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Abstract. We prove a new sufficient condition for a Boolean function to
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extremal balanced functions. Finally, an application to even weights Boolean
functions is given.
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1 Introduction
This paper investigates the covering radius and the balanced covering radius
for Boolean functions. From Rothaus [8], the covering radius is known in even
dimension. The exact value of balanced covering radius is unknown in both
even or odd dimension except a finite number of small dimensions, but it has
been previously studied by Dobbertin [3] and Seberry, Zhang, Zheng [9] where
a lower bound, which is the best achieved so far, was derived.
This problem is known to be difficult, and any new approach to it potentially

brings the problem closer to its solution. In this respect, we present a new
condition for the study of maximally nonlinear Boolean functions. The condition
takes two forms (P) and (Q) depending on whether the functions are balanced
or not, respectively. In particular, in even dimension this condition gives a new
characterization of bent functions.
However, for the balanced functions in even dimension and for the maximally

nonlinear functions in odd dimension, the condition is generally only sufficient
and we prove that it is only verified in low dimensions. Under this condition, we
compute the values of the covering and balanced covering radii. We finish with
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an application to even weights Boolean functions in which we link the distance
to the affine functions set with the degree of the algebraic normal form of these
functions.
Our approach is based on the study of the kernel of the Walsh spectrum.

In Carlet [1], the size of this kernel was previously shown to be relevant in the
context of partially-bent functions. It is interesting to see that it comes up again
in the context of our paper.

2 Basic Definitions and Notation
In this document, the finite field (Z/2Z,+, .) with his addititive and multiplica-
tive laws will be denoted by F2 and the F2− algebra of Boolean functions in n
variables will be denoted by F(Fn2 ,F2).
For f ∈ F(Fn2 ,F2) and a ∈ F2, recall that the set f−1(a) is defined by

f−1(a) = {u ∈ Fn2 | f(u) = a}.
We will use #E to denote the number of elements of the set E. A function

f ∈ F(Fn2 ,F2) is said balanced if #f−1(0) = #f−1(1) = 2n−1. The Hamming
distance between f and g ∈ F(Fn2 ,F2) defined by #(f+g)−1(1) will be denoted
by d(f, g).
Wf (a) is the Walsh spectrum of f ∈ F(Fn2 ,F2) to a point

a = (a0, ..., an−1) ∈ Fn2 defined by Wf (a) =
X
x∈Fn2

f(x)(−1)<a,x>. (1)

In this formula, the sum is calculated in Z, and

< a, x >= a0x0 + ...+ an−1xn−1

is the scalar product on Fn2 . The knowledge of the spectrum (Wf (a))a∈Fn2 is
equivalent to the knowledge of f by the following inversion theorem valid for
each x ∈ Fn2

f(x) = 2−n
X
a∈Fn2

Wf (a)(−1)<a,x>. (2)

Walsh and Fourier spectrums are equivalent since we have the following
passage formula

2
¡
2n−1δa0 −Wf (a)

¢
=
∧
f(a) (3)

valid for each a ∈ Fn2 , in which δba is the Kronecker’s symbol.
In the sequel, we will use the notation W ∗f (a) = 2

n−1δa0 −Wf (a).

Each f ∈ F(Fn2 ,F2) verifies the Parseval’s relation
P
a∈Fn2

(W ∗f (a))
2 = 22(n−1) .

|x| denotes the absolute value of the real number x, and dxe the integer
min {n ∈ N| n ≥ x} for x positive real number.
For each integer i ∈ [0, 2n−1], we will have to consider the sets |W ∗f |−1(i)

defined by |W ∗f |−1(i) = {a ∈ Fn2 | |W ∗f (a)| = i}.
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The affine function f ∈ F(Fn2 ,F2)defined by f(x) =< α, x > +λ , with
α, x ∈ Fn2 and λ ∈ F2, will be denoted by lα + λ.
The distance defined by min

α∈Fn2 ,λ∈F2
d(f, lα + λ) between f ∈ F(Fn2 ,F2) and

the affine functions set, will be denoted by δ(f).
It is easy to prove that δ(f) = 2n−1−max

a∈Fn2
|W ∗f (a)|. Thus when f is balanced

δ(f) = 2n−1 − max
a∈Fn2−{0}

|Wf (a)|.
The integer max

f∈F(Fn2 ,F2)
δ(f) will be denoted by ρ(n). In theory of Error-

Correcting codes [6], ρ(n) is called the covering radius of the first Reed-Muller
code of length 2n.
A function f will be called maximally nonlinear if δ(f) = ρ(n).
The integer max

f∈F(Fn2 ,F2), f balanced
δ(f) will be denoted by ρB(n) and will be

called the balanced covering radius in dimension n.
Of course, we have ρB(n) ≤ ρ(n). A balanced function f ∈ F(Fn2 ,F2)will

be called extremal if δ(f) = ρB(n). The subset of F(Fn2 ,F2) containing all the
the maximally nonlinear (resp. extremal balanced) functions will be denoted by
C(n) (resp. E(n)).

