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Abstract. In this paper we study the collision-correlation attack pub-
lished by Clavier et al. at CHES 2011 on a 1st-order boolean masking
scheme and show its lack of robustness against unknown and high level
of measurement noise. In order to improve the attack, we follow the ap-
proach that Gérard and Standaert proposed in a recent paper at CHES
2012. Then we address the problem of heterogeneous leakage pointed out
by Gérard and Standaert (when the leakage noise is different from one
Sbox output to the others due for instance to implementation particular-
ities or resynchronisation reasons), by inserting an efficient termination
algorithm in the key-recovery phase of the attack. In a last contribu-
tion, we compare (over simulations and real experiments) the enhanced
collision-correlation attack and the 2nd-order CPA attack. Similarly to
the results of Gérard and Standaert, we show – in the context of masked
implementations – the superiority of 2nd-order CPA when its leakage
model is not too far from the real leakage function.

Key words: AES, Side-Channel Analysis, Collision Attack, 2nd-order
CPA, Masking Scheme

1 Introduction

It is today well-known that cryptographic devices are susceptible to Side-Channel
Analysis (SCA). Indeed, computation time [19], power consumption [20] or elec-
tromagnetic radiations [13] of an embedded system performing a cryptographic
operation leak information about the secret involved in the computation. Various
attack methods have been proposed to exploit these side-channel information,
the most popular being Simple Side-Channel Analysis (SSCA) [20], Differen-
tial Side-Channel Analysis (DSCA) [20] and Template Attacks (TA) [9]. Among
these methods, DSCA is particularly devastating: the adversary model is not
too restrictive and the attacks are robust to realistic noise levels, an inevitable
component in SCA attacks.

Several types of countermeasures have been proposed to thwart DSCA, e.g.
the use of jittered clock [10], the insertion of random delays [1], the shuffling of
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operations, the use of dedicated logic styles aiming at hiding the side-channel
leakages (e.g. WDDL [30], MDPL [26]) or masking techniques [8, 16].

Masking techniques have become popular as their soundness can be formally
proven (see [8]). A masking scheme transforms a cryptographic algorithm: each
intermediate variable (referred to as sensitive variables in the sequel) is shared
— by means of random masks — such that each share alone is independent of the
secret. Nevertheless it has been observed that such countermeasures succumb to
higher-order DSCA, where the attacker combines the leakage of several internal
variables (typically, the two shares of a shared sensitive variable in a 2nd-order
DSCA). Moreover, a sound 1st-order masking scheme induces a non-negligible
overhead on the computational cost and developers usually design light versions
of masking schemes.

We are interested here in a very common 1st-order masking scheme [22] and
its security against SCA. To study such a scheme, we use as an example the AES
cipher [12], hence SubBytes will denote the non-linear layer composed of 16 8-bit
Sboxes. The basic idea of the masking scheme is to pre-compute a unique masked

Sbox, Ŝbox, for each cipher execution, such that ∀x ∈ F28 , Ŝbox(x) = Sbox(x⊕
m) ⊕ m′ with m and m′ two random bytes. Then, during the cryptographic
operation, each byte of the SubBytes transformation input is masked by the same
mask value m, allowing to use Ŝbox for each Sbox look-up operation (see [21] for
a complete description of the masking scheme). When correctly implemented,
such a masking scheme is perfectly masked at the 1st-order (i.e. no univariate
side-channel leakage depends on the secret), and is considered the most efficient
software implementation of 1st-order AES masking scheme on 8-bit CPUs (see
for instance [14]). In the following we will often refer to this masking scheme as
the Mask Reuse Scheme.

Collision-based SCA denotes a type of attacks that do not rely on an a priori
knowledge on the device leakage function (whereas it is the case in (HO-)DSCA-
like attacks). The general idea is to use side-channel information to detect a
collision between two cipher sensitive variables (see [2–6, 24, 28, 29]). Moreover
they can naturally be applied against several masking techniques where masks
are reused (e.g. [11]). Even though the collision-based SCA attacks are leakage
function oblivious, most of the attacks found in the literature rely on other device
dependent parameters. In a recent article, Gérard and Standaert [15], tackle this
issue on the linear collision attack of Bogdanov [3,4] targeting unprotected AES
implementations. They show that, when reducing the knowledge on the device
leakage, the collision attack becomes much less interesting that expected (in their
practical setup, the CPA is always better than collision-based SCA attacks).

