
 1

Abstract—This paper presents the first study of an
asynchronous AES architecture compliant with the NIST
standard. It exploits the fundamental properties of quasi delay
insensitive asynchronous circuits. First, 1 to N encoding is
extensively used in order to minimize hardware cost, thus
optimizing area and speed. Most importantly, it is shown how
the quasi delay insensitive logic style gives the opportunity to
design balanced architectures, particularly well suited to
improve differential power analysis resistance. Indeed, the
proposed design methodology enables the generation of logic
circuits which always involve a constant number of logical
transitions, independently of data values processed by the
circuit. Based on a 32-bit data-path, a balanced and optimized
QDI asynchronous architecture of the AES is described. In
addition, several architecture trade-offs are considered, and
their area and speed estimated. Simulation results show that
with the proposed design approach, throughputs ranging
from 26 Mbit/s to more than 426 Mbit/s can be achieved, well
suited to target smart-card applications.

Key words—advanced encryption standard (AES), differential
power analysis (DPA), smart card, asynchronous circuits,
quasi delay insensitive circuits (QDI).

I. INTRODUCTION AND MOTIVATIONS

The criteria used by the NIST to evaluate and select
RIJNDAEL as the new advanced encryption standard
algorithm (AES) included security, flexibility and both
hardware and software implementation efficiency. From the
implementation point of view, two extreme architectures
were studied to evaluate the candidate algorithms. One
based on an iterative formulation of the algorithm that
minimizes the implementation cost, and the other one fully
parallel that maximizes the computation throughput [11].
Representative standard architectures were designed using
FPGAs, for the purpose of comparing between AES finalist
candidates [12, 13].

Since its adoption, several AES hardware
implementations were proposed and published, all of them
focused on high throughputs. Among them, Henry Kuo
presented in [1] an optimized architecture reaching 1.82
Gbits/sec, using a 0.18 µm CMOS process and requiring
173 Kgates. The data path, 256-bit wide, is ciphering text
using data and keys of length 128, 192 or 256 bits. A.K.
Lutz proposed in [6] a 2-Gbits/s architecture based on two
parallel data paths processing texts of 128 bits using a 128-
bit key (ciphering and deciphering both supported). Such

architectures are not suited for low-power and low-cost
applications. Moreover, from a security point of view, since
the side-channel attacks were discovered, the
implementations of the cryptographic algorithms are
particularly vulnerable against Differential Power Analysis
[22]. In fact, secrets information are removed from device
by observing and monitoring the electrical activity of a
device and performing advanced statistical methods. This
method exploits the fact that the power consumption of a
chip is correlated to the data processed. Among all this
hardware countermeasures proposed for resisting DPA [23-
24], asynchronous logic has been presented as a new
alternative design solution. The results obtained on [4-25]
by using asynchronous logic, demonstrate the increase of
security.

The objective of this paper is to target smart-card
applications by designing a low power/low cost and highly
secured AES architecture. The properties of asynchronous
technology are exploited to achieve this goal. More
specifically, quasi delay insensitive (QDI) circuits using 1
of N encoding and four-phase handshake protocol are used.

Section II introduces asynchronous technology,

especially N-rail quasi delay insensitive asynchronous logic.
Section III then investigates various architectural choices of
AES critical blocks and proposed an optimised
implementation of the Sbox. Section IV describes the key
scheduling block. Simulation results are reported in section
V, while section VI considers alternative architectural trade-
offs. Section VII concludes the paper and gives some
prospects.

II. ASYNCHRONOUS LOGIC

Most integrated circuits are today synchronous, which
means that they are controlled by a global clock which
triggers at the same time the memorization of the complete
state of the circuit.

Asynchronous circuits represent a class of circuits which
are not controlled by a global clock but by the data
themselves. In fact, an asynchronous circuit is composed of
individual modules which communicate to each other by
means of point-to-point communication channels.
Therefore, a given module becomes active when it senses
the presence of incoming data. It then computes them and
sends the result to the output channels. Communications
through channels are governed by a protocol which requires
a bi-directional signaling between senders and receivers

Asynchronous AES Crypto-Processor
Including Secured and Optimized Blocks

F. Bouesse1, M. Renaudin2, and F. Germain3

1,2 F. Bouesse, and M. Renaudin, TIMA laboratory, 26 Av. Félix Viallet, 38031 Grenoble, France,
e-mail : fraidy.bouesse@imag.fr

3 F. Germain, SGDN/DCSSI, 51 bd. De la Tour Maubourg, 75700 Paris, France,
e-mail : fabien.germain@sgdn.pm.gouv.fr

 2

(request and acknowledge). They are called Handshaking
protocols.

Asynchronous
Module

Request

Acknowledgement

Request Request

Acknowledgement Acknowledgement

Asynchronous
Module

Asynchronous
Module

Request

Acknowledgement

Request Request

Acknowledgement Acknowledgement

Asynchronous
Module

Fig. 1: Handshake based communication between modules. An
asynchronous module can be of any complexity.

The communication protocol is the basis of the

sequencing rules of asynchronous circuits. There are two
main classes of handshaking protocols: two-phase protocol
and four-phase protocols. In this work, only the four-phase
protocol is considered and described. It is the most widely
used when designing integrated circuits because its
transistor implementation is more efficient [7].

• Four-phase protocol

This protocol requires a return to zero phase for both
data/requests and acknowledges.

Data

Ack

Com. "n" Com. "n+1"

Invalid DataValid Data

Phase 1 Phase 4Phase 3Phase 2

Valid Data
Data

Ack

Com. "n" Com. "n+1"

Invalid DataValid Data

Phase 1 Phase 4Phase 3Phase 2

Valid Data
Data

Ack

Com. "n" Com. "n+1"

Invalid DataValid Data

Phase 1 Phase 4Phase 3Phase 2

Valid Data
Data

Ack

Com. "n" Com. "n+1"

Data

Ack

Com. "n" Com. "n+1"

Invalid DataValid Data

Phase 1 Phase 4Phase 3Phase 2

Valid Data
Data

Ack

Com. "n" Com. "n+1"

Invalid DataValid Data

Phase 1 Phase 4Phase 3Phase 2

Valid Data

Fig. 2: Four-phase handshaking protocol

Phase 1: Data detection (invalid Data to valid Data)
Phase 2: Acknowledgement is set to one
Phase 3: Data are re-initialized (valid Data to invalid Data,

return to zero phase)
Phase 4: Acknowledgement is reset (return to zero phase)

• Signalling

As presented above, the implementation of a four-phase
handshaking protocol requires sensing the presence of data
in phase 1, and setting the acknowledgement when
incoming data can be released in phase 2. It then requires
sensing that data are back to invalid in phase 3, and
resetting the acknowledgement in phase 4. In order to do so,
dedicated logic and special encoding are necessary for
sensing data validity/invalidity and for generating the
acknowledgement signal. Detecting that data is valid is
referred to as a request for computation. In the same
manner, generating an acknowledgement means that the
computation is completed and the communication channel
can be released. Hence, an individual module is made of a
computation unit associated to input and output channels
controllers.