3 A Sufficient Condition for Maximally Nonlin-
earity and Extremality

3.1 The case of extremal balanced functions

Theorem 1 Let g∈ F(Fn2 ,F2) be a balanced function such that
#|W ∗g |−1(2n−1 − δ(g)) ≥ 2n − max

f∈E(n)
#W ∗−1f (0). (P)

Then g∈ E(n).
Proof. Consider a balanced function g ∈ F(Fn2 ,F2) which verifies the

condition (P).
If a ∈ |W ∗g |−1(2n−1 − δ(g)),we have |W ∗g (a)| = 2n−1 − δ(g) 6= 0 , and thus

|W ∗g |−1(2n−1 − δ(g)) ⊆ Fn2 −W ∗−1g (0). This implies the inequality

2n −#W ∗−1g (0) ≥ #|W ∗g |−1(2n−1 − δ(g)) (4)

On the other hand, the Parseval’s identity implies for each f, g ∈ F(Fn2 ,F2)

22(n−1) =
X

a/∈W∗−1g (0)

(W ∗g (a))
2 =

X
b/∈W∗−1f (0)

(W ∗f (b))
2.

Now, we choose f ∈ E(n) such that
#W ∗−1f (0) = max

h∈E(n)
#W ∗−1h (0) (5)
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If we denote p = 2n−#W ∗−1g (0) and q = 2n−#W ∗−1f (0), (P), (4) and (5)
imply q ≤ p. Therefore for each indexation of p elements of Fn2 −W ∗−1g (0) and
q elements of Fn2 −W ∗−1f (0),we have from Parseval’s relation

pX
k=1

(W ∗g (ak))
2 =

qX
k=1

(W ∗f (bk))
2

which implies successively

qX
k=1

[(W ∗g (ak))
2 − (W ∗f (bk))2] +

pX
k=q+1

(W ∗g (ak))
2 = 0

qX
k=1

[(W ∗f (bk))
2 − (W ∗g (ak))2] =

pX
k=q+1

(W ∗g (ak))
2 ≥ 0 (6)

(when p = q,
qP

k=1

[(W ∗f (bk))
2 − (W ∗g (ak))2] = 0). We also remark that the

choice of f verifying (5), together with the inequality (P), implies the following
property:

#|W ∗g |−1(2n−1 − δ(g)) ≥ q (7)

Now, we choose the indexation of p elements of Fn2 −W ∗−1g (0)by decreasing
values of |W ∗g (ak)|. So from (6) we have at least one integer k∗ ∈ [1, q] such that
(W ∗f (bk∗))

2 − (W ∗g (ak∗))2 ≥ 0.
Then it follows from (7) that for any k ∈ [1, q], |W ∗g (ak)| = 2n−1− δ(g). For

k = k∗, |W ∗f (bk∗)| ≥ |W ∗g (ak∗)| = 2n−1 − δ(g) and we obtain the following
three properties:

2n−1 − max
b∈Fn2

|W ∗f (b)| ≤ 2n−1 − |W ∗f (bk∗)|

2n−1 − |W ∗f (bk∗)| ≤ δ(g)

2n−1 − max
b∈Fn2

|W ∗f (b)| = δ(f) = ρB(n) since f is extremal balanced

These properties imply ρB(n) ≤ δ(g), and thus since g is balanced,
ρB(n) = δ(g). Finally g is balanced with δ(g) = ρB(n), therefore g ∈ E(n).

At section 3, we will see that there exists functions verifying (P). From
Theorem 1, we can deduce the following Corollary:

Corollary 2 If there exists a balanced function g verifying (P), then

#|W ∗g |−1(2n−1 − ρB(n)) ≥ 2n − max
f∈E(n)

#W ∗−1f (0).

Proof. Obvious.
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3.2 The case of maximally nonlinear functions

Now, consider a function g ∈ F(Fn2 ,F2)which verifies the new condition
#|W ∗g |−1(2n−1 − δ(g)) ≥ 2n − max

f∈C(n)
#W ∗−1f (0)

Then we observe that the proof of Theorem 1, suitably adjusted, is valid when
replacing E(n) by C(n). We get:

Theorem 3 Let g∈ F(Fn2 ,F2) be a function such that
#|W ∗g |−1(2n−1 − δ(g)) ≥ 2n − max

f∈C(n)
#W ∗−1f (0). (Q)

Then g∈ C(n).
Proof. The same as Theorem 1.

As seen previously at Corollary 2, we have the following result:

Corollary 4 If there exists a function g verifying (Q), then

#|W ∗g |−1(2n−1 − ρ(n)) ≥ 2n − max
f∈C(n)

#W ∗−1f (0).

Proof. Obvious.

Remark that these results are independant of the hypothesis on n to be odd
or even.
We also have the following result:

Corollary 5 If there exists a function g ∈ F(Fn2 ,F2) such that
2n − 1 ≥ #|W ∗g |−1(2n−1 − δ(g)) ≥ 2n − max

f∈C(n)
#W ∗−1f (0),

then ρ(n) = ρB(n).

Proof. We know that g verifies (Q) and therefore we have
max
f∈C(n)

#W ∗−1f (0) ≥ 2n −#|W ∗g |−1(2n−1 − δ(g)).

But g also verifies the condition 2n − #|W ∗g |−1(2n−1 − δ(g)) ≥ 1, then
max
f∈C(n)

#W ∗−1f (0) ≥ 1. Thus there exists one function f ∈ C(n) at least such
that W ∗−1f (0) 6= ∅.
Therefore, let a be an element in Fn2 such that W

∗
f (a) = 0.Then it is easy to

prove that the function f+ la is balanced and such that δ(f+ la) = δ(f) = ρ(n).
Thus this function is balanced and maximally nonlinear and we have proved the
result.