This is also what we observed on a protected implementation with an en-
hanced version of the collision-correlation attack proposed by Clavier et al.
[11]. The main idea of the attack (first due to Moradi et al. [24]) is to de-
tect, through side-channel, the collision of two Sbox outputs in the first round
of AES. To this purpose, the attacker computes the Pearson correlation between
the two corresponding leakages ((La)i≤N , (Lb)i≤N ) acquired from N successive
cipher executions with chosen plaintexts. If the key guess is correct, the chosen
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plaintexts will always lead to the same Sbox output value (za = zb)i≤N and
then the correlation coefficient will be high. The main drawback of Clavier et
al. attack is that it uses a fixed threshold value to distinguish high correlation
coefficient from low ones. In a very similar context, Bogdanov uses an heuristic
algorithm for collision detection [4]. Figure 1 illustrates this issue when the noise
grows. Indeed, it shows the difference between two correlation coefficients of two
leakage sources (simulated with the classical Hamming Weight model and an ad-
ditive Gaussian noise on two Sbox outputs) with respect to the noise standard
deviation. The best correlation value (upper curve) corresponds to a correct key
guess (the two intermediate variables are equal), whereas the second correlation
(lower curve) corresponds to a case where the key guess is not correct, hence
there is not always collision. In Clavier et al., the threshold value must be set
between the two curves. It is obvious that, when the noise becomes high (which
is often true when attacking secure devices), fixing such threshold a priori is
equivalent to precisely know the noise level (hence implies a profiled step in the
attack).
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Fig. 1. Set of threshold values T with respect to σ: ρ
(
HW (zk) +N (0, σ), HW (zk) +

N (0, σ)
)
> T > ρ

(
HW (zk) +N (0, σ), HW (zk̃) +N (0, σ)

)

As mentioned before, Gérard and Standaert [15] propose to solve this issue
– in the un-masked context – using Bayesian extensions and Low Density Parity
Check codes soft-decoding.
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2 Our Contributions

Our first contribution is to propose a collision-correlation attack on the consid-
ered mask reuse scheme when the noise is unknown and high. To that purpose
we will follow the approach of Gérard and Standaert [15].

In [15], the authors observe that their approach does not take into account the
problem of heterogeneous leakage: the leakage noise is different from one Sbox
output to the others due to implementation particularities or resynchronisation
reasons.

In a second contribution, we address this issue by inserting an efficient ter-
mination algorithm in the key-recovery step of the attack.

In our last contribution, we compare (over simulations and real experiments)
collision-correlation attack and 2nd-order CPA. The 2nd-order CPA is shown to
be more efficient than collision-correlation attack when no LDPC soft-decoding
is used and when the leakage function is close to the CPA leakage model (Ham-
ming Weight here). However, since to our knowledge, no Bayesian extension
has been devised for 2nd-order CPA, collision-correlation takes the lead (in our
experiments) when improved with such techniques.

The rest of the paper is organised as follows. Section 3 describes the collision-
correlation attack and the improvements we propose. Section 4 compares the ef-
ficiency of the collision-correlation attack with the 2nd-order CPA attack. Finally
section 5 concludes this work.

3 Collision-Correlation Attack

We propose to describe the collision-correlation attack in two steps, first the
collision detection mechanism, then the key recovery phase.

Notation. In the following, we will denote respectively by p, c, k, z and m the
plaintext, the ciphertext, the secret key, the target sensitive variable and the
mask. All these values are over 16 bytes (since we consider the AES cipher).
We will frequently use their vector representation over (GF(28))16 (e.g. p =
(p0, · · · , p15)). Moreover, if N encryptions are considered, we will denote the ith

plaintext by pi.

3.1 DetectCollision

The detection of collision is a critical component of any collision-based SCA.
In our context, one needs to detect a collision between the manipulation of two
bytes during the AES first round. As mentioned in Section 1, we will focus
on two Sbox outputs (za ⊕ m, zb ⊕ m) of the masked AES implementation.
Over a set of N plaintexts (pi)i≤N , the DetectCollision function must detect,
for some index i, the value α = pia ⊕ pib such that the two sensitive variables
collide (zia⊕mi = zib⊕mi) from the N side-channel leakage pairs (Lia, L

i
b){i≤N}

(Lis corresponding to the side-channel leakage generated by the manipulation



Collision-Correlation Attack vs. 2nd-order CPA 5

of zis ⊕mi). As a matter of fact, the value of α is of interest: if zia = zib, then
Sbox(pia ⊕ ka) = Sbox(pib ⊕ kb), implying pia ⊕ pib = α = ka ⊕ kb.

