
Formal Framework for the Evaluation of

Waveform Resynchronization Algorithms

Sylvain GUILLEY1, Karim KHALFALLAH2,
Victor LOMNE2 and Jean-Luc DANGER1

1 TELECOM-ParisTech, CNRS LTCI, FRANCE.
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Abstract. In side-channel analysis, the waveforms can be acquired mis-
aligned. Several algorithms have been put forward to resynchronize sig-
nals, as a pretreatment before the attack proper. In this article, we ex-
amine two of them, namely amplitude-only and phase-only correlation
(abridged AOC and POC), and introduce a third one, called threshold-
POC (T-POC) that corrects a flaw of the phase-only correlation. Those
three resynchronization algorithms are computationally efficient insofar
as they find the correct displacement in O(n log n) steps per waveform
made up of n samples.
Former studies on resynchronization algorithms quantified their qual-
ity by their indirect effect on side-channel attacks. We introduce in this
article a formal framework for the evaluation of the resynchronization
algorithms per se. A benchmarking on representative waveforms shows
that there is an adequation between the waveforms and the most suit-
able resynchronization algorithm. On unprotected circuits, the intra-
waveform similarity in amplitude or in phase determines the choice for
either the AOC or the POC algorithm. Circuits protected by hiding
countermeasures have their amplitude made as constant as possible.
Therefore, the intra-waveform similarity in amplitude is lowered and
the POC is better. Circuits protected by masking countermeasures have
their amplitude made as random as possible. Therefore, even if the intra-
waveform similarity in amplitude is high, the inter-waveform similarity
is reduced; hence a trade-off between AOC and POC, namely T-POC, is
the most adequate resynchronization algorithm.

1 Introduction

Side-channel analysis starts with the acquisition of a collection of waveforms,
corresponding typically to the measurement of the power or to the radiated
electromagnetic (EM) field of a targeted device. However, these measurements
can be desynchronized for several reasons. Very often, the attacker does not
have an access to a signal that indicates that the operation to be spied is begin-
ning. Instead, the attacker can approximate the operation boundaries indirectly,
for instance by sending a request and observing the response. Most embedded
systems react in non-deterministic timing because they must handle internally
asynchronous buffering and interruptions. In some other cases, the delay between
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the external trigger and the operation processing results from a countermeasure,
such as instructions shuffling [17] or random delay insertion [21,3].

Strictly speaking, misalignement of measurements, either due to approximate
synchronization between the acquisition apparatus and target or to intentional
desynchronization, does not prevent attacks. It is shown in [2] that the averag-
ing of the curves is a solution to get round these drawbacks. Let us assume the
desynchronization results from a displacement of the waveforms by a number of
clock periods that varies in the interval J0, tJ. We say that t ∈ N∗ is the size of
the desynchronization window. Then, in the extreme case where the desynchro-
nization is uniformly distributed over J0, tJ (which is almost achieved by [3]),
the correlation ρ between the waveforms and a leakage model with the misalign-
ment is equal to 1/

√
t times that without any misalignement. Now, the speed

of a correlation power analysis (CPA [1]) is directly linked to these correlation
coefficients. More precisely, the average number of waveforms required to break
a cryptographic implementation is equal to [12,13]:
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where Z1−α is the quantile of a normal distribution for the 2-sided confidence
interval with error 1− α. For low values of ρ, the Eqn. (1) is ∝ ρ−2. Therefore,
all in one, the number of traces to break a cryptographic implementation with a

misalignment window t is roughly multiplied by
(

1/
√

t
)−2

= t. This shows that
the countermeasure is not very impeding.

Nonewithstanding, it is better for an attacker to get rid off the misalignement,
so as to attack in the best conditions. Conversely, from the evaluator’s stand-
point, it is important to know if a prospective attacker can indeed manage to
revert the misalignement. Therefore, we focus in this article on the algorithms to
resynchronize the side-channel waveforms, and forget the attack or the analysis
that follows.

In the sequel, we are interested in resynchronizing waveforms that have been
translated in time by an integer number n of acquisition samples. This is a
more general case than the abovementioned displacements of integer number
of clock cycles. Indeed, modern oscilloscopes digitize waveforms at a very high
sampling rate, so that many samples are captured per clock period. Additionally,
we assume the clock frequency is stable and we do not address the reversal of
the varying clock (VC [16,8,22]).