Our aim is now to use these results to compute ρB(n) and ρ(n) under (P) and
(Q) hypothesis, respectively. But before, we give some examples of functions
which verify these (P) and (Q) conditions.
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3.3 Some examples of functions

3.3.1 For even n :

When n is even, bent functions [6, 8] are defined as boolean functions f having
uniform Walsh spectrum |W ∗f (a)| = 2

n
2−1 for each a ∈ Fn2 . Then it is easy to

see that f is bent if and only if f is maximally nonlinear.
We have seen, from Theorem 3, that if a function verifies (Q), this function

is maximally nonlinear. We have the following converse result:

Corollary 6 If n≥ 2 is even, g∈ F(Fn2 ,F2) is bent if and only if g verifies (Q).

Proof. From Theorem 3, when g verifies (Q) g is maximally nonlinear (for
even or odd n) and in particular bent for even n.
Now, let g be a bent function. In this case, we know that his Walsh spectrum

is such that |W ∗g (a)| = 2
n
2−1for each a ∈ Fn2 . So we have δ(g) = 2n−1 − 2n2−1

and #|W ∗g |−1(2n−1 − δ(f)) = #|W ∗g |−1( 2
n
2−1) = 2n.

On the other hand, we also have max
f∈C(n)

#W ∗−1f (0) = 0 since for even n ≥ 2,
|W ∗f (a)| = 2

n
2−1 6= 0 for each a ∈ Fn2 and each f ∈ C(n). Then we obtain

#|W ∗g |−1(2n−1 − δ(g)) = 2n = 2n − max
f∈C(n)

#W ∗−1f (0) which proves that g

verifies (Q).

3.3.2 For odd n :

Using classical constuctions of bent functions in even dimension, for instance
Maiorana-MacFarland functions [2, 5], we are able to construct two bent func-
tions
g1, g2 ∈ F(Fn−12 ,F2) such that W ∗g1(0) = −W ∗g2(0) = 2

n−1
2 −1. Let us con-

sider the new function g ∈ F(Fn2 ,F2) defined by
g(x1, ..., xn) = xng1(x1, ..., xn−1) + (xn + 1)g2(x1, ..., xn−1). Then we have

the following properties for g:
g is balanced, |W ∗g (a)| = 0 or 2

n−1
2 for each a ∈ Fn2 , #W ∗−1g (0) = 2n−1,

δ(g) = 2n−1 − 2n−12 , #|W ∗g |−1(2n−1 − δ(g)) = 2n−1. Moreover, it is known
from [5] that ρ(3) = 2 = 23−1 − 2 3−12 , ρ(5) = 12 = 25−1 − 2 5−12 ,

ρ(7) = 56 = 27−1−2 7−12 , and thus the functions g for n = 3, 5, 7 are extremal
balanced.
For these three values of n, since g ∈ E(n) we have
max
f∈E(n)

#W ∗−1f (0) ≥ #W ∗−1g (0) = 2n−1 and finally

2n− max
f∈E(n)

#W ∗−1f (0) ≤ #|W ∗g |−1(2n−1 − δ(g)) = 2n−1.

Therefore, when n = 3, 5, 7 these functions g verify (P).

4 ρ(n) and ρB(n) Computations
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Theorem 7 If there exists a balanced (resp. any) function g∈F(Fn2 ,F2) veri-
fying (P) (resp. (Q)), we have

ρB(n) = 2n−1 − 2n−1

(2n − max
f∈E(n)

#W ∗−1f (0))
1
2

. (8)

(resp. ρ(n) = 2n−1 − 2n−1

(2n − max
f∈C(n)

#W ∗−1f (0))
1
2

.) (9)

Proof. Let f be a function in F(Fn2 ,F2). The Parseval’s relationP
a/∈W∗−1f (0)

(W ∗f (a))
2 = 22(n−1) implies the existence of a /∈W ∗−1f (0)

such that (W ∗f (a))
2 ≥ 22(n−1)

2n−#W∗−1f (0)
, so |W ∗f (a)| ≥ 2n−1

(2n−#W∗−1f (0))
1
2
.

We have δ(f) = 2n−1 − max
a/∈W∗−1f (0)

|W ∗f (a)| ≤ 2n−1 − 2n−1

(2n−#W∗−1f (0))
1
2
.

If we choose f ∈ E(n) (resp. f ∈ C(n)), we see that
ρB(n) ≤ 2n−1 − 2n−1

(2n−#W∗−1f (0))
1
2
for each f ∈ E(n)

(resp. ρ(n) ≤ 2n−1 − 2n−1

(2n−#W∗−1f (0))
1
2
for each f ∈ C(n)).

From this, one can deduce the first inequality

ρB(n) ≤ min
f∈E(n)

Ã
2n−1 − 2n−1

(2n −#W ∗−1f (0))
1
2

!

= 2n−1 − 2n−1

(2n − max
f∈E(n)

#W ∗−1f (0))
1
2

. (10)

(resp. ρ(n) ≤ min
f∈C(n)

Ã
2n−1 − 2n−1

(2n −#W ∗−1f (0))
1
2

!

= 2n−1 − 2n−1

(2n − max
f∈C(n)

#W ∗−1f (0))
1
2

). (11)

We now suppose the existence of g ∈ F(Fn2 ,F2), balanced (resp. any) func-
tion verifying (P):

#|W ∗g |−1(2n−1 − δ(g)) ≥ 2n − max
f∈E(n)

#W ∗−1f (0).