The basic idea of collision-correlation attack proposed by Clavier et al. in [11]
is recalled in Section 1. In order to adapt the collision-correlation attack in a
more robust context, we propose the following scenario: the attacker encrypts
256 sets {Sα(a, b)}α<256 of N plaintexts such that for every α < 256, every
i ≤ N , pi,α ∈ Sα(a, b) is such that pi,αa ⊕ p

i,α
b = α. That way, one may compute,

for each α < 256, the correlation coefficient:

ρα = ρ((Li,αa )i≤N , (L
i,α
b )i≤N ) ,

and then compare them to each other in order to take the decision: ka⊕kb =
argmax(ρα). This strategy is more expensive than the attack described in [11],
however it is not based on a hypothetical knowledge of the attacker (i.e. a target
specific threshold), which is a necessary condition for a fair comparison with non-
profiled attacks such as 2nd-order DSCA. The detection algorithm was presented
in a chosen plaintext scenario, however it is easy to see that, when the number
of plaintexts is large enough, a known plaintext setting will be equivalent (when
the plaintexts follow an uniform distribution each of the 256 sets would have
the same number N of plaintexts, in first approximation). A formal study of the
efficiency of this DetectCollision with respect to different attack scenarios (known
plaintext vs. chosen plaintext scenarios) is proposed in Annex A. Algorithm 1
describes the different steps of the DetectCollision mechanism.

Algorithm 1 DetectCollision in a known plaintexts setting
Input: (pia)i≤256·N , (p

i
b)i≤256·N , (L

i
a)i≤256·N , (L

i
b)i≤256·N

Output: 2 key bytes difference: α = ka ⊕ kb

1. for i = 1 to 256 ·N
2. do send the index i in the set Spia⊕pib

[If the (pi)i≤256·N are uniformly distributed, about N indexes will be sent to
each Sj ]

3. for α̂ = 0 to 255

4. do ρα̂ ← ρ((Lia)i∈Sα̂ , (L
i
b)i∈Sα̂)

[Evaluate the Pearson Correlation Coefficient for the hypothesis α̂ = ka ⊕ kb]
5. return α = argmax(ρα̂)

3.2 Key-Recovery

Bayesian Extension and LDPC Soft-Decoding The above proposed col-
lision detection mechanism based on correlation is actually very similar to the
treatment of Gérard and Standaert in [15] when adapted to the context of attack-
ing a masking scheme (the main difference being that no inter-traces correlations
or trace averaging can be used in our context). Hence, the Bayesian extension
approach in order to use a LDPC soft-decoding algorithm can be directly ap-
plied here and will replace the step 5 of Algorithm 1. For reasons of completeness
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we recall briefly the results of [15]; details and approach argumentation can be
found in the original paper of Gérard and Standaert.

The Bayesian extension from the correlation evaluations ρα̂ can be written
as follows:

Pr[ka ⊕ kb = α̂|arctanh(Norm(ρα̂)) = s] = Norm(e2s) . (1)

Equation 1 comes from many approximations and has no rigorous justification in
[15] otherwise that being shown to work well in simulations and real experiments.
We also observed this success and let for further studies the formal justification
of the formula1.

From the Bayesian extension of the correlation evaluation, the use of Low
Density Parity Check codes (denoted as LDPC in the following) as soft-decoding
technique is shown to fit the problem of retrieving a correct set of 120 equations.
The decoding algorithm is recalled below.

Algorithm 2 LDPCSoftDecoding procedure (Alg. 2 in [15])

Input: The distributions Pr[ka ⊕ kb = α̂|ρα̂]

Output: The likeliest consistent system S

1. for 0 ≤ a < b ≤ 15, α ∈ GF(256)

2. do Pa,b(α) 7→ Pr[ka ⊕ kb = α]

3. while (argmaxαP0,1(α), · · · , argmaxαP14,15(α)) is not a codeword

4. for 0 ≤ a < b ≤ 15, α ∈ GF(256)

5. do Pa,b(α) 7→ Pa,b(α) ·
∏
c/∈{a,b}

∑
β∈GF(256) Pa,c(β)× Pb,c(β ⊕ α)