The rest of the article is organized as follows. In Sec. 2, the state-of-the-art
resynchronization algorithms, namely AOC and POC, are introduced. One flaw
of POC is described, and the threshold-POC (called T-POC) is defined. The
complexity of the three algorithms is shown to be optimal. A formal framework
for the evaluation of resynchronization algorithms is described in Sec. 3. The
three algorithms are evaluated based on real side-channel waveforms captured
from representative circuits, without and with side-channel countermeasures.
Finally, the conclusions and the perspectives are given in Sec. 4.
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2 Resynchronization Algorithms

2.1 Problem Statement

Theoretically, a waveform X is a series of real values, i.e. an element of RZ.
We note Xi the sample of X at date i ∈ Z. Now, the measured waveform Y
is said be desynchronized by an offset of k samples with respect to X if it sat-
isfies: ∀i, Yi = Xi−k. In practice, the (unshifted) reference X is unknown and
the acquisition is limited in time. Thus, a waveform will rather be a finite set
of n samples, belonging to Rn. Given a collection of misaligned waveforms, the
resynchronization problem consists in finding the correct offset for each of them.
In fact, a relative offset is sufficient, because it allows to bring all the waveforms
in phase; whether they are collectively offset by a constant time shift is generally
not an issue. Indeed, most side-channel attacks consist in validating an hypoth-
esis based on the maximization of a distinguisher over both time samples and
key hypotheses. Thus an arbitrary collective offset in time does not change the
side-channel attack’s outcome. More specifically, in this paper, we focus on the
resynchronization with respect to one reference waveform. The resynchroniza-
tion thus comes down to the unitary problem of resynchronizing waveform Y
knowing one reference waveform X .

2.2 AOC: Amplitude-Only Correlation

The cross-correlation X ⋆ Y between two waveforms X and Y is a new wave-
form, whose sample i ∈ J0, nJ is defined as: (X ⋆ Y )i

.
=

∑

j∈Zn

Xj · Yj+i. In this
notation, the time indices are considered not in the bounded interval J0, nJ, but
in the additive group Zn. Strictly speaking, we choose to consider the sample
indexes modulo n to ease the computations, for instance in the identity involved
in Eqn. (4). But in practice, it also makes “physical” sense, for instance if a
waveform consists in the superposition of the clock activity and some extra sig-
nal incurred by cryptographic operations. This likely scenario is sketched in the
leftmost part of Fig. 1. The straightforward cross-correlation algorithm would
discard non-overlapping samples, resulting in a cross-correlation estimation over
n − k samples when testing for a k-sample offset. This sub-optimal solution
is depicted in the middle part of Fig. 1. To avoid this loss of samples in the
cross-correlation, we suggest to fold the shifted wave. The folded part, provided
it contains only non-cryptographic information, will consistently match the be-
ginning of the waveform, all the more so as the number of samples n divides
the number of clock periods in the waveform. This advantageous situation is
described in the right part of Fig. 1. We focus on this strategy in rest of the
article.

The cross-correlation3 can be used to recover the offset by guessing k̂, as the
offset that maximizes the cross-correlation between X and Y . Formally,

k̂ = argmaxk∈Zn

(X ⋆ Y )k . (2)

3 We would like to make clear that we name X⋆Y auto-correlation and not correlation
to avoid the confusion with Pearson correlation coefficient.
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Fig. 1. Typical trace, exhibiting a special cryptographic zone (left), cross-
correlation-based resynchronization without folding (center) and idem with fold-
ing (right). The shaded zone is the interval on which the “scalar product” can
be computed between X and Y shifted by k samples.

Let us note RORk the samples circular right shift operation: ∀i, RORk(X)i =
Xi−k, and A ·B the coordinate-wise product: (A ·B)i = Ai ·Bi. The resynchro-
nization algorithm of Eqn. (2) is said sound, since it indeed recovers the correct
offset when Y is equal to the reference waveform X circularly shifted by k′:

argmaxk∈Zn

(X ⋆ RORk′(X))k = argmaxk∈Zn

∑

j∈Zn

Xj ·Xj+(k−k′) = k′ .