- Data/ Request encoding

The invalid state is encoded with data themselves.
Considering that one bit has to be transferred through a
channel using the four phase protocol, one has to encode
three different values: invalid, valid at ‘1’, valid at‘0’. Two

bits or wires (A0, A1) are then required to encode the three
states. This technique is called dual-rail encoding (table1).

Table 1: Dual rail encoding of the three states

required to communicate 1 bit

Channel data A0 A1
0 1 0
1 0 1

Invalid 0 0
Unused 1 1

This encoding is easily extended to N rails. It is called 1

of N encoding.

- Acknowledge / Completion signal generation

A very common technique used to generate the
acknowledgement signal is to take advantage of the data-
encoding. Let’s consider a module which has been designed
to process three-state encoded data and which respects the
four-phase communication protocol. Such a module
produces dual-rail encoded outputs which state can easily be
sensed by means of a simple Nor gate as depicted in figure
4. When several bits are used, the acknowledgement signal
is obtained by combining the partial acknowledgements
with a rendezvous cell.

• Rendezvous cell

The design of asynchronous circuits requires a
rendezvous cell which is commonly named Muller C-
element [10]. The Muller C-element is used to synchronize
asynchronous signals which eventually occur. In other
words, this gate generates an up-transition when up-
transitions occur at all the inputs, and generates a down-
transition when down-transitions occur at all the inputs.
The Muller C-element’s truth table and symbol are given in
Figure 3.

II.1 QUASI DELAY INSENSITIVE (QDI) CIRCUITS

Because of the handshake signalling used by the modules

to communicate, asynchronous circuits may have a very
interesting property: delay insensitivity. Delay insensitivity
means that the functional correctness of the circuit does not
depend on the delays of its constituents. Because delay
insensitivity is not free, both in terms of hardware and
latency, researchers have worked on the trade-offs between
delay-insensitivity and hardware-cost or speed. In this work,
QDI circuits are considered because of their potentialities in
terms of energy, speed and security [19].

A QDI circuit is functionally correct without any
assumption on the wire and gate delays, except for some
forks, called "isochronic forks" [17-18]. An isochronic fork
is a fork which branches have to have equal delays to
guarantee a correct behaviour of the circuit, whatever might
be the delays in the other elements [17]. This asynchronous
circuit style is the most robust with respect to delay
variations. It has been proved that the "isochronic fork" is
the weakest assumption to respect, in order to be able to
design any kind of function [15-17] using single-output
gates. Moreover the logic used to implement such QDI

 3

circuits requires being "hazard free" which is one of the
major difficulties to cope with.

Truth table
X Y Z
0 0 0
0 1 no change
1 0 no change
1 1 1

Z = XY + Z (X+Y)

Truth table
X Y Z
0 0 0
0 1 no change
1 0 no change
1 1 1

X Y Z
0 0 0
0 1 no change
1 0 no change
1 1 1

Z = XY + Z (X+Y)

Symbol

C

X

Y
Z

Truth table
X Y Z
0 0 0
0 1 no change
1 0 no change
1 1 1

X Y Z
0 0 0
0 1 no change
1 0 no change
1 1 1

Z = XY + Z (X+Y)

Truth table
X Y Z
0 0 0
0 1 no change
1 0 no change
1 1 1

X Y Z
0 0 0
0 1 no change
1 0 no change
1 1 1

Z = XY + Z (X+Y)

Symbol

C

X

Y
Z

Fig. 3: Muller gate or (C-element)

II.2 QDI CIRCUITS AND SECURITY

As suggested in [8], asynchronous circuits can improve
chip security in many ways. In fact, the measurements
performed on the Mica microcontroller [21] and reported in
[20] proved that QDI circuits are indeed improving DPA
resistance. Therefore, this work is focused on technics and
methods to design DPA resistant chips by using QDI
asynchronous circuits based on 1 of N encodings and a four-
phase handshake protocol.

Although difficult, hazard free logic design is the right
technology to improve hardware security against DPA,
because it gives the designer the opportunity to precisely
control the number of electrical transitions involved in a
given computation. In fact, because logic is hazard free,
spurious transitions are avoided and the number of
transitions required to perform a given computation is
perfectly known in advance and fixed. Moreover, it can be
shown that this number of transitions can even be
independent of processed data [19].

Contrary to synchronous circuits where the power
consumption depends on the previous states and data
values, QDI asynchronous logic using a four-phase protocol
re-initializes all previously activated nodes before
processing a new data [7]. Therefore, there is no effect of
the previous computation on current data processing.
Hence, because logical transitions are the source of the
current consumed by CMOS circuits, DPA resistant circuits
can theoretically be designed. However, it is well known
that transistor sizes and wire lengths are also influencing the
power consumption profile. Known solutions exist to tackle
this problem and it is not addressed in this paper which
focuses on logical level design for security. As an example,
consider the xor function which is of prime interest in
symmetrical cryptographic systems, because it directly
handles the keys. Figure 4 shows a dual-rail xor gate
implementation. Every computations of this dual-rail xor
gate involve a fixed and constant number of transitions
regardless of the data values. Hence, its power consumption
is data independent, i.e. not correlated to the processed data,
which is exactly the goal to achieve.