6. return (argmaxαP0,1(α), · · · , argmaxαP14,15(α))

As remarked by the authors of [15], the LDPC soft-decoding does not per-
fectly match the cases where the target bytes do not leak homogeneously. They
observe the phenomenon on an optimized implementation (the ”Furious AES”,
see [15] for more details), we also observe the same problem with our setup.
As a matter of fact, one of the hypothesis that lead to equation 1 is an inde-
pendent Gaussian noise with same mean and standard deviation on each target
Sbox output leakage. When this hypothesis is not verified, we observe that Al-
gorithm 2 may finish with a worst system than the initial one. In [15], the issue
is patched with an ad-hoc list-decoding algorithm. We propose here a generic
post-treatment algorithm that solve the issue efficiently (if not optimally).

Termination Algorithm In step 3 of Algorithm 2, instead of waiting for a
complete codeword, a hard-decoding algorithm is applied to the vector

(argmaxαP0,1(α), · · · , argmaxαP14,15(α))

1 As described in Annex C.2, the direct application of this Bayesian extension to the
2nd-order CPA attack does not work properly
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and the best candidate keys are tested when enough key bits are retrieved. This
process is detailed below.

Solving this equation system is done in two steps, in a first step the erroneous
equations (i.e. failed collision detection) are identified and corrected if possible.
In the second step, when only correct equations are left, the number of missing
bits of information about the secret key is evaluated. If the number of missing
bits is not too large (we choose to set the limit to 40 bits) the secret key is then
retrieved by brute force on these bits. We insist here that the algorithm points
out the missing bits; their location being known, the brute force is then realistic.

Detection/Correction of Erroneous Equations It can be easily checked that the
equation system of 120 equations possesses 16 unknowns and a rank of 15 (when
all the equations are correct, cf. [3]). Hence, 120-15 of these equations may be
considered as redundant and then used to detect, and eventually correct, some
potential erroneous equations.

Algorithm 3 describes the so-called decoding algorithm, the main idea of the
algorithm is to look for triangular relations of the following form, considering
three key indexes a, b, c:

(ka ⊕ kb) = (ka ⊕ kc)⊕ (kc ⊕ kb) .

Algorithm 3 SolveSystem Coll-Corr

Input: A noisy equation system Sin
Output: A clean equation system Sout

1. Initialize an Empty Equation System Sout

2. for a = 0 to 15

3. for b = a+ 1 to 15

4. do Find the value αmax = (ka ⊕ kc)⊕ (kc ⊕ kb)
that appears the most often over all indexes of c.

5. if αmax appeared more than 3 times
then do set the equation ka ⊕ kb = αmax into Sout.

6. return Sout

Remark 1. The threshold value 3 appearing in the algorithm is not arbitrary
fixed, it is the minimum threshold that will distinguish some erroneous equations
from the others: αmax appears at least two times since for kc = ka and kc = kb,
α is the same.

Solving the System When the equation system is purged of the erroneous equa-
tions, the secret key cannot be directly recovered, there is some unknown bits
left (at least 8 since the rank of the system is 15 for 16 unknown bytes).

In fact, the same equation system was studied in length in [3,5]. The chance
for the attacker to be able to solve it (i.e. the chance that the number of unknown
bits left is below 40), was computed as a function of the number of equations in
the system.
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We give the simulation results of the algorithm in Section 4.1 and compare
them to a similar system solving success rate in the case of the 2nd-order CPA
attack (introduced in Annex C). Using Algorithm 3, the equation system is
correctly solved with a success probability above 90% when only 40% of the
equations are correct. In Section 4.2, we also show that the simulation results
match our experimental results with respect to the key-recovery, i.e. the reparti-
tion of erroneous equations in the system does not have a special structure that
helps / handicaps the detection algorithm.

3.3 Full Attack Algorithm in a Known Plaintext Setting

We have seen different improvements of the basic collision-correlation attack
(that would be mainly composed of the DetectCollision algorithm), indeed,
the attack could skip the LDPC soft-decoding and the Bayesian extension ap-
proach altogether and feed directly the SolveSystem Coll-Corr algorithm from
the outputs of the DetectCollision algorithm applied at each pair of Sbox out-
puts. We will see in our real setup that the use of the LDPC soft-decoding will
greatly improve the data complexity of the attack. The data complexity evalu-
ation of the attacks is conducted in Section 4 and is compared to the 2nd-order
CPA (recalled in Annex C).