This result comes from the application of the Cauchy-Schwarz theorem to an
auto-correlation.

The cross-correlation between two curves can be computed very efficiently
using the discrete Fourier transform (DFT). The definition of the DFT and of
the inverse DFT (IDFT), as per the library FFTW3 [4], is:

{

DFT (X)i

.
=

∑n−1
j=0 Xj · exp

(

−2πji
√
−1/n

)

,

IDFT (X)i

.
=

∑n−1
j=0 Xj · exp

(

+2πji
√
−1/n

)

.
(3)

The definition of Eqn. (3) is not normalized, since it implies that: DFT◦IDFT =
IDFT ◦DFT = nId. In these equations, expressions are waveforms, i.e. elements
of Rn. Then, we have the following property: DFT(X ⋆Y ) = DFT(X) ·DFT(Y ).
It allows to rewrite the cross-correlation as:

X ⋆ Y = IDFT
(

DFT(X) ·DFT(Y )
)

/n .

We also call the algorithm presented in this section the “amplitude-only
correlation” (AOC):

AOC(X ; Y )
.
= X ⋆ Y = IDFT

(

DFT(X) ·DFT(Y )
)

/n . (4)

2.3 POC: Phase-Only Correlation

The AOC can be contrasted with the phased-only correlation (POC), described
in [6,15,7]. In POC, the DFT of the reference X and desynchronized Y waveforms
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are normalized prior to being multiplied. The computed quantity is:

POC(X ; Y )
.
= IDFT





DFT(X) ·DFT(Y )
∣

∣

∣DFT(X)
∣

∣

∣ · |DFT(Y )|



 /n . (5)

The POC is also sound, since if Y = RORk′(X), then:

argmaxk∈Zn

POC(X ; RORk′(X))k = k′ . (6)

Indeed, DFT (RORk′ (X))i = DFT (X)i ·exp
(

−2πk′i
√
−1/n

)

. Let us note U the

vector of components Ui = exp
(

−2πk′i
√
−1/n

)

∈ C. Then

POC(X ; RORk′(X)) = IDFT





DFT(X) ·DFT(X) · U
∣

∣

∣DFT(X)
∣

∣

∣ · |DFT(X) · U |



 /n = IDFT (U) /n .

The result of Eqn. (6) comes from the fact that:

IDFT (U)i =

n−1
∑

j=0

exp
(

+2πj(i− k′)
√
−1/n

)

= n · δi−k′ , (7)

where δ is the Kronecker symbol, that satisfies δi = 0 if i 6= 0 and 1 otherwise.
Compared to the AOC, the authors of the POC underline that the former is

able to resynchronize with a resolution that is below the sampling rate. In this
article, we consider only the resynchronization problem stated in Sec. 2.1, i.e.

with an accuracy equal to that of the sample. We address the comparison of the
AOC and POC algorithms empirically in the next section 2.4.

2.4 POC Flaw and Threshold-POC

We base our empirical study on waveforms taken from the DPA contest [20].
The first line of Fig. 2 shows three waveforms to resynchronize. The leftmost
waveform, called X [0], is the reference. On its right, X [1] and X [2] are two
other waveforms from the same campaign that use different plaintexts, and that
have been shifted artificially in time by respectively 31 and 195 samples. The
exact details of these acquisitions is given in Tab. 1. These curves represent one
DES encryption, that computes one round per clock period. The sampling rate is
20 Gsample/s and the DES is cadenced at a clock frequency of 32 MHz. Hence,
one clock period lasts 625 samples. The waveforms are made up of n = 20, 000
samples, thus representing 32 clock periods. The 16 clock periods where the DES
hardware accelerator is computing are in the middle of the waveforms.

In this section, we compare AOC and POC algorithms on X [q], q ∈ {0, 1, 2}.
The application of the first method is illustrated on the second line of Fig. 2. The
three figures show the amplitude of the correlation for various offsets in J0, nJ.
It appears clearly that the auto-correlation AOC(X [0]; X [0]) is the greatest for
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Table 1. Detail of the encryption whose side-channel is represented in the first
line of Fig. 2.