However, the QDI implementation of a function is not
always balanced, as it is for example the case for a dual rail
AND gate (Figure 5). The number of transitions remains
fixed and perfectly known, but it is data dependent. When

“ai” or “bi” is zero, the circuit consumes two transitions in a
C-element and in the OR gate. When “ai” and “bi” are ones,
the circuit only consumes one transition in the C-element
gate. In such cases, the gate structure is modified to ensure
that all data paths and control paths are balanced and do
involve a constant number of transitions [8]. A balanced
dual-rail AND gate is proposed in Figure 5.

C

C

C

C

co1

co0

ai0

bi0
ai1

bi1

ai1

bi0
ai0

bi1

ciai, bi

OR

OR

Acknowledge

Cr

Cr

OR

Dual-rail Xor gate Half-buffer

Acknowledge

C

CC

CC

CC

co1

co0

ai0

bi0
ai1

bi1

ai1

bi0
ai0

bi1

ciai, bi

OR

OR

Acknowledge

Cr

Cr

OR

Dual-rail Xor gate Half-buffer

Acknowledge

Fig. 4: Dual-rail xor gate with an output half-buffer
(four-phase handshake protocol).

Dual rail “co” outputs the xor function performed between dual rail inputs
“ai” and “bi”, (Cr is a Muller gate with a reset signal).

OR

C

C

C

C

co0

co1
ai1

bi1

ai0

bi0
ai1

bi0
ai0

bi1

ci

unbalanced

C

C

C

C

co0

co1
ai1

bi1

ai0

bi0
ai1

bi0
ai0

bi1

ciai, bi

balanced

OR

OR

ai, bi

OR

CC

CC

CC

CC

co0

co1
ai1

bi1

ai0

bi0
ai1

bi0
ai0

bi1

ci

unbalanced

CC

CC

CC

CC

co0

co1
ai1

bi1

ai0

bi0
ai1

bi0
ai0

bi1

ciai, bi

balanced

OR

OR

ai, bi

Fig. 5: dual – rail AND gate, unbalanced and secure versions
(no output half-buffer).

We have proposed [19] an approach to design balanced

registers, data-paths and finite state machine structures
which involves a fixed constant number of transitions to
compute.
This technique relies on the adoption of a flexible structure
only based on balanced computational blocks such as
explained here-before, and balanced memory element called
half-buffer and full buffer such as the ones illustrated in
figure 5-b.

S ta g e 2

B _ a c k

S 0

A _ a c k

S 1A 1 B 1

C r

C r

A 0 B 0
C r

C r

B lo c k 1 B lo c k 2
S _ a c k

S ta g e 1 S ta g e 2

B _ a c k

S 0

A _ a c k

S 1A 1 B 1

C r

C r

A 0 B 0
C r

C r

B lo c k 1 B lo c k 2
S _ a c kB _ a c k

S 0

A _ a c k

S 1A 1 B 1

C r

C r

A 0 B 0
C r

C r

B lo c k 1 B lo c k 2
S _ a c k

S ta g e 1

Fig. 5-b: A four-phase Dual-rail Buffer used as a memory

Moreover, this design approach is integrated in a design
framework, called TAST (Tima Asynchronous Synthesis
Tools), which enables an automatic generation of such
balanced circuits. Circuits are modelled using a high level

 4

hardware description language called CHP (Communicating
Hardware Processes) [15] [16]. The TAST CHP enables the
designer to use multi-rail data types implemented using 1 of
N encoding [14]. After synthesis, the tool formally verifies
that the structure of the circuit is well balanced, and that the
number of transitions involved in the computation is data
independent. Thus, at this logical or gate level the circuits
are formally proven to be DPA resistant.

III ASYNCHRONOUS AES ARCHITECTURE

In this section we apply the design approach presented in
section II to the design of an AES crypto-processor with
secure asynchronous blocks. The proposed architecture is
compliant with the NIST AES standard: 128 bit data blocks
and 128, 192 or 256 bit keys [4].

In order to easily interface the asynchronous AES crypto
processor to standard synchronous processors or ASICs, a
synchronous register-file and specific
synchronous/asynchronous and asynchronous/synchronous
interfaces are designed (Figure 6).
Apart from these interfaces, the asynchronous core of the
circuit is built of two main blocks: cipher block (AES_core)
and the key scheduling block (AES_key) (Figure 6).

D a ta
K e y
In s tru c tio n s
R e s u lt

A E S _ c o re
(C ip h e r B lo c k)

A E S _ k e y
(k e y s c h e d u lin g)

R
eg

is
te

rs D a ta
a n d K e y

D a ta

R
ou

nd
s

ke
y

K e y

R e s u lt

R e s u lt In
te

rfa
ce

s
(S

A/
A

S)

A E S S e c u re B lo c k

D a ta
K e y
In s tru c tio n s
R e s u lt

A E S _ c o re
(C ip h e r B lo c k)

A E S _ k e y
(k e y s c h e d u lin g)

R
eg

is
te

rs D a ta
a n d K e y

D a ta

R
ou

nd
s

ke
y

K e y

R e s u lt

R e s u lt In
te

rfa
ce

s
(S

A/
A

S)

A s y n c h ro n o u s B lo c k

D a ta
K e y
In s tru c tio n s
R e s u lt

A E S _ c o re
(C ip h e r B lo c k)

A E S _ k e y
(k e y s c h e d u lin g)

R
eg

is
te

rs D a ta
a n d K e y

D a ta

R
ou

nd
s

ke
y

K e y

R e s u lt

R e s u lt In
te

rfa
ce

s
(S

A/
A

S)

A E S S e c u re B lo c k

D a ta
K e y
In s tru c tio n s
R e s u lt

A E S _ c o re
(C ip h e r B lo c k)

A E S _ k e y
(k e y s c h e d u lin g)

R
eg

is
te

rs D a ta
a n d K e y

D a ta

R
ou

nd
s

ke
y

K e y

R e s u lt

R e s u lt In
te

rfa
ce

s
(S

A/
A

S)

A s y n c h ro n o u s B lo c k

Fig. 6: AES component

III.1 REGISTER FILE

The register-file is composed of a Mode register and 3
register-sets respectively storing the plain text, the keys, and
the ciphered text.
- 1 register of 4 bits for the Mode,
- 8 registers of 16 bits for the plain text,
- 16 registers of 16 bits for the key,
- 8 registers of 16 bits for the ciphered text.
The Mode register allows the user to configure the crypto
processor (key length), and on request to start the
computation. It also includes a flag which is set when the
text is ciphered and ready for up-loading.