4 Success Rate Comparison

4.1 Attack Simulation in the Hamming Weight Model

In the previous section, a collision-correlation method has been described, al-
lowing to defeat some 1st-order masking schemes of AES (exposed in Section 1).
Moreover, in Annex C, we added a complete description of 2nd-order CPA at-
tack. For each of the attacks, a first phase consists in attacking all the possible
key byte pairs independently and outputs an overdetermined equation system.
The second phase uses simple and efficient algorithms to solve/correct the ob-
tained equation systems. This way, comparisons between the two attack methods
can be directed at two different levels of the process. Firstly, we want to know
how the first phase of each method deals with the noise to guess a pair of key
bytes. Secondly, taking into account the probability of correctly guessing a key
byte pair, we want to know how each system solving algorithm will behave with
respect to the partially erroneous equation system and retrieve the correct full
key.

2-Byte Attack Success-Rates In order to evaluate how, for each attack
method, the first phase deals with the noise to guess a pair of key bytes, several
experiments have been performed by simulation. Assuming an additive Gaus-
sian noise of mean 0 and standard deviation σ, we have modeled the leakage of
two Sbox outputs following a Hamming Weight leakage model. Then we have ap-
plied, on the one hand, the MaxCorrelation (Algorithm 4, Annex C) function on
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the two leakages, and on the other hand, the DetectCollision function (Algo-
rithm 1, Section 3). For comparison reasons we also added the success rate of the
classical 2nd-order CPA that targets one byte at a time (see Annex C). In each
case, 100 simulations have been performed, with random plaintexts and random
subkeys. Figure 2 shows the evolution of the success rate with respect to the
number of plaintexts for both algorithms, assuming different levels of noise (i.e.
different values of σ). Figure 2(a) considers a perfect Hamming Weight leakage
model without noise, while 2(b) and 2(c) relate to a more realistic noise range,
corresponding on what has been observed in the real experiment described in
Section 4.2.
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Fig. 2. Evolution of the success rate w.r.t. the number of plaintexts for the
MaxCorrelation and the DetectCollision algorithms applied on two Sbox outputs
in simulation

Superiority of the 2nd-order CPA. The results in simulations are clear: the
collision-correlation attack is much less efficient than the 2nd-order CPA. The
collision-correlation attack pays the price that each plaintext is dedicated to a
unique subkey candidate and thus its leakage trace cannot be used in the process
of comparing two different key candidates (by opposition to CPA). Even though
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the 1-Byte 2nd-order CPA 2 has a better success rate than the 2-Byte 2nd-order
CPA 3, we must recall that the latter one retrieve 2 bytes of key at a time when
the first one can only retrieve 1 byte of key at a time.

Nevertheless, one can note that the Hamming Weight model used for the
simulations is certainly helping 2nd-order CPA attacks. As a matter of fact, in
our simulation, the CPA predictions perfectly match the leakage function. In
fact this is the ideal situation to use CPA, and the real experiments permit to
diminish a bit the superiority of 2nd-order CPA over collision-correlation attacks
(see Section 4.2).

Known vs. Chosen Plaintexts in Collision-Correlation Attacks. We displayed
in Figure 2 the success rate for both known and chosen plaintexts attacks. At
this level (when focusing on two bytes only), there is no difference between
the two mentioned chosen plaintexts scenarios (Annex A). We choose to expose
only the best possible choice for the chosen plaintext strategies: always the best
tradeoff for the number of sets Si (i.e. the value M in Equation 4, Annex A).
Apart from the noiseless case, the results are very close for both strategies. This
actually implies that the DetectCollision success rate is a linear function of the
number of plaintexts (from Equation 4, Annex A) as long as it does not come too
close to its extremal values (0 and 1). As for the noiseless case, it is easy to see
on Figure 2(a) that the linear property is not verified for the known plaintexts
strategy, we actually observe on this figure an artefact that occurs when the
number of plaintexts is too small for the correlation to be effective. These are
the only cases where a chosen plaintexts approach is interesting, however they
do not have much application in the real world.

Interestingly enough, considering the collision-correlation variants, in one
hand the known plaintext strategy is as efficient as the chosen plaintext strategy
when the optimal chain of plaintexts is used (see Annex A and Annex B). In
another hand, in the chosen plaintext scenario with random plaintexts (scenario
1 in Annex A), the attack on the full key is always less efficient due to the
appearance of colliding collisions (see Equation 3, Annex A).

