De la radio matérielle à la radio logicielle Evolution de la menace

Chaouki KASMI, Arnaud EBALARD prenom.nom@ssi.gouv.fr

ANSSI 51, bvd de la Tour-Maubourg 75700 Paris 07 SP

Agenda

Contexte

Introduction aux couches bas-niveaux des réseaux sans-fils Couche physique Couche MAC

Evolution des équipements radios Radio matérielle Périphériques reconfigurables Radio logicielle

Evolutions de l'analyse des protocoles radios

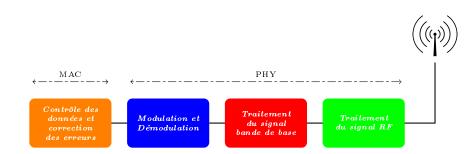
Introduction aux couches bas-niveaux des réseaux sans-fils Couche physique

Evolution des équipements radios Radio matérielle Périphériques reconfigurables

Evolutions de l'analyse des protocoles radios

Sécurité et mobilité

- ► Multiplication des protocoles sans-fils :
 - ▶ Wi-Fi
 - ► WiMAX/LTE
 - Zigbee
 - ► 2G/3G
 - ► RFID/NFC
- Evolution des méthodes de développement de produits radios
- ► Besoins d'audits sécu
 - ► Couches basses/hautes
 - Mécanismes sécu



Introduction aux couches bas-niveaux des réseaux sans-fils Couche physique Couche MAC

Evolution des équipements radios Radio matérielle Périphériques reconfigurables Radio logicielle

Evolutions de l'analyse des protocoles radios

Architecture type d'un émetteur/récepteur

Couche physique (1/3)

Caractéristiques dimensionnantes

► Fréquence de travail

Impacts

- Architecture du récepteur
- ▶ Dimension de l'antenne
- ► Gain et sélectivité de l'antenne

Couche physique (2/3)

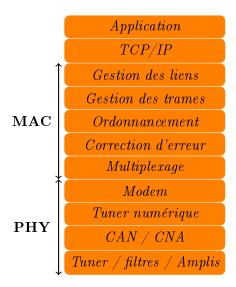
Autres caractéristiques dimensionnantes

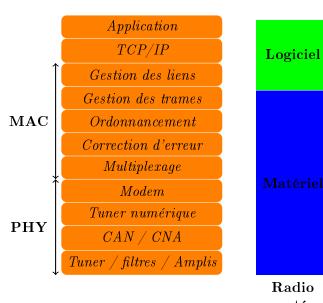
- ► Bande passante : Conditionne la capacité de traitement de tous les étages, analogiques et numériques (WiFi : 20 MHz, 2G : 200 kHz)
- ▶ Utilisation de saut de fréquence : nécessite une agilité du récepteur (Bluetooth : 1600 sauts/seconde)
- ▶ Parallélisme des communications
 - ► Simplex (Pager)
 - ► Alternat (half duplex) (RFID)
 - ▶ Bidirectionnel simultané (full duplex) (3G)
 - ► MIMO (WiMax, 802.11n)

Couche physique (3/3)

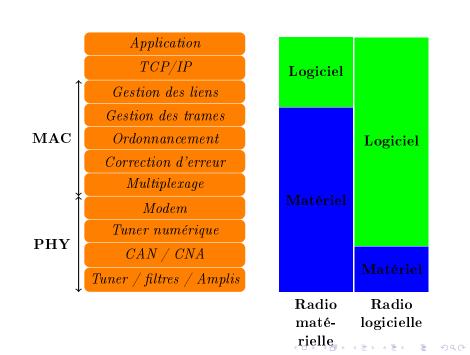
- ► Modulation
 - ▶ Du plus simple (OOK, FSK) (RFID)
 - ▶ Au plus complexe (OFDM, n-QAM, DSSS) (DVB, 3G)
- Codage canal
 - ► Hamming, Manchester, Miller...
- ► Codes détecteurs et codes correcteurs d'erreurs
 - ▶ Du plus simple : CRC (RFID)
 - ▶ Au plus complexe : Reed-Solomon (CPL), treillis (GSM), turbo codes (DVB)

