=1)M1e2)2n ! + (—1)Azp:(—1)<w>. (24)
k=1

Then fo=f+lora=ftloa+la=loa+A+06s +...+ 5%.
For each Q # 0, we observe that (24) implies
Wi (0) = Wy (0)Jamq = 2"~ + (=1)* [(=1)<H0> 44 (=1)<Por>].
Thus using (23) with Q = a + « # 0, we finally obtain
Wio(0) =21 = (~D)) [(~1)<45> 4 (—1)<]
=W (Q+a) - 277150 = —Wi(Q+a). =

Theorem 16 Let fe F(F%, Fs) be a nonaffine function such that d°(f) <n—1
for n> 3. There exists an integer my verifying

2

0<my < <22("[d+éf)-|) — 2"+ #W;_I(O) + 1> such that

s(f)y =271 —2lFH 1y, (25)

Proof. Consider again the family (fo)q.rp with fo = f+ lo1q. Since f is
nonaffine we have d°(fq) = d°(f), and functions fq verify 2 < d°(fq) <n —1.
As d°(fa) < n — 1,the theorem of Ax-Katz ([10] pp. 51-52, or [4] pp. 319)
applied to fo implies

2| #f5 1 (0) with b = [Lw — 1, for any Q € F} (26)
d°(fa)

For n > 3, we have b < {%1 —1<n-—1.

As #f51(0) = 27 — Wy, (0), (26) implies 2 | Wy, (0).

So when Wy, (0) # 2771, Wy, (0) — 2"~ will be divisible by 2°. Thus if we
denote 2 = a + a # 0, the Lemma 15 implies

2% | W7 (a) for any a # a such that W7 (a) # 0. (27)

14



2
The Parseval’s identity (W}‘ (a)) = 22~ together with the equality
max Wi (a)| = [W}(a)| implies W} (a)| # 0, and we also have
acts

92(n—1) _ (W}“(a))Q — 92(n—1) _ (2n—1 - 6(f))2

= > (W(a))?.
{agW? ~1(0)]aa}
Using property (27) for any a # a such that W7 (a) # 0, there exists ¢, € Z—{0}

such that Wy (a) = 2bq,. Thus if we denote

g5 = >, a

(28)
{ag W}~ (0)|aza}

we obtain the following equation for 6(f) :

22(71—1) _ (211—1 _ 5(f))2 _ 22be

Since f is nonaffine, we have §(f) > 0,and therefore

1 _[_n__
271 — 8(f)] = (22D —220¢)7 with ¢ < 22(" [#771) which finally
implies

=

S(f) =21 - (22(7171) -~ 22bqf>

—gn-1 _ ol wp] (22("_“"%"D - qf)

=

(29)
with 22("T#01) 5 ¢, > 0.
Moreover, définition (28) also implies
qr > 2" —#W;TH0) -1 (30)

Now, since 2"~ 1(—1)/(®) = ;1 Wi(a)(=1)<**> and o ¢ W} —10),
agW7 —}(0)

we may write at the point = 0,2""1(-1)70 = 20 (3¢, )+ Wi(a) so,

aéW;fl(O),a;éa ’

(X da )|
agéW; ~10), ata

> a |
agWy ~10), aa
On the other hand, it follows from (29) that
1

2

9n=1 _§(f) = 2t (22("_“07_@'%) — qf) , and finally

Wj(a)| =201 = 8(f) = 2 (-1 -

— 2b|2n—b—1(_1)4f(0) _

an | € N.

agWw; ~10), aa

15



Therefore, if we denote

1
n 2 n—| oot~
myg = (22(71{‘10_”)1) - qf) = ‘(_1)“0)2 [d (f)-| - Z da ‘7
a¢W; ~10), aa
and if we use the inequality on ¢y together with (30), we obtain

22("7[#’7—51‘)}) — 2" 4+ 7@£I/VJZk “10)+1 > mfc > 0 and we have proved the
Theorem. m

Corollary 17 For n> 3, let fe F(F3,F3) be a nonaffine function of even
weight #f*(1). Then §(f) verifies (25).

Proof. If we consider f(xy,...,2,) = > iy, T.xin as
i1€{0,1},...,i, €{0,1}
element of Fao[x1,...,x,] , we have

f(a;l,...,a:n)> mod 2. Thus

Ay .. iy =
0<w1<i1,...,0<w, <in

ay...1 = Z f(xlv "'75871/) mod 2 = #fil(l) mod 2.
.’1:1€F2,.“,IT,,GF2

Then #f~1(1) is even if and only if a;. 1 = 0,idem d°(f) <n — 1, and the
Corollary results of Theorem 16. m

6.2 Application to balanced functions

Since #f~1(1) = 2771, all the balanced functions f are of even weights, and we
finish with the following result:

Corollary 18 For odd n, n> 3, if there exists an extremal balanced function of

degree 2, then pg(n) =2""1 — 275,
Proof. Since n is odd, the Proposition 9 implies fmggc)#W; —10) < 2n 1,
cE(n
For any f € E(n), it follows from Theorem 16 that

1

2

0<my< (22("U+<f>1> — 2+ #W5TH0) + 1)

I~

S 22(n*[d_oyéfﬂ) o 2n71 + 1 : .
If there exists f € E(n) with d°(f) = 2, we obtain for this function

deL(f)] = 21 and then 22(717“"7—;”]) —2""1+1=1. Thus my = 1 and the
pp(n) value results of (25). m

7 Conclusion

We have studied a new sufficient condition for maximal nonlinear and extremal
balanced Boolean functions. For even n, this condition characterizes the bent
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functions. For even or odd n, under forms (P) and (Q) of the condition we
have computed pz(n) and p(n), respectively. Later, these values are proved
only valid in low dimensions, so in a subsequent study one may ask how to
generalize (P) and (Q). In high odd or even dimensions, we have deduced some
new inequalities on the size of the Walsh spectrum’s kernel of functions in F(n)
and C(n). In a second part, for even weights functions f, a general form for
6(f) including d°(f) is given.
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