Key-Recovery 4

On Figure 3 are displayed the simulation results of the key-recovery algorithm
for both the 2-byte 2nd-order CPA attack and the collision-correlation attack.

The results show that the equation system of the 2-byte 2nd-order CPA is
easier to correct from erroneous equations: 30% of correct equations are enough

2 1-Byte 2nd-order CPA consists in combining the leakage of the handling of the mask
with the leakage of the handling of a masked Sbox output

3 2-Byte 2nd-order CPA consists in combining the leakage of the handling of two
masked Sbox outputs

4 We only focus on the hard-decoding algorithms here. The Bayesian extension and
LDPC soft-decoding will be used for the real experiments (and only in the case
of collision-correlation attack since we still have no such treatment in the case of
2nd-order CPA attack)
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Fig. 3. success rate of System Solving as a function of the fraction of correct equations
in the system computed over 100000 random simulations

to solve the system with very high probability whereas 40% of correct equations
are needed in the collision-correlation attack. This result is not very surprising
since the equation system of the 2-byte 2nd-order CPA conceals more information
about the secret key: each equation gives 16-bit of information instead of 8-bit
in the case of collision-correlation.

Success Rate of the Full AES Key Putting together the results on both
attack phases gives straightforwardly the success rate to recover the full AES
secret key. The 2nd-order CPA is clearly ahead of the collision-correlation attack.
Notice that here we do not consider the Bayesian extension approach and just
the termination algorithm composed with either the DetectCollision or the
MaxCorrelation algorithms.

Comparison between 1-Byte 2nd-order CPA and 2-Byte 2nd-order CPA. In the
latter case, using the termination algorithm that makes use of the natural redun-
dancy in the equation system, achieving 90% success rate corresponds to a 30%
success rate in the MaxCorrelation algorithm. However, when considering the
1-Byte 2nd-order CPA, no redundancy is available to the attacker, hence in order
to have a 90% success rate in retrieving the full AES key, he should retrieve each
of the 12 bytes (assuming the rest of the bytes are brute forced) independently

with probability e
ln(90/100)

12 ' 0.99 (assuming the leakage is homogeneous among
each leaking intermediate variable). Surprisingly enough, under this hypothesis,
the 2-Byte 2nd-order CPA becomes more efficient to retrieve the full AES key
with high probability. For instance, when the noise standard deviation is set to
4, only 9000 plaintexts are needed for the 2-Byte 2nd-order CPA to recover the
key with 90% success rate when 20000 plaintexts would be necessary for the
1-Byte 2nd-order CPA to achieve such a success rate.
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4.2 Attack Results in a Real Setup

In order to validate our study in a real setup, we applied the attacks on a 1st-
order masked implementation of AES using the mask reuse scheme described
in [21]. To this end, we used an 8-bit microcontroller (MCU) based on a 8051
architecture. Thus the mask reuse AES implementation handles one byte at a
time, and is a perfect target for the attacks considered here.

We have performed the measurements using an Electro-Magnetic (EM) setup
composed of a commercial tiny EM sensor connected to a low-noise amplifier.
To sample the EM side-channel measurements, we used a digital oscilloscope,
with a sampling rate of 10 GSamples per second, whereas the MCU was running
at about 30 MHz. Let us note that the MCU clock was not stable, we had to
resynchronize the measurements. This process is out of the scope of this work,
but we emphasize that such resynchronization step is always needed in a real
setup. This is one of the reasons why heterogeneous leakages appeared in our
measurements.

To validate this acquisition setup, we first performed a classical 1st-order
CPA attack on the AES encryption measurements by feeding the masks with
0. The attack succeeded with about 1000 traces (to retrieve the 16 bytes of the
AES master key, we emphasize that some of the key bytes were retrieved in
about 200 traces), thus validating both the quality of our acquisition setup and
the efficiency of our resynchronization algorithm.

Secondly, we acquired 200000 measurements in a known plaintext setting,
this time by feeding the masks with random values. We checked that the 1st-
order CPA failed before testing the attacks considered in this work.