Waveform Key Message Ciphertext Offset

X[0] 0x6a65786a65786a65 0x67c6697351ff4aec 0xc54baee5fc80756a 0

X[1] 0x6a65786a65786a65 0x29cdbaabf2fbe346 0x857f106855100811 31

X[2] 0x6a65786a65786a65 0xabb2cdc69bb45411 0x04385795f886e215 195

a null offset. However, the auto-correlation features peaks, of smaller amplitude,
for non-zero offsets: there is a peak (local maximum) at each clock period.

Therefore, the computation of the correlations with the shifted curves is
maximal at the “correct” offsets (31 and 195), but reveals also a local maximum
at the same offsets modulo the clock period. We also notice an especially large
peak at the correct offset plus 16 clock periods: the reason is that DES executes
in 16 clock periods and that the acquisition window happens, by chance, to
be exactly equal to 32 clock periods. There is therefore an ambiguity in the
correct phase to choose for the resynchronization. Nonetheless, the maximum
peak (indicated by a “

⊕

” sign) coincides with the actual offset.
The POC’s results are shown on the line below in Fig. 2. The POC alignment

of the reference waveform X [0] versus itself is, as expected, a real Dirac function.
This was indeed proved theoretically in Eqn. (7). Hence, the POC might look
better than AOC to distinguish the correct offset from offsets modulo one clock
period. Indeed, the graphs POC(X [0]; X [1]) and POC(X [0]; X [2]) show a clear
peak at the correct offsets. Although the noise of the POC is high, the correct
offset clearly stands out. But spurious peaks appear at high offsets, especially for
POC(X [0]; X [2]), where the greatest peak occurs at an offset of n−1 (indicated
by a “

⊗

” sign). The reason is the numerical instability, during the computation,
of the ratio:

DFT(X) ·DFT(Y )

|DFT(X)| · |DFT(Y )|
for small modulus values of DFT(X) or DFT(Y ), because of a floating point
values resolution problem (we use the C type double).

In order to make up for this computational artifact, we resort to a trick that
consists in preventing the division by too small a quantity if the DFT modulus
is small. To make up for this issue, the denominator is added a small quantity
ǫ > 0. Thus, the threshold-POC is defined as:

T-POC(X ; Y )
.
= IDFT





DFT(X) ·DFT(Y )
∣

∣

∣DFT(X)
∣

∣

∣ · |DFT(Y )|+ ǫ



 /n . (8)

The same empirical protection of the normalization has already been used in
the correlation calculation [11]. Results are shown in Fig. 2 for ǫ = 10−3. The



Evaluation of Waveform Resynchronization Algorithms 7

auto-correlation has a less sharp contrast, but the spurious peaks have disap-
peared. From a theoretical perspective, the T-POC synchronization algorithm
cannot be proved sound any longer.

The value of the positive constant ǫ to be added at the denominator in
Eqn. (8) is not trivial to find. To have a better idea of the normalization factor, we
have computed the spectrum of a waveform. It is shown in the left part of Fig. 3.
The frequency range is limited to J0, n/2J because on the other half Jn/2, nJ, the
curve would simply be mirrored. This is due to the fact X [0] is a real waveform;
thus: DFT(X [0])n−i = DFT(X [0])i, hence |DFT(X [0])n−i| = |DFT(X [0])i|. To
choose ǫ methodically, we could opt to have it equal (by convention) to a frac-
tion of the maximum peak. The log graph on the right of Fig. 3 shows that
|DFT(X [0])| spans 10 decades: a reasoned choice for ǫ is not obvious. Therefore,
in the sequel, ǫ is rather considered an empirical parameter.

2.5 Complexity of AOC, POC and T-POC

The computation of (X ⋆ Y )i for a given i requires n multiplications. The naive
algorithm to compute the n correlations X ⋆ Y corresponding to all the possible
offsets (there are n of them) runs in O(n2). Now, the DFT approach reduces
this complexity down to O(n log n).

Indeed, one DFT or one IDFT costs O(n log n). We note that for all three
formulas (Eqn. (4), (5) & (8)), the DFT(X) on the reference waveform X can
be factored for the synchronization of all the other waveforms. For the AOC, the
recurrent computations consist thus only in one component-wise multiplication
(n operations), one DFT and one IDFT. Regarding the POC, one additional
component-wise division (n operations) is required, which does not change the
computation complexity. Eventually, the T-POC also runs in O(n log n), but is
however the slowest method. Nonetheless, we mention that the three resynchro-
nizations algorithms run very efficiently in practice; the resynchronization using
the DFT is not the limiting operation in side-channel analysis: the attack that
follows the resynchronization is the real bottleneck.