(resp. (Q):#|W ∗g |−1(2n−1 − δ(g)) ≥ 2n − max
f∈C(n)

#W ∗−1f (0) )

This function g satisfies

22(n−1) =
X
a∈Fn2

(W ∗g (a))
2 =

2n−1−δ(g)X
i=1

#|W ∗g |−1(i) i2

≥ (2n−1 − δ(g))2#|W ∗g |−1(2n−1 − δ(g)) (12)
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and from theorem 1(resp. theorem 3), g is such that δ(g) = ρB(n) (resp.
δ(g) = ρ(n)). So we obtain 22(n−1) ≥ (2n−1 − ρB(n))

2#|W ∗g |−1(2n−1 − ρB(n))

(resp. 22(n−1) ≥ (2n−1 − ρ(n))2#|W ∗g |−1(2n−1 − ρ(n)) ).
As (P) (resp. (Q)) is verified, the Corollary 2 (resp. Corollary 4) applied to

the above inequality implies

22(n−1) ≥ (2n−1 − ρB(n))
2 (2n − max

f∈E(n)
#W ∗−1f (0))

(resp. 22(n−1) ≥ (2n−1 − ρ(n))2 (2n − max
f∈C(n)

#W ∗−1f (0) ).

Thus we get

2n−1 ≥ (2n−1 − ρB(n)) (2
n − max

f∈E(n)
#W ∗−1f (0))

1
2

(resp. 2n−1 ≥ (2n−1 − ρ(n)) (2n − max
f∈C(n)

#W ∗−1f (0))
1
2 )

and finally

ρB(n) ≥ 2n−1 −
2n−1

(2n − max
f∈E(n)

#W ∗−1f (0))
1
2

(13)

(resp. ρ(n) ≥ 2n−1 − 2n−1

(2n − max
f∈C(n)

#W ∗−1f (0))
1
2

). (14)

Combining the inequalities (10) and (13) (resp. (11) and (14)), we have
proved the theorem.

Remark 8 When n is even, from corollary 6, we recover the well-known value
ρ(n) = 2n−1 − 2n2−1 because #W ∗−1f (0) = 0 for any f∈ C(n).

5 Consequences for Balanced andMaximally Non-
linear Functions

Proposition 9 For any odd integer n ≥ 1, we have
max
g∈E(n)

#W ∗−1g (0) ≤ 2n−1 and max
g∈C(n)

#W ∗−1g (0) ≤ 2n−1. (15)

Proof. Suppose there exists a balanced function f ∈ F(Fn2 ,F2) such that
the absolute value of his Walsh spectrum is constant on his support:
∃ c ∈ N−{0},∀a /∈W ∗−1f (0), |W ∗f (a)| = c.
Then any function g ∈ E(n) is such that δ(g) ≥ δ(f) = 2n−1 − c, and thus
max

a/∈W∗−1g (0)
|W ∗g (a)| ≤ c.

By the Parseval’s relation we also have
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22(n−1) =
P

a/∈W∗−1g (0)

¡
W ∗g (a)

¢2 ≤ ¡2n −#W ∗−1g (0)
¢
c2,

then c2 ≥ 22(n−1)

2n−#W∗−1g (0)
.

On the other hand, the same Parseval’s relation on f implies the existence

of a∗ /∈ W ∗−1f (0) such that
³
W ∗f (a

∗)
´2
≤ 22(n−1)

2n−#W∗−1f (0)
, and the hypothesis on

f implies
³
W ∗f (a

∗)
´2
= c2.

These properties give us the inequalities 22(n−1)

2n−#W∗−1g (0)
≤ c2 ≤ 22(n−1)

2n−#W∗−1f (0)

that imply #W ∗−1g (0) ≤ #W ∗−1f (0) for any g ∈ E(n).
If we denote
A(n) = {f ∈ F(Fn2 ,F2)| f balanced and

∃ c ∈ N−{0},∀a /∈W ∗−1f (0), |W ∗f (a)| = c},
the above result implies #W ∗−1g (0) ≤ min

f∈A(n)
#W ∗−1f (0) for each g ∈ E(n),

and thus
max
g∈E(n)

#W ∗−1g (0) ≤ min
f∈A(n)

#W ∗−1f (0) (16)

Therefore, if A(n) 6= ∅, each f ∈ A(n) verifies³
2n −#W ∗−1f (0)

´
c2 = 22(n−1). In that case, there exists an integer iwhich

verifies the following two conditions

c2 = 2i (17)

2n −#W ∗−1f (0) = 22(n−1)−i. (18)

It follows from (17) that i is even, and from (18 ) that
#W ∗−1f (0) = 2n − 22(n−1)−i > 0 since 0 ∈ W ∗−1f (0) (f is balanced). Thus

we have i ≥ n− 1 and, if there exists a function f ∈ A(n) such that c = 2n−12 ,
we see that min

f∈A(n)
#W ∗−1f (0) equals #W ∗−1f (0) = 2n− 22(n−1)−i calculated for

i = n− 1. So n is necessarily odd.
But as seen at § 2.3.2, we are able to construct such functions f ∈ A(n) when

n is odd: the functions f(x1, ..., xn) = xnf1(x1, ..., xn−1)+(xn+1)f2(x1, ..., xn−1),
with f1, f2 ∈ F(Fn−12 ,F2) bent functions andW ∗f1(0) = −W ∗f2(0) = 2

n−1
2 −1, are

elements of A(n) with c = 2
n−1
2 , so A(n) 6= ∅ when n is odd.