Couche MAC Méthode d'accès au média

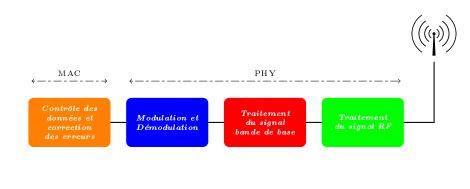

Caractéristiques dimensionnantes


- ▶ Détection de porteuse : CSMA
 - ▶ Détection de collision : CSMA/CD (ethernet)
 - ▶ Évitement de collision : CSMA/CA (WiFi)
- Multiplexage
 - ► Temporel (TDMA) (GSM)
 - ► Fréquentiel (FDMA) (GSM)
 - ► Par code (CDMA) (3G)

Introduction aux couches bas-niveaux des réseaux sans-fils Couche physique Couche MAC


Evolution des équipements radios Radio matérielle Périphériques reconfigurables Radio logicielle

Evolutions de l'analyse des protocoles radios



matérielle

Architecture

Matériel

Limitations

Objectifs (rappels)

- ▶ Interagir avec les couches basses et hautes d'un protocole
- ► Analyser les mécanismes de sécurité

Limitations

Objectifs (rappels)

- ► Interagir avec les couches basses et hautes d'un protocole
- ► Analyser les mécanismes de sécurité

Limitations de la radio matérielle

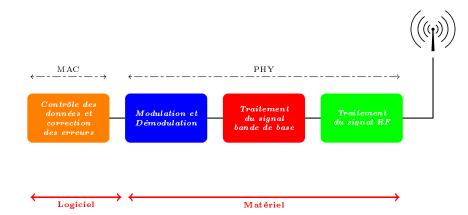
- ▶ Unicité protocolaire (antenne, circuit de démodulation)
- ► Couches basses non modifiables
- ► Pile protocolaire figée
- ▶ Positionnement de la couche sécurité
 - ▶ Bas niveau (hard) ⇒ difficile (e.g. Bluetooth, GSM)
 - ► Haut niveau (driver, applicatif) ⇒ possible (e.g. WiFi ...)

Limitations

Objectifs (rappels)

- ► Interagir avec les couches basses et hautes d'un protocole
- ► Analyser les mécanismes de sécurité

Limitations de la radio matérielle


- ▶ Unicité protocolaire (antenne, circuit de démodulation)
- ► Couches basses non modifiables
- Pile protocolaire figée
- ▶ Positionnement de la couche sécurité
 - ▶ Bas niveau (hard) ⇒ difficile (e.g. Bluetooth, GSM)
 - ► Haut niveau (driver, applicatif) ⇒ possible (e.g. WiFi ...)

Conclusion

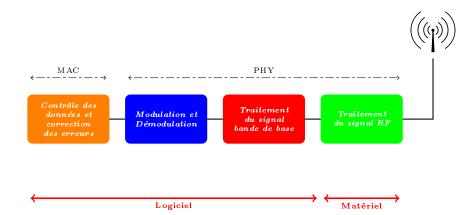
Intérêt limité à des protocoles radios **simples** type contrôle d'accès 125 kHz, 433 MHz

Périphériques reconfigurables

Architecture

Périphériques reconfigurables

Objectifs (rappels)


- ► Interagir avec les couches basses et hautes d'un protocole
- ► Analyser les mécanismes de sécurité

Limitations des périphériques reconfigurables

- ▶ Portée de l'API exposée :
 - ► Support de l'injection?
 - Surcharge de champs (CRC en wifi, @MAC sur les premières cartes, UID sur dongles NFC)
 - ► Automate d'état figé ou non?
- ► Couches basses non modifiables
- ▶ Ratio entre soft et hard pour la pile protocolaire
- ▶ Positionnement de la couche sécurité