III.2 INTERFACES

This block implements the conversion functions required
for a synchronous environment to communicate and
synchronize with an asynchronous block. The
synchronous/asynchronous interface converts standard
binary data to N-rail data. The asynchronous/synchronous
interface converts N-rail data to standard binary data.

As this work objective is to evaluate the asynchronous
technology potentials in terms of DPA resistance, these
interfaces and register-file are not designed for security and
will not be operating when the asynchronous AES is
computing.

III.3 CIPHER BLOCK (AES_core)

This block implements the four main functions of the

Rijndael algorithm, namely: Addkey, Bytesubs, Shiftrows
and Mixcolumns. The data path of one round is described in
Figure 7. During the first round, only Addkey is used.
During the last round Mixcolumns is not used [9].

Given this data path, three architectures can be considered
according to the number of bytes processed (1, 4 or 16
bytes). In the first and the second cases (1 or 4 bytes), the
use of registers is necessary: a minimum of 15 registers for
the 1-byte data path, and 12 registers for the 4-byte data
path. With a key length of 128 bits, the computation of the
128-bit text requires 160 and 40 iterations respectively. The
fully parallel architecture processing the 16-byte in parallel
would require a lot of hardware resources, especially for the
substitution function (16 Bytesubs, only for the cipher
block). Given the targeted applications and the estimated
hardware costs, the best speed/area trade-off is the 4-byte
data-path. Its architecture is depicted in Figure 8 whereas
the other architectures are discussed in section VI.

Fig. 7: Rijndael Round operation.

A d d la s tk e y

A d d k e y0

M u x

C 0 C 1 C 2 C 3

Sh
ift

ro
w

H B H B H B H BB U

D
m

ux
1_

4

S
_C

al
0

S
_C

al
1

S
_C

al
2

S
_C

al
3

D m u x

M ix c o lu m n

A d d ro u n d k e y

D m u x k e y

D A

D
in

_C
0

A r K e yR

K
ey

L

K
ey

0

M u x 4 _ 1

D 0 D 1 5

C
tr

l0
_L

ec
t

C
tr

l3
_L

ec
t

D
in

_C
3

D
in

_C
1

D
in

_C
2

C
al

0
A

x0

A
x1

A
x2

A
x3

C
al

1

C
al

2

C
al

3

C
ha

nn
el

 c
on

tr
ol

S
h_

C
0

S
h_

C
1

S
h_

C
2

S
h_

C
3

B
yt

es
ub

SB
O

X

B
yt

es
ub

B
yt

es
ub

B
yt

es
ub

In
vA

ff0

In
vA

ff1

In
vA

ff2

In
vA

ff3

K e y i0

D o u t_ C 1 5

K e y i1

D
M

0

D
M

1

D
m

2

D
M

3

H B H B H B H B

B
M

ix
0

B
M

ix
1

B
M

ix
2

B
M

ix
3

M
ix

0

M
ix

1

M
ix

2

M
ix

3

D L

D o u t_ C 0

B A r

C
ontrols System

N
k

A d d la s tk e y

A d d k e y0

M u x

C 0 C 1 C 2 C 3

Sh
ift

ro
w

H B H B H B H BB U

D
m

ux
1_

4

S
_C

al
0

S
_C

al
1

S
_C

al
2

S
_C

al
3

D m u x

M ix c o lu m n

A d d ro u n d k e y

D m u x k e y

D A

D
in

_C
0

A r K e yR

K
ey

L

K
ey

0

M u x 4 _ 1

D 0 D 1 5

C
tr

l0
_L

ec
t

C
tr

l3
_L

ec
t

D
in

_C
3

D
in

_C
1

D
in

_C
2

C
al

0
A

x0

A
x1

A
x2

A
x3

C
al

1

C
al

2

C
al

3

C
ha

nn
el

 c
on

tr
ol

S
h_

C
0

S
h_

C
1

S
h_

C
2

S
h_

C
3

B
yt

es
ub

SB
O

X

B
yt

es
ub

B
yt

es
ub

B
yt

es
ub

In
vA

ff0

In
vA

ff1

In
vA

ff2

In
vA

ff3

K e y i0

D o u t_ C 1 5

K e y i1

D
M

0

D
M

1

D
m

2

D
M

3

H B H B H B H B

B
M

ix
0

B
M

ix
1

B
M

ix
2

B
M

ix
3

M
ix

0

M
ix

1

M
ix

2

M
ix

3

D L

D o u t_ C 0

B A r

C
ontrols System

N
k

C
ontrols System

N
k

Fig. 8: Cipher block architecture (AES_core).

 5

III.3.1 ADDKEY FUNCTION IMPLEMENTATION

It is an Exclusive-Or between the four bytes of the State
and the four bytes of the key. The Addkey0 block deals with
the initial key, the Addroundkey block takes sub-keys as
inputs, whereas the Addlaskey block computes the last
ciphering operation with the last sub-key. As presented in
figure 4, the use of Dual-rail xor gates ensures a well
balanced architecture.

III.3.2 BYTESUBS FUNCTION

Its equation is given by: B(z)=[(1F).(z)-

1+(63)]mod(x8+1). It is constructed by the composition of
two transformations: an affine transformation and an
inverse multiplication.

- The affine transformation is defined by:

Baff(z)=[(1F)(A(x))+(63)]mod(x8+1).

The expansion of this equation is given by:

b7= a3+a4+a5+a6+a7
b6= a2+a3+a4+a5+a6+1
b5= a1+a2+a3+a4+a5+1
b4= a0+a1+a2+a3+a4
b3= a0+a1+a2+a3+a7
b2= a0+a1+a2+a6+a7
b1= a0+a1+a5+a6+a7+1
b0= a0+a4+a5+a6+a7+1

After factorizing redundant terms, this function is

implemented with 17 dual-rail xor gates. Because “a xor 1 =
not (a)”, this operation does not require any hardware. In
fact, the logical “not” of a dual-rail coded bit is simply
obtained by exchanging the two rails.