We deduce from this that min
f∈A(n)

#W ∗−1f (0) =[2n − 22(n−1)−i]i=n−1 = 2n−1
for odd n. It implies from (16 ) the first inequality proof

max
g∈E(n)

#W ∗−1g (0) ≤ 2n−1. (19)

Now, considerer the set
B(n) = {f ∈ F(Fn2 ,F2)|∃ c ∈ N−{0},∀a /∈W ∗−1f (0), |W ∗f (a)| = c}.
B(n) is never empty since, if n even C(n) ⊆ B(n), and if n odd A(n) ⊆ B(n).

So let’s f ∈ B(n).
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For any function g ∈ C(n) we have δ(g) ≥ δ(f) = 2n−1 − c and thus
max

a/∈W∗−1g (0)
|W ∗g (a)| ≤ c. Therefore, we have

22(n−1) =
P

a/∈W∗−1g (0)

¡
W ∗g (a)

¢2 ≤ ¡2n −#W ∗−1g (0)
¢
c2,

so c2 ≥ 22(n−1)

2n−#W∗−1g (0)
.

The same Parseval’s relation on f implies the existence of a∗ /∈ W ∗−1f (0)

such that
³
W ∗f (a

∗)
´2
≤ 22(n−1)

2n−#W∗−1f (0)
, and from the hypothesis on f ,³

W ∗f (a
∗)
´2
= c2. Then c2 ≤ 22(n−1)

2n−#W∗−1f (0)
and therefore

22(n−1)

2n−#W∗−1g (0)
≤ c2 ≤ 22(n−1)

2n−#W∗−1f (0)
which implies

#W ∗−1g (0) ≤ #W ∗−1f (0) for any g ∈ C(n). so we have

max
g∈C(n)

#W ∗−1g (0) ≤ min
f∈B(n)

#W ∗−1f (0) (20)

But, for each f ∈ B(n), we have
³
2n −#W ∗−1f (0)

´
c2 = 22(n−1) which

implies the existence of an integer i such that

c2 = 2i (21)

2n −#W ∗−1f (0) = 22(n−1)−i. (22)

It follows from (21) that i is even, and from (22) that
#W ∗−1f (0) = 2n − 22(n−1)−i ≥ 0. This implies i ≥ n− 2.
The three conditions n is odd, i is even and i ≥ n− 2, imply i ≥ n− 1, and

A(n) ⊆ B(n) with A(n) 6= ∅ implies also i = n− 1.
Therefore, from (20) we obtain
max
g∈C(n)

#W ∗−1g (0) ≤ [2n− 22(n−1)−i]i=n−1 = 2n−1 and the second inequality
is proved.

Corollary 10 For odd n≥ 1,
if (P) true for g ∈ E(n), then #|W ∗g |−1(2n−1 − ρB(n)) ≥ 2n−1.
If (P) false, we have max

f∈E(n)
#W ∗−1f (0) < 2n−1.

If (Q) true for g ∈ C(n), then #|W ∗g |−1(2n−1 − ρ(n))| ≥ 2n−1.
If (Q) false,we have max

f∈C(n)
#W ∗−1f (0) < 2n−1.

Proof. From Corollary 2 (resp. Corollary 4), if (P) (resp. (Q)) true for g
balanced, we have #|W ∗g |−1(2n−1 − ρB(n)) ≥ 2n − max

f∈E(n)
#W ∗−1f (0)

(resp. #|W ∗g |−1(2n−1−ρ(n)) ≥ 2n− max
f∈C(n)

#W ∗−1f (0)). On the other hand,

since n is odd, from Proposition 9 we have max
f∈E(n)

#W ∗−1f (0) ≤ 2n−1
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(resp. max
f∈C(n)

#W ∗−1f (0) ≤ 2n−1) and the results are proved when (P) (re-

spectively (Q)) is true. Now, if (P) (resp. (Q)) is false, there exists no balanced
function g (resp. no function g) such that
|W ∗g |−1(2n−1 − δ(g)) ≥ 2n − max

f∈E(n)
#W ∗−1f (0)

(resp. #|W ∗g |−1(2n−1 − δ(g)) ≥ 2n − max
f∈C(n)

#W ∗−1f (0) ).

So for any balanced function g (resp. any function g) we have
#|W ∗g |−1(2n−1 − δ(g)) < 2n − max

f∈E(n)
#W ∗−1f (0)

(resp. |W ∗g |−1(2n−1 − δ(g)) < 2n − max
f∈C(n)

#W ∗−1f (0)). In particular when

n is odd, we can use g balanced such that δ(g) = 2n−1 − 2n−12 and
#|W ∗g |−1(2

n−1
2 ) = 2n−1 (generalized functions of A(n)). Therefore

|W ∗g |−1(2n−1 − δ(g)) = #|W ∗g |−1(2
n−1
2 ) = 2n−1 < 2n − max

f∈E(n)
#W ∗−1f (0)

(resp. #|W ∗g |−1(2n−1−δ(g)) = #|W ∗g |−1(2
n−1
2 ) = 2n−1 < 2n− max

f∈C(n)
#W ∗−1f (0))

and the corollary is proved.

Corollary 11 If there exists a balanced function g∈ F(Fn2 ,F2) verifying (P),
we have
for even n, ρB(n) = 2

n−1 − 2n2 and max
f∈E(n)

#W ∗−1f (0) = 2n−1 + 2n−2,

for odd n, ρB(n) = 2
n−1 − 2n−12 and max

f∈E(n)
#W ∗−1f (0) = 2n−1.