For the experiences presented in the article, we have used FFTW3, that
computes Fourier transforms efficiently for every n ∈ N∗. This is important as
the number of samples in typical campaigns is rather a power of 10 and not
a power of 2. With this FFTW3 library, all the computations can be done in
complex numbers, which has the advantage of simplicity. However, the speed
factor and the memory footprint can be divided by two if we consider the input
is real data. The operations involve an n-sample real-to-complex DFT, that
turns an array of n real numbers into an array of n/2 + 1 complex numbers.
Thus the products and the divisions in the frequency domain are conducted
with complex arrays of size n/2 + 1. Then, n-(logical) sample complex-to-real
inverse DFT transforms the n/2+1 complex array into an array of 2× (n/2+1)
real numbers. The elements strictly above index n− 1 are “padding”, and thus
ignored for the maximum peak research.
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Three waveforms presented in Tab. 1.

Reference X[0] Shifted waveform X[1] Shifted waveform X[2]

(No offset) (Offset: 31 samples) (Offset: 195 samples)
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AOC on the three waveforms; Eqn. (4).
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POC on the three waveforms; Eqn. (5).
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T-POC with ǫ = 10−3 on the three waveforms; Eqn. (8).
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Fig. 2. Three waveforms (topmost) and empirical test for the resynchronization,
with, from 2nd line to the 4th, respectively AOC, POC and T-POC with ǫ =
10−3. In these campaigns, the number of samples is n = 20, 000. The colored
circle indicates the maximum of the resynchronization algorithm. When it is
green (

⊕

), the resynchronization is successful, whereas when it is red (
⊗

), it is
not.
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Fig. 3. Spectral power of X [0], in regular scale (left) and in log-scale (right).

3 Evaluation of Resynchronization Algorithms

3.1 Formal Framework

To evaluate the several resynchronization methods fairly, we need a formal frame-
work based on a figure of merit. Basically, such a framework assumes the knowl-
edge of a correct synchronization and needs to assess the performance of resyn-
chronisation algorithms based on a relative notion of resynchronization correc-
tion. The general approach is similar to the formal framework introduced in [18]
in the sibling field of side-channel attacks, that introduced a “success rate” or
a “guessing entropy”. These metrics are fully relevant in the context of key re-
covery attacks, insofar as only the exact solution for the key is informative for
the attacker. Indeed, an approximation on the key is useless in cryptanalysis,
since all keys are equiprobable. In addition, the other way round, the key ranked
second by a side-channel attack is typically decorrelated from the correct key.

The situation is different for the synchronization problem. Indeed, an ap-
proximate resynchronization (i.e. with an error of only one or few samples) is
nearly as good as an exactly correct resynchronization, because very often the
side-channel leakage remains consistent over some samples. This is all the more
true as data is acquired at a large sampling rate. In the examples of the Fig. 2,
a correlation power analysis (CPA [1]) leads to peaks that are about 50 sam-
ples large. This width, illustrated in Fig 4, is caused by an impedance mismatch
between the side-channel sensor and the spied circuit. Thus a resynchroniza-
tion algorithm still performs well if it predicts an offset a few tens of samples
away from the correct offset. This means that the resynchronization cannot be
solely evaluated by its success or failure rates. Indeed, we need a qualitative
appreciation.

Obviously, it is better to synchronize by reducing the offset than to still make
it worse. We introduce a factor of merit for the resynchronization accuracy: it is
equal to the average distance to the correct resynchronization value.

This notion can be formalized. We denote by A an algorithm that rates
each possible offset. In this study, A is either AOC, POC or T-POC (defined
in Eqn. (4), (5) or (8)). Given two synchronized waveforms X and Y , and a
maximal offset K, we set up an experiment called “ResynchError”, in which



10 Sylvain GUILLEY et al.

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0  5000  10000  15000  20000

-0.003
-0.002
-0.001

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008

 5600
 5650

 5700
 5750

 5800
 5850

 5900
 5950

 6000

≈ 50 samples

Fig. 4. Correlation power analysis (CPA) on the first round of the DES [20].
The approximate width of the peak indicates the tolerated inaccuracy of the
resynchronization algorithms.