- The inverse multiplication in GF(28) is defined by:

Binv(z)=(z)-1 mod(x8+ x4+ x3+x+1)

This transformation is implemented by using the
architecture defined in [2] [3] [5]. This architecture is based
on changing the representation from the GF(28) Galois field
into GF(24) Galois field, performing the inverse
multiplication into GF(24) and finally converting the result
back to GF(28). That is made possible because the finite
Galois field GF(28) is isomorphic to the finite Galois field
(GF(24))². GF(28) is considered as an extension of GF(24). It
is formalized by: a = ah x + al with a ∈ GF(28) and ah, al ∈
GF(24). All mathematical operations done in GF(28)
remains possible in GF(24). The irreducible polynomial
needed for modular reduction is given by:

n(x) = x² + {1}x + {e}

Coefficients {1} and {e} are written in hexadecimal.

Hence, the inverse multiplication is expressed as specified
in equation (E1) below:

(ahx +al) * (ahx + al)-1 = 1 mod n(x) with ah, al ∈ GF(24)
 (ahx + al)-1 = (ah * d)x + (ah + al) * d

with d = ((ah² *{e}) + (ah * al)+ al²)-1

Figure 9 describes the architecture of this computation (E1).
The benefit of this alternative algorithm is the reduction

of the hardware cost. In fact, because operations in GF(24)
process 16 elements of GF(24), the adoption of 1 of 16
encoding for the GF(24) elements leads to an efficient
hardware implementation. In this case every GF(24) element
is represented by one rail. As an illustration of the reduction
of hardware complexity, let’s consider the squaring block
(Square_MR16) described in Figure 10 which now does not
require any gate. It is simply implemented by wire
exchanges.

Like the Square_MR16 block, the multiplication by
constant {e} performed in block Mult_E_MR16 and the
inverse computation performed in block Inverse_MR16 are
simplified and implemented with wires only, thanks to the 1
of N encoding.

F o n c_ M a p
B h B l

C o n v _ D R _to _ M R 16

C a r r e _ M R 1 6 C a r r e _ M R 1 6

M u lt_ E _M R 1 6

M u lt ip l ieu r M R 16 X o r M R 1 6

X o r M R 1 6

X o r M R 1 6

In v er s e_ M R 1 6

M u lt ip l ieu r M R 16M u lt ip l ieu r M R 16

F o n c_ In v _ M a p
A_ o u t

M R _ LM R _ H

E q u a tio n (E 1)

A_ in

C _ M R _ B H C _ M R _ B L

M u lt _ M R

M _ B H _ B L M _ B H _ B L

X_ M U L T_ C

A _ M R

I nv _ M R

R _ M R _ LR _ M R _ H

AlAh

C o n v _ M R 16 _ t o _ D R

F o n c_ M a p
B h B l

C o n v _ D R _to _ M R 16

S q u are _M R1 6 S q u are _M R1 6

M u lt_ E _M R 1 6

M u ltip l ic a tio n _ M R 1 6 X o r M R 1 6

X o r M R 1 6

X o r M R 1 6

In v er s e_ M R 1 6

M u ltip l ic a tio n _ M R 1 6M u l tip l ic a tio n _ M R 1 6

F o n c_ In v _ M a p
A_ o u t

M R _ LM R _ H

E q u a tio n (E 1)

A_ in

C _ M R _ B H C _ M R _ B L

M u lt _ M R

M _ B H _ B L M _ B H _ B L

X_ M U L T_ C

A _ M R

I nv _ M R

R _ M R _ LR _ M R _ H

AlAh

C o n v _ M R 16 _ t o _ D R

F o n c_ M a p
B h B l

C o n v _ D R _to _ M R 16

C a r r e _ M R 1 6 C a r r e _ M R 1 6

M u lt_ E _M R 1 6

M u lt ip l ieu r M R 16 X o r M R 1 6

X o r M R 1 6

X o r M R 1 6

In v er s e_ M R 1 6

M u lt ip l ieu r M R 16M u lt ip l ieu r M R 16

F o n c_ In v _ M a p
A_ o u t

M R _ LM R _ H

E q u a tio n (E 1)

A_ in

C _ M R _ B H C _ M R _ B L

M u lt _ M R

M _ B H _ B L M _ B H _ B L

X_ M U L T_ C

A _ M R

I nv _ M R

R _ M R _ LR _ M R _ H

AlAh

C o n v _ M R 16 _ t o _ D R

F o n c_ M a p
B h B l

C o n v _ D R _to _ M R 16

S q u are _M R1 6 S q u are _M R1 6

M u lt_ E _M R 1 6

M u ltip l ic a tio n _ M R 1 6 X o r M R 1 6

X o r M R 1 6

X o r M R 1 6

In v er s e_ M R 1 6

M u ltip l ic a tio n _ M R 1 6M u l tip l ic a tio n _ M R 1 6

F o n c_ In v _ M a p
A_ o u t

M R _ LM R _ H

E q u a tio n (E 1)

A_ in

C _ M R _ B H C _ M R _ B L

M u lt _ M R

M _ B H _ B L M _ B H _ B L

X_ M U L T_ C

A _ M R

I nv _ M R

R _ M R _ LR _ M R _ H

AlAh

C o n v _ M R 16 _ t o _ D R

Fig. 9: Inverse function in GF(28)

0 1 5 4 2 3 7 6 10 11 15 14 8 9 13 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input

Output

0 1 5 4 2 3 7 6 10 11 15 14 8 9 13 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 5 4 2 3 7 6 10 11 15 14 8 9 13 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input

Output

0 1 5 4 2 3 7 6 10 11 15 14 8 9 13 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 10: Square_MR16 implementation

The Xor_MR16 and the Multiplication_MR16 blocks are
xor and multiplication operations also performed on 1 of 16
encoded data. Both blocks have very simple
implementations involving C-elements and OR gates. If
performing the computation into GF(24) using 1 of 16
encoded data is simplifying the computation, it requires
some extra conversion functions. These functions are
denoted Fonc_Map, Fonc_Inv_Map, Conv_DR_to_MR16
and Conv_MR16_to_DR in Figure 9. However, the extra
hardware cost of these conversion blocks is negligible when
compared to hardware savings realized on the computation
blocks.