Proof. Consider g balanced verifying (P). From Theorems 1 and 7 we have
δ(g) = ρB(n) = 2

n−1 − 2n−1

(2n− max
f∈E(n)

#W∗−1f (0))
1
2
, and thus

22(n−1) =
µ
2n − max

f∈E(n)
#W ∗−1f (0)

¶
(2n−1− ρB(n))

2. Therefore, there exists

an integer j such that

(2n−1 − ρB(n))
2 = 2j

2n − max
f∈E(n)

#W ∗−1f (0) = 22(n−1)−j

Then j is even and max
f∈E(n)

#W ∗−1f (0) = 2n − 22(n−1)−j ∈ ] 0, 2n[ since the
balancedness of each f ∈ E(n) implies 0 ∈ W ∗−1f (0) and f not everywhere
equal to zero. So we have j ∈]n− 2, 2(n− 1)], and finally j ∈ [n− 1, 2(n− 1)].
Therefore, ρB(n) = 2

n−1 − 2 j2 for an even integer j ∈ [n− 1, 2(n− 1)].We have
the following two cases:
If n is odd, the Proposition 9 implies max

f∈E(n)
#W ∗−1f (0) ≤ 2n−1 and, since

max
f∈E(n)

#W ∗−1f (0) = 2n− 22(n−1)−j for j even, j ≥ n−1, we also obtain j ≤ n−1
and finally j = n− 1. Thus max

f∈E(n)
#W ∗−1f (0) = 2n−1 and ρB(n) = 2

n−1− 2n−12 .

11



If n is even, since the integer j ≥ n − 1 such that ρB(n) = 2n−1 − 2 j2 will
be also even, we have necessarily j 6= n− 1, and then j ∈ [n, 2(n− 1)]. Thus we
obtain ρB(n) ≤ 2n−1 − 2

n
2 . But, as seen at § 2.3.2, for even n we are able to

construct balanced functions f such that |W ∗f (a)| = 2
n
2 for a /∈W ∗−1f (0). Thus

A(n) 6= ∅.
The Parseval’s relation applied to functions f ∈ A(n) give us the equality³

2n −#W ∗−1f (0)
´ ¡
2
n
2

¢2
= 22(n−1), which implies #W ∗−1f (0) = 2n−1 + 2n−2.

From this we deduce min
f ∈A(n)

#W ∗−1f (0) ≤ 2n−1 + 2n−2 and from (16) we also

obtain max
g∈E(n)

#W ∗−1g (0) ≤ 2n−1 + 2n−2. Then 2n − 22(n−1)−j ≤ 2n−1 + 2n−2,
and therefore j ≤ n. Finally j = n and we see that ρB(n) = 2n−1 − 2n2 and
max
f∈E(n)

#W ∗−1f (0) = 2n − 22(n−1)−j = 2n − 2n−2 = 2n−1 + 2n−2.

Corollary 12 If n≥ 1 is odd, and if there exists a function g∈ F(Fn2 ,F2)
verifying (Q), we have

ρ(n) = ρB(n) = 2
n−1 − 2n−12 and max

f ∈E(n)
#W ∗−1f (0) = 2n−1.

Proof. For this function g, Theorems 3 and 7 imply
δ(g) = ρ(n) = 2n−1 − 2n−1

(2n− max
f∈C(n)

#W∗−1f (0))
1
2
,

so 22(n−1) =
µ
2n − max

f∈C(n)
#W ∗−1f (0)

¶¡
2n−1 − ρ(n)

¢2
and thus we have an

integer j such that

(2n−1 − ρ(n))2 = 2j

2n − max
f∈C(n)

#W ∗−1f (0) = 22(n−1)−j

Therefore j is even, max
f∈C(n)

#W ∗−1f (0) = 2n−22(n−1)−j ≥ 0 implies j ≥ n−2, and
ρ(n) = 2n−1 − 2 j2 . As n is odd, the two conditions j even and j ≥ n − 2
imply j ≥ n − 1. So ρ(n) = 2n−1 − 2 j2 ≤ 2n−1 − 2n−12 . But for odd n, we
have construct balanced functions f such that δ(f) = 2n−1 − 2n−12 and thus
ρB(n) ≥ 2n−1 − 2

n−1
2 . Combining these properties, we obtain

2n−1−2n−12 ≤ ρB(n) ≤ ρ(n) ≤ 2n−1−2n−12 so ρB(n) = ρ(n) = 2n−1−2n−12 ,
j = n− 1 and finally max

f∈C(n)
#W ∗−1f (0) = 2n−1.

We conclude this section by the two following results:

Corollary 13 For any even integer n, n≥ 6, and for any balanced function
g∈ F(Fn2 ,F2) we have

#|W ∗g |−1(2n−1 − δ(g)) < 2n − max
f ∈E(n)

#W ∗−1f (0).

In particular, for any g ∈ E(n)
#|W ∗g |−1(2n−1 − ρB(n)) < 2

n − max
f ∈E(n)

#W ∗−1f (0).