Y is artificially shifted in time by a uniformly distributed random quantity in
J0, KJ. The experiment returns the distance between the actual offset and the
best rated by A. This procedure can be expressed as:

Experiment ResynchErrorA(X ; Y ; K)
[

k′ R←− J0, KJ;

Return
∣

∣k′ − argmaxk∈Zn

A (X ; SRLk′ (Y ))k

∣

∣ ;

where SRLk′ operates as RORk′ , with the sole difference it inputs k′ zeros on
the left end instead of reinjecting the k′ samples flushed outside from the right
end. A synchronized acquisition campaign C is a collection of Q ∈ J2, +∞J
waveforms. Every waveform C[q], 1 ≤ q < Q is synchronized. The quality of
the resynchronization algorithm A for waveforms randomly misaligned by offsets
uniformly distributed in J0, KJ is assessed by:

AvgResynchErrorA(C; K)
.
=

1

Q− 1

Q−1
∑

q=1

ResynchErrorA(C[0]; C[q]; K) .

(9)
Resynchronization algorithm A is said better than A

′ if

AvgResynchErrorA(C; K) ≤ AvgResynchErrorA′(C; K) .

We will see in the next Sec. 3.2 that this notion does depend on the campaign
C and on the maximal offset K.

We recall that the POC can be used to resynchronize with a resolution inferior
than the sampling rate. Incidentally, such a method could also be applied to
AOC. However, we have not tested this option, because, as will be shown in
Sec. 3.2, the distinction between the resynchronization algorithm can already
be clearly seen at a resolution equal to the clock period. Furthermore, modern
oscilloscopes digitize waveforms at a very fast sample rate, thereby reducing the
interest of fractional sample resynchronization.
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3.2 Benchmarking of Representative Waveforms

We validate the average resynchronization error introduced in Eqn. (9) on five
representative campaigns, corresponding to three setups. One setup is an exper-
imental evaluation environment. On the three setups, the same DES algorithm
(i.e. synthesized from the same VHDL source code) is run. The first setup is that
of the DPA contest first edition [20], where the DES is an ASIC and where the
acquisitions are averaged 64 times by the oscilloscope. The second one is carried
out on an ASIC but with unaveraged acquisitions. Eventually, the third setup is
identical to the second one, except that the device under analysis is an FPGA,
and not an ASIC. More details are provided in Tab. 2. We have selected very
different setups on purpose to gather various representative side-channel types.

Table 2. The three setups studied.

Setup Samples/clk Fclk [MHz] Nature Device

#1 625 32.000 Power ASIC (0.13 µm technology, 1.2 Volt)

#2 150 33.333 Power ASIC (0.13 µm technology, 1.2 Volt)

#3 120 8.333 EM FPGA (0.13 µm technology, 1.5 Volt)

The second and third setups are also used to implement side-channel resis-
tant versions of DES. On the second setup, one campaign is done on a hiding
countermeasure [13, Chp. 7]. On the third setup, one campaign is done on a
masking countermeasure [13, Chp. 9]. In the sequel, we represent the five stud-
ied campaigns as per Fig. 5, that gives one raw trace for each campaign.

The average resynchronization error is represented in Fig. 6 for those five
campaigns, based on Q = 1, 000 artificial shifts. It gives, for the AOC and
the POC (with 4 values of ǫ) the mean absolute error of resynchronization
AvgResynchError as a function of the synchronization error window K.

The figure 6 reveals very different behaviors of resynchronization performance
K 7→ AvgResynchError(C; K). Notably, the setups #1 and #3 fail to have
their unprotected designs properly resynchronized for some algorithms.

In Setup1 Ref, large errors occur for the POC and the T-POC with the
smallest correction value ǫ = 10−6. These errors increase almost linearly with
the desynchronization amplitude. More precisely, there is an improvement when
the desynchronization maximal value is not a multiple of half the clock period.
This observation shows that the computational flaw identified in the POC in
Sec. 2.4 is the main limitation to the resynchronization on this campaign.