(E1)

 6

To conclude, the choice of this algorithm together with
the choice of the 1 of 16 encoding bring the following
advantages.
- The power consumption is very low, because only 1 wire
is activated (1 to 16 encoding data) when processing a
GF(24) element.
- The architecture is balanced at the price of a very low
overhead in order for the computation to involve a constant
number of logical transitions regardless of the data values.
- The speed is high because the optimization proposed
reduces the number of blocks on the critical path, and then
reduces its latency.

III.3.3 MIXCOLUMNS FUNCTION

The Mixcolumns transformation consists in multiplying a
column of 4 bytes by the square matrix defined by:

=

d
c
b
a

M
M
M
M

.

02010103
03020101
01030201
01010302

3

2

1

0

It can be expanded to the following equations:

M1 = 02 (a + b) + b + c + d
 M2 = 02 (b + c) + c + a + d
 M3 = 02 (d + c) + a + b + d

M4 = 02 (a + d) + b + c + a

The implementation diagram is described in Figure 11.

The Xor8_SB blocks calculate 8 bit XORs. The “Xtime”
block is defined by: “02.(a + b)”. It requires a shift and a
reduction when the MSB’s value is one. To guarantee that
the architecture is balanced, the reduction operation is
always performed, regardless of the MSB’s value. The
Xtime schematic, based on Muller C-elements and OR gates
is described in Figure 12.

Xor8_SB

A B

A_xor_B
Xor8_SB

B C

B_xor_C
Xor8_SB

C D

C_xor_D
Xor8_SB

A D

A_xor_D

Xt
im

e

Xt
im

e

Xt
im

e

Xt
im

eXor8_SB Xor8_SB Xor8_SB Xor8_SB

A

ACD

C

CAB

D

DBC

B

BAC

Xor8_SB Xor8_SB Xor8_SB Xor8_SB

C1 C2 C3 C4

Mix2Mix0 Mix1 Mix3

Xor8_SB

A B

A_xor_B
Xor8_SB

B C

B_xor_C
Xor8_SB

C D

C_xor_D
Xor8_SB

A D

A_xor_D

Xt
im

e

Xt
im

e

Xt
im

e

Xt
im

eXor8_SB Xor8_SB Xor8_SB Xor8_SB

A

ACD

C

CAB

D

DBC

B

BAC

Xor8_SB Xor8_SB Xor8_SB Xor8_SB

C1 C2 C3 C4

Mix2Mix0 Mix1 Mix3

Fig. 11: Mixcolumns function

O
ut

pu
t (

0)

In
pu

t (
1)

O
ut

pu
t (

1)

C C C C C C

In
pu

t (
15

)

In
pu

t (
0)

In
pu

t (
14

)

In
pu

t (
15

)

In
pu

t (
0)

In
pu

t (
1)

In
pu

t (
14

)

In
pu

t (
15

)

In
pu

t (
12

)

In
pu

t (
14

)

In
pu

t (
12

)

In
pu

t (
15

)

In
pu

t (
15

)

In
pu

t (
14

)

In
pu

t (
13

)

O
ut

pu
t (

14
)

O
ut

pu
t (

15
)

C C

In
pu

t (
14

)

In
pu

t (
15

)

O
ut

pu
t (

2)

O
ut

pu
t (

3)

In
pu

t (
13

)

In
pu

t (
14

)

C C

O
ut

pu
t (

0)

In
pu

t (
1)

O
ut

pu
t (

1)

C C C C C C

In
pu

t (
15

)

In
pu

t (
0)

In
pu

t (
14

)

In
pu

t (
15

)

In
pu

t (
0)

In
pu

t (
1)

In
pu

t (
14

)

In
pu

t (
15

)

In
pu

t (
12

)

In
pu

t (
14

)

In
pu

t (
12

)

In
pu

t (
15

)

In
pu

t (
15

)

In
pu

t (
14

)

In
pu

t (
13

)

O
ut

pu
t (

14
)

O
ut

pu
t (

15
)

C C

In
pu

t (
14

)

In
pu

t (
15

)

O
ut

pu
t (

2)

O
ut

pu
t (

3)

In
pu

t (
13

)

In
pu

t (
14

)

C C

Fig. 12: Xtime function gate implementation.

III.3.4 SHIFTROWS FUNCTION

With the 4-byte data-path described in Figure 8,
Shiftrows is built of four different blocks called C0 to C3
performing bytes reordering and rescheduling. C0 to C3
receive four 4-byte-packets in sequence: packet1 includes
bytes 0 to 3, packet2 includes bytes 4 to 7, packet3 includes
bytes 8 to 11, and packet4 includes bytes 12 to 15. At the
output, C0 to C3 produce four 4-byte-packets in sequence as
follows: packet1 includes bytes 0, 4, 8, 12, packet2 includes
bytes 1, 5, 9, 13, packet3 includes bytes 2, 6, 10, 14, and
packet4 includes bytes 3, 7, 11, 15 (Figure 13).
C0 to C3 are designed so as to minimize the memory
resources. The minimum number of bytes stored in the
structure is 12, equally distributed in the Ci blocks. A finite
state machine is added to each Ci block in order to
implement bytes rescheduling.

C h a n n e l0

0 4 8 1 2

0 4 8 1 2

C h a n n e l1

1 5 9 1 3

5 9 1 3 1

C h a n n e l2
2 6 1 0 1 4

1 0 1 4 2 6

C h a n n e l3
3 7 1 1 1 5

1 5 3 7 1 1

C h a n n e l0

0 4 8 1 2

0 4 8 1 2

C h a n n e l1

1 5 9 1 3

5 9 1 3 1

C h a n n e l2
2 6 1 0 1 4

1 0 1 4 2 6

C h a n n e l3
3 7 1 1 1 5

1 5 3 7 1 1

Fig. 13: Shiftrows C0 to C3 blocks specification.

IV KEY SCHEDULING (AES_key)

The AES_key block is in charge of generating, on fly, all
necessary sub-keys for the ciphering block AES_Core. Its
architecture is also based on a 4-byte data-path (Figure15).
Most of the blocks have similar structures than the blocks
used in the ciphering data-path, and are all balanced to
involve a constant number of logical transitions.

Figure 15 describes the AES-Key block architecture. The
FIFO obtained by cascading half-buffers, is required to
temporally store the sub-keys within the computation loop.
The AES Rcon(i) function is implemented by the XOR_RC
block which includes a permutation of the inputs (Rotbytes
function [9]).