12



Proof. From Corollary 11 for even n, we have ρB(n) = 2
n−1 − 2n2 if there

exists a balanced function g verifying (P). From [3, 9], if we write n = 2st for
s ≥ 1 and t ≥ 1 odd, we know that

ρB(n) ≥ 2n−1 − (
sX
i=1

2
n
2i
−1)− 2 12( n2s−1)

Therefore if g verifies (P) we will have

2
n
2 ≤ (

sX
i=1

2
n
2i
−1) + 2

1
2(

n
2s−1)

As this inequality is not verified for n ≥ 6, we obtain the result.

Therefore, for even n ≥ 6, there exists no balanced functions verifying (P).
When n is odd, we have the following similar result:

Corollary 14 For any odd integer n, n≥ 15, and for any function g∈ F(Fn2 ,F2)
we have

#|W ∗g |−1(2n−1 − δ(g)) < 2n − max
f ∈C(n)

#W ∗−1f (0).

In particular, for any g ∈ C(n)
#|W ∗g |−1(2n−1 − ρ(n)) < 2n − max

f ∈C(n)
#W ∗−1f (0).

Proof. From Corollary 12 for odd n, if there exists g function verifying (Q),
we have ρ(n) = 2n−1−2n−12 . On the other hand, Patterson-Wiedemann [7] have
proved that ρ(n) ≥ 2n−1 − 108.2n−12 −7 for any odd n ≥ 15. So for odd n ≥ 15,
if there exists a function g verifying (Q), we must have 2

n−1
2 ≤ 108.2n−12 −7, and

we see that this is false. So (Q) is false for odd n ≥ 15, and the corollary is
proved.

Because (Q) false for odd n ≥ 15, note that the result of the Corollary 10 is
verified.

6 Application to Boolean Functions of Degree
at most n− 1

6.1 Structure of δ(f)

Let us consider f ∈ F(Fn2 ,F2) as an element of F2[x1, ..., xn] and suppose that
d◦(f) ≤ n − 1. Let lα + λ be one of its nearest affine functions. We have (see
section 2) δ(f) = d(f, lα + λ) = 2n−1 − |W ∗f (α)| with |W ∗f (α)| = max

a∈Fn2
|W ∗f (a)|.

Let us consider the functions family (fΩ)Ω∈Fn2 defined by
fΩ = f+ lΩ+α. We will use the following technical lemma:

13



Lemma 15 W ∗f (Ω+ α) = 2n−1−WfΩ(0) for any Ω ∈ Fn2 − {0}.

Proof. For α ∈ Fn2 and λ ∈ F2, let us consider g = f + lα + λ. If we denote
p = #g−1(1) the weight of g, we have g−1(1) = {x1, ..., xp} for p elements
xi ∈ Fn2 . Then if we introduce the functions δx defined by δx(y) = δyx, we can
write g = δx1 + ...+ δxp . So f = lα + λ+ δx1 + ...+ δxp .
Moreover, for all a ∈ Fn2 , a direct calculation proves the formula

Wf (a) =
¡
δa0 + (−1)λ+1δaα

¢
2n−1 + (−1)λ

pX
k=1

(−1)<α+a,xk>. (23)

Since δ(f) = d(f, lα + λ) = d(g + lα + λ, lα + λ),we also have
δ(f) = p and if a = 0,

Wf (0) =
¡
1 + (−1)λ+1δ0α

¢
2n−1 + (−1)λ

pX
k=1

(−1)<α,xk>. (24)

Then fΩ = f+ lΩ+α = f+ lΩ + lα = lΩ + λ+ δx1 + ...+ δxp .
For each Ω 6= 0, we observe that (24) implies
WfΩ(0) = [Wf (0)]α=Ω = 2

n−1 + (−1)λ £ (−1)<Ω,x1> + ...+ (−1)<Ω,xp>¤ .
Thus using (23) with Ω = a+ α 6= 0, we finally obtain
WfΩ(0)− 2n−1 = (−1)λ

£
(−1)<Ω,x1> + ...+ (−1)<Ω,xp>¤

=Wf (Ω+ α)− 2n−1δΩ+α0 = −W ∗f (Ω+ α).

Theorem 16 Let f∈ F(Fn2 ,F2) be a nonaffine function such that d◦(f) ≤ n−1
for n≥ 3. There exists an integer mf verifying

0 < mf ≤
µ
2
2
³
n−d n

d◦(f) e
´
− 2n +#W ∗−1f (0) + 1

¶ 1
2

such that

δ(f) = 2n−1 − 2d n
d◦(f) e−1mf . (25)

Proof. Consider again the family (fΩ)Ω∈Fn2 with fΩ = f+ lΩ+α. Since f is
nonaffine we have d◦(fΩ) = d◦(f), and functions fΩ verify 2 ≤ d◦(fΩ) ≤ n− 1.
As d◦(fΩ) ≤ n − 1, the theorem of Ax-Katz ([10] pp. 51-52, or [4] pp. 319)
applied to fΩ implies

2b |#f−1Ω (0)with b =
»

n

d◦(fΩ)

¼
− 1, for any Ω ∈ Fn2 (26)

For n ≥ 3, we have b ≤ §n2 ¨− 1 < n− 1.
As #f−1Ω (0) = 2n −WfΩ(0), (26) implies 2

b |WfΩ(0).
So when WfΩ(0) 6= 2n−1, WfΩ(0)− 2n−1 will be divisible by 2b. Thus if we

denote Ω = a+ α 6= 0, the Lemma 15 implies

2b |W ∗f (a) for any a 6= α such that W ∗f (a) 6= 0. (27)

14



The Parseval’s identity
P
a

³
W ∗f (a)

´2
= 22(n−1) together with the equality

max
a∈Fn2

|W ∗f (a)| = |W ∗f (α)| implies |W ∗f (α)| 6= 0, and we also have

22(n−1)−
³
W ∗f (α)

´2
= 22(n−1)−¡2n−1 − δ(f)

¢2
=

P
{a/∈W∗−1f (0)|a6=α}

(W ∗f (a))
2.