Interestingly enough, the campaign Setup3 Ref features an opposite be-
haviour. The AOC and the T-POC with a large ǫ = 103 coefficient both fail. We
notice that when ǫ becomes larger and larger, then T-POC tends towards AOC,
since the denominator in Eqn. (8) becomes negligible. The reason for the AOC
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Fig. 5. Raw traces examples for the five investigated campaigns.

Setup #1 Setup #2 Setup #3

Setup1 Ref Setup2 Ref Setup3 Ref

 0

 50

 100

 150

 200

 250

 300

 350

 0  200  400  600  800  1000

A
v
g
R
e
s
y
n
c
h
E
rr
o
r 

[s
am

pl
e]

Maximal desynchronization, K [sample]

AOC
POC

T-POC, ε=10-6

T-POC, ε=10-3

T-POC, ε=100=1
T-POC, ε=10+3

-1

-0.5

 0

 0.5

 1

 0  200  400  600  800  1000

A
v
g
R
e
s
y
n
c
h
E
rr
o
r 

[s
am

pl
e]

Maximal desynchronization, K [sample]

(All metrics are equal to zero)

AOC
POC

T-POC, ε=10-6

T-POC, ε=10-3

T-POC, ε=100=1
T-POC, ε=10+3

 0

 20

 40

 60

 80

 100

 120

 140

 0  200  400  600  800  1000

A
v
g
R
e
s
y
n
c
h
E
rr
o
r 

[s
am

pl
e]

Maximal desynchronization, K [sample]

AOC
POC

T-POC, ε=10-6

T-POC, ε=10-3

T-POC, ε=100=1
T-POC, ε=10+3

Setup2 Hiding Setup3 Masking

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  200  400  600  800  1000

A
v
g
R
e
s
y
n
c
h
E
rr
o
r 

[s
am

pl
e]

Maximal desynchronization, K [sample]

AOC
POC

T-POC, ε=10-6

T-POC, ε=10-3

T-POC, ε=100=1
T-POC, ε=10+3

 0

 50

 100

 150

 200

 0  200  400  600  800  1000

A
v
g
R
e
s
y
n
c
h
E
rr
o
r 

[s
am

pl
e]

Maximal desynchronization, K [sample]

AOC
POC

T-POC, ε=10-6

T-POC, ε=10-3

T-POC, ε=100=1
T-POC, ε=10+3

Fig. 6. Average resynchronization performance for the five campaigns presented
in Tab. 5.
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Fig. 7. Average resynchronization performance for the five campaigns; vertical
zoom on Fig. 6, that focuses on errors that do not diverge with K.

to fail can be accounted by the nature of the setup: the measurements are noisy,
which makes the identification of the correct phase by the analysis of the wave-
forms amplitude very error-prone. The cause of high noise in the measurement
setup #3 is threefold:

1. Unaveraged measurements have a greater quantification noise than traces
that have been averaged;

2. FPGAs activate a lot of logic per single logical event in the netlist, which
increases the algorithmic noise [1];

3. EM measurements are notoriously more noisy than power measurements.

Nonetheless, this noise is independently and identically distributed (iid) over
the samples. Therefore, the phase information, which is collective over one clock
period, is less affected. In particular, because of the high level of noise, the DFT
transform of the setup #3 waveforms is rich in frequencies, and therefore varies
less than that of Fig. 3. Therefore the POC flaw does not manifest. We observe
in this campaign that the pure POC neither succeeds in resynchronizing well the
curves, but that T-POC with ǫ = 1 is almost successful 100% of the time. Thus,
for this campaign, the best resynchronization algorithm is a tradeoff between
amplitude- and phase-correlation.

The campaign Setup2 Ref is perfectly resynchronized with all the studied
algorithms. The explanation clearly stands out by looking at the sample wave-
form provided for this campaign in Fig. 5. Every waveform has both a very
clear shape (which favors amplitude-related matching techniques) and an elabo-
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rate spectrum (both clock-level and higher frequencies are already visible on the
time-domain trace, which is beneficial for phase-related matching techniques).