 7

FIFO

S_box

Dem ux1_2_RC

M ux3_1_Xor

Xor_key

D
em

ux
1_

3_
xo

r

Xor_RC

Keyi0

D uplicate

C ontrol System

M ux2_1_Sbox

Mux9_1_Key

S0 S31
L0

L3

K0 K3

A0 A3

Keyi3

S28B S31B

I0

I3

B0 B3

F0 F3

G 0 G 3F0_RC F3

P0

P3

M 0 M 3

C0 C3

N k

E0 E3

FIFO

S_box

Dem ux1_2_RC

M ux3_1_Xor

Xor_key

D
em

ux
1_

3_
xo

r

Xor_RC

Keyi0

D uplicate

C ontrol System

M ux2_1_Sbox

Mux9_1_Key

S0 S31
L0

L3

K0 K3

A0 A3

Keyi3

S28B S31B

I0

I3

B0 B3

F0 F3

G 0 G 3F0_RC F3

P0

P3

M 0 M 3

C0 C3

N k

E0 E3

Fig. 15: AES_Key architecture.

V. RESULTS

All the test vectors provided by the NIST were used to
validate the circuit. Validation was performed by simulating
the CHP specification as well as the VHDL gate netlist. To
design the asynchronous AES crypto-processor we used the
0,13 µm CMOS technology from STMicroelectronics.

Fig. 16: QDI AES crypto-processor layout

Following the synthesis procedure presented in section
II, we obtained a VHDL gate netlist of the whole
architecture. This netlist is instantiating standard cells
drawn from the library provided by STMicroelectronics
only. No dedicated cells were used [10]. Place-and-route
steps were performed using Silicon Ensemble tools from
Cadence. The gate Netlist back annotated with wire and
gate delays has been simulated. Layout area, speed and
power figures are reported in table 2.

Table 2: Area, speed and power of AES crypto-processor
(Standard Cells - Gate Netlist simulation with wire and

gate delays back annotation).

Key
Length

Vdd Area
without

pads

Area
with
pads

Ciphering
time

Power
(average)

Throughput

128
bit key

850 ns 150 Mbits/s

192
bit key

1030 ns 124 Mbits/s

256
bit key

1.2 v
1210 ns

8.6 mA

106 Mbits/s

128
bit key

3920 ns 33 Mbits/s

192
bit key

4720 ns 27 Mbits/s

256
bit key

0.6 v

0,490
mm²

1,69
mm²

5520 ns

0.8 mA

23 Mbits/s

The ciphering time is the time elapsed from the writing
of the start bit of the Mode register to the setting of the

completion-flag. The larger the key, the longer the ciphering
time. The computation of a single round requires about 90
ns when the circuit is powered at 1.2 volt. Therefore, the
inner computational loop is performed within about 22.5 ns.
The circuit still process with power supply of 0.6 volt by
reducing current down to a facto ten and increasing time up
to a factor four. According to the target applications, this
flexibility makes possible to dramatically reduce the current
in spite of time.

We have estimated the benefits of using dedicated cells
[10] such as C-elements in terms of area and speed. Table 3
presents this estimation performed on the AES crypto-
processor. The area is divided by two whereas the latency is
reduced by about 30 %.

Table 3: Area and Speed estimations using dedicated cells.

Key length Vdd Area without pads Ciphering time Throughput
128 bit key 595 ns 215 Mbits/s
192 bit key 721 ns 178 Mbits/s
256 bit key

1.2 v

0,24 mm²

892 ns 143 Mbits/s

VI. ARCHITECTURE TRADE-OFFS

As stated in section II, the AES architecture is very
modular and then offers several options for choosing the
data-path wideness according to the applications and
throughput targeted. Starting from the architecture
presented in section III (Figure 8), we were able to evaluate
two other data-path architectures: the 128-bit wide data-path
for high throughput, and the 8-bit wide data-path for low
speed / low area. Figure 16 gives the synopses of these
architectures for the AES_Core. 8-bit and 128-bit AES_Key
data-paths are easily obtained but are not represented.

ou
tp

ut

128

keyi

128

32

32

Mux16_1

Addkey0

8

Mux

16 registers

Bytesub

4 registers

Mixcolumn

Mux4_1

BU

A
dd

la
st

ke
y

D
M

ux
1_

32

Mux

Sh
ift

ro
w

BU

Addroundkey

Keyi

0 15

B
yt

es
ub

SB
O

X
B

yt
es

ub

128

DMux

32 32 32 32

D
m

uxkey

Addkey0

O
ut

pu
t

b) a)

Mixcolumn

A
dd

la
st

ke
y

D
m

uxkey

DMux

Addroundkey

ou
tp

ut

128

keyi

128

3232

3232

Mux16_1

Addkey0

8

Mux

16 registers

Bytesub

4 registers

Mixcolumn

Mux4_1

BU

A
dd

la
st

ke
y

D
M

ux
1_

32

Mux

Sh
ift

ro
w

BU

Addroundkey

Keyi

0 15

B
yt

es
ub

SB
O

X
B

yt
es

ub

128

DMux

3232 3232 3232 3232

D
m

uxkey

Addkey0

O
ut

pu
t

b) a)

Mixcolumn

A
dd

la
st

ke
y

D
m

uxkey

DMux

Addroundkey

Fig. 17: Alternative AES architectures:
a) 128-bit data-path, b) 8-bit data-path.

 8

Table 4 reports the comparison of the three architectures
in terms of estimated area and speed when the key length is
128 bits by using Standard cells library. Even though table 4
concerns the AES_Core data-path only, the same scaling
factors apply to the AES_Key data-paths.

Table 4 shows that the 8-bit data-path is twice smaller
than the 32-bit data-path but is about 3.5 times slower. On
the contrary, the 128-bit data-path is about 2.2 times larger,
but is more four times faster than the 32-bit data-path.

Table 4: Area/speed trade-offs for the AES_Core data-path.

Data path Vdd Area Ciphering time Throughput

8 bits 0.088 mm² 3600 ns 36 Mbits/s
32 bits 0.192 mm² 850 ns 150 Mbits/s
128 bits

1.2 v

 0.427 mm² 225 ns 569 Mbits/s

Moreover, applying aggressive pipelining techniques and
using dedicated library cells would even increase the
throughput of the 128-bit data-path.