Using property (27) for any a 6= α such thatW ∗f (a) 6= 0, there exists qa ∈ Z−{0}
such that W ∗f (a) = 2

bqa. Thus if we denote

qf =
X

{a/∈W∗−1f (0)|a6=α}
q2a (28)

we obtain the following equation for δ(f) :

22(n−1) − ¡2n−1 − δ(f)
¢2
= 22bqf

Since f is nonaffine, we have δ(f) > 0, and therefore

|2n−1 − δ(f)| = ¡
22(n−1) − 22bqf

¢ 1
2 with qf < 2

2
³
n−d n

d◦(f) e
´
which finally

implies

δ(f) = 2n−1 −
³
22(n−1) − 22bqf

´ 1
2

= 2n−1 − 2
l

n
d◦(f)

m
−1
µ
2
2
³
n−

l
n

d◦(f)
m´
− qf

¶ 1
2

(29)

with 22
³
n−d n

d◦(f) e
´
> qf > 0.

Moreover, définition (28) also implies

qf ≥ 2n −#W ∗−1f (0)− 1 (30)

Now, since 2n−1(−1)f(x) = P
a/∈W∗−1f (0)

W ∗f (a)(−1)<a,x> and α /∈ W ∗−1f (0),

we may write at the point x = 0, 2n−1(−1)f(0) = 2b (
P
qa

a/∈W∗−1f (0), a6=α
) +W ∗f (α) so,

|W ∗f (α)| = 2n−1 − δ(f) = |2n−1(−1)f(0) − 2b(
P
qa

a/∈W∗−1f (0), a6=α
) |

= 2b|2n−b−1(−1)f(0) − P
qa

a/∈W∗−1f (0), a6=α
|.

On the other hand, it follows from (29) that

2n−1 − δ(f) = 2b
µ
2
2(n−

l
n

d◦(f)
m
) − qf

¶ 1
2

, and finally

µ
2
2(n−

l
n

d◦(f)
m
) − qf

¶ 1
2

= |(−1)f(0)2n−
l

n
d◦(f)

m
−

X
qa

a/∈W∗−1f (0), a6=α
| ∈ N.
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Therefore, if we denote

mf =

µ
2
2(n−

l
n

d◦(f)
m
) − qf

¶ 1
2

= |(−1)f(0)2n−d
n

d◦(f)e − P
qa

a/∈W∗−1f (0), a 6=α
|,

and if we use the inequality on qf together with (30), we obtain

2
2
³
n−

l
n

d◦(f)
m´
− 2n + #W ∗−1f (0) + 1 ≥ m2

f > 0 and we have proved the
Theorem.

Corollary 17 For n≥ 3, let f∈ F(Fn2 ,F2) be a nonaffine function of even
weight #f−1(1). Then δ(f) verifies (25).

Proof. If we consider f(x1, ..., xn) =
P

i1∈{0,1},...,in∈{0,1}
ai1...in x

i1
1 ...x

in
n as

element of F2[x1, ..., xn] , we have

ai1...in =

Ã P
0≤x1≤i1,...,0≤xn≤in

f(x1, ..., xn)

!
mod 2. Thus

a1...1 =

Ã P
x1∈F2,...,xn∈F2

f(x1, ..., xn)

!
mod 2 = #f−1(1) mod 2.

Then #f−1(1) is even if and only if a1...1 = 0, idem d◦(f) ≤ n− 1, and the
Corollary results of Theorem 16.

6.2 Application to balanced functions

Since #f−1(1) = 2n−1, all the balanced functions f are of even weights, and we
finish with the following result:

Corollary 18 For odd n, n≥ 3, if there exists an extremal balanced function of
degree 2, then ρB(n) = 2

n−1 − 2n−12 .
Proof. Since n is odd, the Proposition 9 implies max

f∈E(n)
#W ∗−1f (0) ≤ 2n−1.

For any f ∈ E(n), it follows from Theorem 16 that

0 < mf ≤
µ
2
2
³
n−d n

d◦(f) e
´
− 2n +#W ∗−1f (0) + 1

¶ 1
2

≤
µ
2
2
³
n−d n

d◦(f) e
´
− 2n−1 + 1

¶ 1
2

.

If there exists f ∈ E(n) with d◦(f) = 2, we obtain for this function
d n
d◦(f)e = n+1

2 and then 22
³
n−d n

d◦(f) e
´
− 2n−1+1 = 1. Thus mf = 1 and the

ρB(n) value results of (25).

7 Conclusion

We have studied a new sufficient condition for maximal nonlinear and extremal
balanced Boolean functions. For even n, this condition characterizes the bent
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functions. For even or odd n, under forms (P) and (Q) of the condition we
have computed ρB(n) and ρ(n), respectively. Later, these values are proved
only valid in low dimensions, so in a subsequent study one may ask how to
generalize (P) and (Q). In high odd or even dimensions, we have deduced some
new inequalities on the size of the Walsh spectrum’s kernel of functions in E(n)
and C(n). In a second part, for even weights functions f , a general form for
δ(f) including d◦(f) is given.
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