Radio logicielle Architecture

Radio logicielle

Causes des évolutions vers la radio logicielle

Avantages industriels

- ► Flexibilité (modification de la couche physique),
- ▶ Reprogrammation d'une même plateforme matérielle pour différentes couches physiques (e.g. modulation),
- ▶ Coût
 - ▶ Réduction des temps de développement,
 - ► Réduction des qualifications requises

Radio logicielle

Causes des évolutions vers la radio logicielle

Avantages industriels

- ► Flexibilité (modification de la couche physique),
- ▶ Reprogrammation d'une même plateforme matérielle pour différentes couches physiques (e.g. modulation),
- ▶ Coût
 - Réduction des temps de développement,
 - Réduction des qualifications requises
- ⇒ "Software is the new Hardware"

Radio logicielle

Causes des évolutions vers la radio logicielle

Avantages industriels

- ► Flexibilité (modification de la couche physique),
- ▶ Reprogrammation d'une même plateforme matérielle pour différentes couches physiques (e.g. modulation),
- ► Coût
 - Réduction des temps de développement,
 - ► Réduction des qualifications requises

⇒ "Software is the new Hardware"

Motivation fonctionnelle

- ▶ Migration de l'analogique au numérique (DSP, FPGA...)
- Performance des équipements embarqués
- ▶ Augmentation de la vitesse des interfaces de communication

Classification des équipements radios

Cat.	Dénomination	Ex. de matériel
0	Radio matérielle	Récepteur à lampe
I	Radio contrôlée par logiciel	Carte WiFi
II	Radio définie par logiciel	USRP
III	Radio logicielle idéale	N/A
IV	Radio logicielle ultime	N/A

Introduction aux couches bas-niveaux des réseaux sans-fils Couche physique

Evolution des équipements radios Radio matérielle Périphériques reconfigurables

Evolutions de l'analyse des protocoles radios

Origine du besoin d'analyse des protocoles radios

Panorama/tendance

- ► Explosion horizontale : nombre d'équipements connectés
- ► Explosion verticale : nombre de protocoles radios

Menace

- ▶ Dépendance forte aux équipements connectés
- ▶ Utilisation pour l'échange de données critiques
 - ▶ Wifi, DECT dans les grandes entreprises
 - ► Zigbee et GPRS pour les applications SCADA
- ► Résilience supposée des infrastructures de communication

Analyse protocolaire Contrôle d'accès 125 kHz et 433 MHz

Caractéristiques

- ► Technologie RFID (basse fréquence)
- ► Communication bidirectionnelle : faible débit
- ► Couche physique simple (OOK, FSK)
- ▶ Pas ou peu de couche protocolaire

Moyens d'analyse

Réalisation d'un simple circuit analogique ou numérique suffisante

Analyse protocolaire ISO 14443 (Mifare, NFC)

Caractéristiques

- ► Fréquence relativement faible
- ► Faible débit
- Couche physique simple
- ► Couche protocolaire complexe

Moyens d'analyse

- Complexité accrue pour la réalistion d'un circuit analogique ou numérique robuste à ces fréquences
- ▶ Nécessité d'implémentation de la pile protocolaire

Conclusion

Intérêt du dongle sur un développement matériel complet

Analyse protocolaire GSM/3G (900 Mhz, 1.8 GHz, 2.1 GHz)

- ► Couche PHY et MAC disponibles (standards imbuvables)
- ▶ Mécanismes de sécurité fermés [KasmiMorin2011]

Analyses effectuées

- Théorique
 - 1. A5/1 (après fuite puis rétroconception)
 - 2. COMP128 (après rétroconception sur carte SIM)
- Pratique
 - 1. Absence de dongle disponible a mené à
 - 2. Rétroconception de terminaux (OsmocomBB) puis
 - 3. Réimplémentation via USRP (OpenBTS) puis
 - 4. Test des réseaux opérateurs et PoC sécurité (Burning Man)

Analyse protocolaire DECT (1.8 GHz)

- ► Couches PHY et MAC documentées (similaires à GSM)
- Mécanismes de sécurité fermés