We also emphasize that the knowledge of good leakage locations in the con-
sumption traces is crucial in 2nd-order attacks. In the case of 2nd-order CPA
attack, this is mainly due to its computational cost that becomes impractical
when too many samples in each trace have to be processed. In the case of the
collision-correlation attack, this is even more true since if non data-dependent
samples are involved, they will most likely lead to false-positive collisions detec-
tions. The research of the data-dependent samples in a set of side-channel traces
has been studied in the side-channel literature (see [5] for instance in the case of
collision-based SCA), in our case we computed the variance on the set of traces
to select the data-dependent samples.

Remark 2. We also tried to mount a 1-Byte 2nd-order CPA. However, for un-
known reasons, we were not able to catch the leakage of the mask manipulation
during the Sbox re-computation phase.

We selected 16 sets of 10 samples each, each set corresponding to the handling
of one Sbox output of the first round. We then applied, for each possible pair of
subkey bytes, the MaxCorrelation and the DetectCollision algorithms, using
the corresponding sets of samples. Figure 4(a) shows the success rate (over the
120 key byte pairs) of these two algorithms. The MaxCorrelation algorithm
outperforms the DetectCollision algorithm, but the difference is less obvious
than in the simulation results (confirming that the simulation leakage model is
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not very realistic, and gives a great advantage to 2nd-order CPA). Figure 4(b)
proposes the two success rate simulations that match best the real experiment,
interestingly enough the real experiment corresponds to a simulated noise stan-
dard deviation of 7 for the MaxCorrelation algorithm whereas it matches a sim-
ulated noise standard deviation of 4 for the DetectCollision, this difference
corresponds to the stochastic noise (i.e. that comes from the use of a leakage
model).
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(a) Evolution of the success rate
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for the MaxCorrelation and the
DetectCollision algorithms applied
on the real measurements

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of plaintexts

s
u

c
c
e

s
s
 r

a
te

 

 

DetectCollision − noise STD: 4

MaxCorrelation − noise STD: 7

(b) Evolution of the success rate
w.r.t. the number of plaintexts
for the MaxCorrelation and the
DetectCollision algorithms in
simulations with different noise
components

In a second phase we applied, for each of the two attack methods, the two
SolveSystem algorithms described in Algorithm 5 of Annex C.2 and Algorithm 3
of Section 3.2 respectively. In the case of the 2-byte 2nd-order CPA, the full key
is retrieved with 73000 traces, whereas the collision-correlation attack requires
123000 traces to get 12 bytes of the full key (the 4 last bytes are brute-forced).
These results match with the simulated success rate of the SolveSystem algo-
rithms. One may note that, without applying the SolveSystem algorithms, the
classical 2-byte 2nd-order CPA would require at least 160000 traces to retrieve
the full key, whereas the collision-correlation attack would not succeed to recover
the key even by processing the 200000 traces.

Furthermore, we added the Bayesian extension and LDPC decoding, as de-
picted in Section 3.2 Algorithm 2 for the collision-correlation attack. Using such
improvements, we were able to retrieve the correct key in about 50000 traces
for the collision-correlation attack (with a final brute force on 40 bits). Unfor-
tunatly, we could not perform a similar improvement for the 2-byte 2nd-order
CPA attack as the Bayesian extension is still a work in progress (see a discussion
on this issue in Annex C.2); however, there is no reason that such mechanism
cannot be applied in the process of 2-Byte 2nd-order CPA attack and improve
the attack as much as it does for the collision-correlation attack.
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5 Conclusion

The literature dealing with combinations of collision cryptanalysis and side-
channel analysis often took the side of studying the algorithmic problem into
an idealized setup (very low noise, profiled attacks). This statement explains in
part the low popularity of such techniques in practice. In this article we try to
replace the collision-based SCA over masked implementation into a more realistic
setup, following the recent work of Gérard and Standaert [15]. To this end we
focus on the collision-correlation attack [11] and point out why the construction
is intrinsically unappropriated to unknown and high noise context. Moreover,
we show how to adapt this attack and provide a comparison with 2nd-order
SCA attacks. The results show that 2nd-order attack is more efficient when the
leakage function is well approximated (we use the Hamming Weight model in
our experiments). However, since the collision-based SCA does not need any
knowledge about the leakage function, it will become more efficient relatively to
2nd-order SCA as its prediction function deviates from reality. It must be noted
that the Bayesian extension approach (introduced in [15]) greatly improves the
collision-correlation attack efficiency, and makes it the best attack in our real
setup. We let for further studies the design of an Bayesian extension to the 2-
Byte 2nd-order CPA attack, with such improvement we believe the attack would
outperforms collision-correlation.