It is interesting to zoom on the resynchronization performance for the cam-
paigns carried out on unprotected circuits. These graphs are provided with in
Fig. 7. AOC definitely best realigns the campaign Setup1 Ref. This is due
to the extremely accurate acquisition in amplitude; notably, the averaging of
the waveforms helps make resynchronization with vertical values reliable. The
characteristic shape for these waveforms, associated with their high resolution,
makes each of them very recognizable. The resemblance (intra-waveform similar-
ity) outperforms the difference between the waveforms (acquired with different
plaintexts). The opposite conclusion can be drawn for the noisy Setup3 Ref

campaign: even if we manage to identify some points of larger amplitude than
others in each individual waveform, the noise makes each waveform dissimilar in
amplitude. As the phase is noisy too, the T-POC is the best tool to extract the
synchronization between waveforms of campaign Setup3 Ref.

Let us now study the two campaigns on protected implementations, namely
Setup2 Hiding and Setup3 Masking. It is straightforward to see in the cor-
responding graphs of Fig. 6 that the AOC is the worst resynchronization algo-
rithm. Two compelling arguments can explain this. On power-constant circuits,
the goal of the countermeasure is to balance the side-channel leakage, by having
its amplitude as constant as possible. Thus, it is expected that resynchroniza-
tion based on amplitude-matching fail. However, it has been noted in [19,10]
that small (much beneath the clock period) discrepancies in evaluation dates
could exist. This phenomenon is referred to as “early propagation effect” in the
specialized literature. The success of the resynchronization using the phase in-
formation of the waveforms might be a confirmation of this effect. On masked
circuits, the shapes of the waveforms are forced to look random in a view to
mitigate first-order side-channel attacks. It is therefore no surprise if AOC is
ineffective in average. Nonetheless, it is noteworthy that the phase of the signals
carry information about the algorithm scheduling. We conjecture that despite
the additional amount of noise carried out by the masking countermeasure, the
sequence of operations (registers evaluation, then maybe the addressing of a
RAM, or the activity that comes from the control block, etc.) might be a char-
acteristic signature of the DES operations.

All in one, the Fig. 7 shows that campaigns acquired from a protected circuit
are more difficult to synchronize than those acquired from unprotected circuits
implemented on the same setups. Nevertheless, our general noting is that the
two prominent countermeasures (hiding and masking) aim at dissimulating the
information in amplitude, but that unexpectedly the phase is still useful to
achieve a correct waveforms realignment. Those conclusions are in line with
many papers focusing on DFT attacks [5,9,14]. They all conclude that the side-
channel waveforms exhibit extremely distinguishable features once turned into
the frequency domain. We note that the best value for ǫ happens to be small
(ǫ ≤ 1) for Setup2 Hiding: all the information lays in the waveforms phase.
The optimal ǫ for Setup3 Masking is exactly the same as for Setup3 Ref.
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Indeed, the masking simply increases the algorithmic noise level, but does not
fundamentally affect the acquisition.

4 Conclusions and Perspectives

Side-channel measurements can be desynchronized for various reasons, especially
in the common case of acquisitions where a reliable trigger signal is not avail-
able. This study introduces a formal practice-oriented evaluation framework for
resynchronization algorithms. In this article, we compare several approaches to
realign the waveforms. We conclude that, in the absence of countermeasures, if
the acquired signal is of excellent vertical quality, then the amplitude should
be used to resynchronise the signals. Otherwise, in the case of noisy measure-
ments, the phase-based correlations are better techniques. We notice that under
some circumstances, the genuine version of the phase-only correlation (POC)
is not efficient, and we introduce the threshold POC (aka T-POC). If a coun-
termeasure is employed, then, undoubtedly, the T-POC (including T-POC with
ǫ = 0, i.e. the original POC) is the best realignment algorithm. The reason is
that state-of-the-art side-channel countermeasures aim at impeding amplitude-
level waveforms variation, but neglect to protect the information carried by the
phase. Therefore, using POC or T-POC algorithms, we show how to successfully
resynchronize protected waveforms.

Several questions remain however open. For instance, what is the optimal
threshold value ǫ involved in T-POC? Also, we wonder if a mixed resynchro-
nization techniques (for instance based on wavelets, that feature a compromise
between time and frequency) could bridge the gap between amplitude-only and
phase-only correlation algorithms.
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