Analyses effectuées

- Théorique
 - ▶ Algorithme de chiffrement (rétroconception de chip DECT)
- ► Pratique
 - 1. Tentative de réimplémentation via USRP abandonnée car
 - 2. Découverte d'une carte DECT reflashable (deDECTed.org)
 - 3. Démonstration des attaques sur la cryptographie + DoS
 - 4. Spécification de mécanismes crypto. de substitution

Analyse protocolaire Bluetooth (2.4 GHz)

- ► Couche PHY complexe (Modulation GFSK, CR/CC)
- ► Couche MAC complexe (FHSS 1600 sauts/s, appariement)
- ▶ Protocole documenté mais implémentation complexe

- ► Analyse par dongle possible sur les couches hautes
- ► Analyse par radio logicielle difficile (bande passante élevée, rapidité de reconfiguration)
 - 1. Partielle : en utilisant 1 USRP par passage de la fréq. de réception à 200 μs (< 625 μs)
 - 2. Totale (79 canaux): en couplant 8 USRP!

Analyse protocolaire Zigbee (868 MHz et 2.4 GHz)

- ► Couche PHY complexe (Modulation ASK/BPSK, CR/CC)
- ► Couche MAC complexe
- ▶ Protocole documenté, implémentation moins complexe que celle de Bluetooth (≈ 10 fois moins importante)

- ► En théorie, analyse par dongle sur les couches hautes
- ► Analyse par radio logicielle possible car
 - ▶ Disponibilité d'une implémentation de pile protocolaire
 - ► Technique de modulation "simple" (DSSS, PSSS)

Analyse protocolaire WiFi (2.4 GHz, 5 GHz)

Standard totalement disponible

- ► Couches PHY complexes (différentes modulations)
- ► Couche MAC complexe mais implémentée
- ► Sécurité (802.11i)

Evolution historique non négligeable

- 1. Premières cartes : presque tout en hard, évolutions limitées
- 2. Explosion en volume du standard
 - ▶ Sécurité : WPA, WPA2, mode entreprise, . . .
 - Extensions: 802.11s, 802.11f, 802.11p, ...
- 3. Besoin de modularité au niveau des cartes (MAJ soft)

⇒ Dématérialisation de la pile protocolaire

Introduction aux couches bas-niveaux des réseaux sans-fils Couche physique Couche MAC

Evolution des équipements radios Radio matérielle Périphériques reconfigurables

Evolutions de l'analyse des protocoles radios

Conclusion

Analyse protocolaire

Standards étudiés

- ► RFID/ISO-14443
- ► DECT/GSM
- ► Bluetooth/ZigBee/WiFi

Standards en cours d'analyse

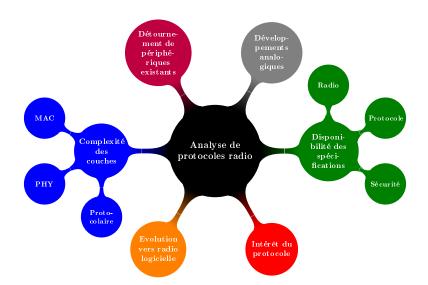
- ► Réseaux PMR (TETRA/GSM-R)
- ► Réseaux cellulaires (UMTS/LTE-A/WIMAX)
- ► Liaisons satellites (IP over Sat/GMR/GPS)

Evolution du matériel vers le logiciel

- ► Amélioration des équipements (BP, flexibilité...)
- Standardisation des couches physiques
- \blacktriangleright Intégration de nouvelles interfaces (Ethernet, PCI(e)...)

Conclusion

Prise en compte de la menace


Contexte

► Equipements de plus en plus connectés (SCADA, travail en mobilité, objets du quotidien)

Recommendations

- ► Sensiblisation des employés
- ► Formation des employés
- ► Gestion de risque
- ▶ Mise en place d'un plan de continuité d'activité

Critères impactant la méthode d'analyse

Questions?

Références I

[KasmiMorin2011] C. Kasmi et B. Morin "Etat des lieux de la sécurité des réseaux de téléphonie mobile", Novembre 2011, C&ESAR 2011