VII. CONCLUSION

This paper presents the first secure QDI asynchronous
architecture of the AES. It is shown how QDI asynchronous
technology together with 1 of N encoding can be exploited
to: i) reduce the hardware complexity and decrease the
latency, ii) improve DPA resistance by logical paths
balancing. Several architectural tradeoffs are considered,
enabling the use of this new design methodology to a wide
spectrum of applications ranging from networking to smart-
cards.

Current works are focused on the back-end steps
(standard cell choice and place and route) in order to
preserve the benefits of logical path balancing at the
electrical/physical level. Prototypes have been sent for
fabrication. They will enable us to perform differential
power analysis and measure the approach efficiency.

REFERENCES

[1] Henry Kuo, Ingrid Verbauwhede, “Architecture Optimization for a 1.82
Gbits/sec VLSI implementation of the AES Rijndael Algorithm”,
Cryptographic Hardware and Embedded Systems - CHES 2001, Third
International Workshop, Paris, France, May 14-16, 2001, Proceedings.
Springer 2001, ISBN 3-540-42521-7.
[2] Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger, “An
ASIC Implementation of the AES Sboxes”, Wolkerstorfer J., Oswald E.,
Lamberger M. "An ASIC implementation of the AES S-Boxes",
Proceedings of the Cryptographer's Track at the RSA Conference 2002,
LNCS 2271, Springer Verlag, Feb. 2002.
[3] Vincent Rijmen, “Efficient Implementation of the Rijndael Sbox”,
http://www.esat.ku-leuven.ac.be/~rijmen/rijndael/
[4] NIST, Advanced Encryption Standard (AES), FIPS PUBS 197,
National Institute of Standards and Technology, November 2001.
http://csrc.nist.gov/CryptoToolkit/aes/
[5] An Optimized S-box Circuit Architecture for Low Power AES Design.
http://csrc.nist.gov/CryptoToolkit/aes/
[6] A. K. Lutz, J. Treichler, F. K. Gürkaynak, H. Kaeslin, G. Basler, A.
Erni, S. Reichmuth, P. Rommens, S. Oetiker, and W. Fichtner‚ “2Gbit/s
hardware realizations of RIJNDAEL and SERPENT: A comparative
analysis”, Cryptographic Hardware and Embedded Systems - CHES 2002,
LNCS 2523, pp. 144-158, 2003 Third Springer – Verlag Berlin Heidelberg
2003.
[7] Marc Renaudin, “Asynchronous circuits and systems: a promising
design alternative”, Microelectronic Engineering 54 (2000) 133-149.
[8] Simon Moore, Ross Anderson, Paul Cunningham, Robert Mullins,
George Taylor, “Improving Smart Card Security using Self-timed

Circuits”, Eighth International Symposium on Asynchronous Circuits and
systems (ASYNC2002). 8-11 april 2002. Manchester, U.K.
[9] J. Daemen and V. Rijimen, “AES Proposal: Rijndael.” Available at
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
[10] P. Maurine, J.B. Rigaud, F. Bouesse, G. Sicard, M. Renaudin, “Static
Implementation of QDI Asynchronous Primitives”, 13th International
Workshop on Power and Timing Modeling, Optimization and Simulations,
PATMOS2003.
[11] B. Weeks, M. Bean, T. Rozylowicz, C. Ficke : Hardware
Performance Simulations of round 2 Advanced Encryption Standard
Algorithms. National Security Agency (NSA)
[12] K Gaj, P. Chodowiec : Hardware performance of the AES finalists –
survey and analysis of result. Technical Report, George Mason University,
September 2000.
[13] N. Weaver, J. Wawrzynek : A Comparison of the Candidates
Amenability to FPGA Implementation. Proceedings of the Third Advanced
Encryption Stndard Candidate Conference, New York, April 2000, 28-39.
[14] TAST tutorial, Summer School on Asynchronous Circuit Design”,
july 15-19,2002. TIMA Laboratory. Grenoble- France
[15] A. Martin, "Synthesis of Asynchronous VLSI Circuits", Caltech-CS-

TR-93-28.
[16] A.J. Martin, "Programming in VLSI: from communicating processes
to delay-insensitive circuits", in C.A.R. Hoare, editor, Developments in
Concurrency and Communication, UT Year of Programming Series, 1990,
Addison-Wesley, p. 1-64.
[17] A.J. Martin, "The limitations to delay-insensitivity in asynchronous
circuits", in W.J. Dally, editor, Proceedings of the Sixth MIT Conference
on Advanced Research in VLSI, 1990, MIT Press, p. 263-278.
[18] K. Van Berkel, "Beware the isochronic fork", Integration, the VLSI

journal, N° 13, pp. 103-128, 1992.
[19] Marc Renaudin, Fraidy Bouesse, “On the design of secure chips”,
EPFL conference, June 2002, http://tima.imag.fr/cis .
[20] Fraidy Bouesse, Laurent Fesquet, Marc Renaudin “QDI circuit to
Improve Smartcard Security”, 2nd Asynchronous Circuit Design Worshop
(ACID2002), Munich; Germany, 28-29 Januray,2002.
[21] A. Abrial, J. Bouvier, M. Renaudin, P Senn and P. Vivet, « A New
Contactless Smart Card IC using On-chip Antenna and Asynchronous
Microcontroller », Journal of Solid-State Circuits, Vol. 36, 2001, pp. 1101-
1107.
[23] A. Shamir, “Protecting Smart Cards from Passive Power Analysis
with Detached Power Supplies”, Proceedings of Cryptographic Hardware
and Embedded Systems (CHES 2000), 2000, pp.71-77.
[24] K. Tiri, M. Akmal, I. Verbauwhede, "A Dynamic and Differential
CMOS Logic with Signal Independent Power Consumption to Withstand
Differential Power Analysis on Smart Cards", Proceedings of 28th
European Solid-State Circuits Conference (ESSCIRC 2002), 2002, pp 403-
406.
[25] J.J.A. Fournier, S. Moore, H. Li, R. Mullins, G. Taylor, "Security
Evaluation of Asynchronous Circuits” proceedings of Cryptographic
Hardware and Embedded Systems (CHES 2003), 2003, LNCS 2779,
pp.137-151.