This work opens to other several directions, mainly in the sense of optimisa-
tion of collision-based SCA attacks. Firstly, the collision-correlation attack does
not make good use of very important advantage of collision-based SCA: when
a collision appears, its side-channel signature spreads through potentially many
sample points overlapping several clock cycles. This horizontal treatment, on
which were based the majority of previous collision-based SCA, should be in-
corporated in some way to optimize the detection of collision. Secondly, a real
breakthrough would be to lower its data-complexity cost by making a better use
of the traces in the collision detection algorithm: in our setup we divide them
in independent sets where correlation is locally computed (i.e. the lower bound
on the attack complexity beats the actual attack by a factor of 256, maybe this
large overhead leaves room for optimizations).

Another direction opened by our study is the research of very efficient mask-
ing schemes that are more robust against 2nd-order attacks. Although efficient,
the mask reuse scheme clearly helps the attacker compared to a 1st-order masking
scheme using more masks. Furthermore, the use of 2nd-order masking schemes
should start to be considered in real-world secure devices.
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A A Theoretical Study of the DetectCollision Algorithm
in Different Attack Scenarios

Notation. In the following we denote by PrDetectCola,b (N) the probability of success
of a collision detection for the pair (a, b) of sensitive bytes, we will often refer to
Pr(N) that corresponds to the average value of PrDetectCola,b (N) over all possible
pair (a, b).
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Known Plaintexts Scenario This approach is described in Algorithm 1 of
Section 3.

Data Complexity: for a data complexity of 256·N plaintexts, the average number
of correct equations NEqu among the

(
16
2

)
equations is equal to:

NEqu(256 ·N) = Pr(N) ·
(

16

2

)
, (2)

with Pr(N) the average probability of success of the collision detection.

Chosen Plaintexts Scenario It consists in reducing the number of sets Sj .
This will also reduce the probability of correct detection since, for a choice of
(a, b), if Ska⊕kb(a, b) is empty, then the DetectCollision will obviously set the
equation ka ⊕ kb = α to an erroneous value α.

In such scenario, the chosen plaintext setting is necessary and several direc-
tions may be investigated:

scenario 1 The attacker randomly chooses M < 256 plaintexts pi and encrypts
each of them N times. Thus, for each pair of bytes (a, b), for all i ≤ N , the
leakage of the N encryptions of pi goes into the set Spia⊕pib(a, b). Obviously,

for every pair of bytes (a, b), there is at most M non empty sets Sj(a, b). This
strategy is the most common choice in the collision-based SCA literature,
as a matter of fact it fits very well the attack when the DetectCollision

function is capable of asserting the presence or the absence of collision (as
in [11]). We will see that, in our case, this is a bad choice, even compared to
the known plaintext setting.

Data Complexity: the data complexity is equal to M · N encryptions. In
order to compute the corresponding success rate, we first need to evaluate
the number of collisions that are detectable over all the pairs of byte indexes(
16
2

)
= 120. Hence we want to find the average number of byte collisions

NCol when considering M successive plaintexts:

NCol(M) = E
(∑

M

∑
0≤a<b<16 1za=zb

)
= M ·

(
16
2

)
· 1
256

Since the attacker randomly chooses the plaintexts, it is possible to retrieve
several times the collision on a given pair of indices (say (a, b)), i.e. there
exists two plaintexts pi and pj such that pia ⊕ pib = pja ⊕ pjb = ka ⊕ kb.
Such redundancy will not help to solve the system (apart from increasing
the success probability PrDetectCola,b (N)), we need to suppress them from the
success rate evaluation. The average number of such colliding collisions may
be computed as follows:

NCol′(NCol) =

NCol∑
i=1

1−

(
1− 1(

16
2

))NCol−i

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Finally, the average number of collisions that will effectively lead to an equa-
tion (keeping in mind the success probability of collision detection Pr(N))
is then given by:

NEqu(M ·N) = Pr(N)·

NCol(M)−
NCol(M)∑
i=1

1−

(
1− 1(

16
2

))NCol(M)−i

(3)

Remark 3. The complexity evaluation made here is actually very close to
what can be found in [3] (if we omit the success probability of collision
detection that was considered to be maximal), however, its theoretical study
and empirical results cannot be applied in our context since the authors
of [3] targeted an unmasked implementation that made possible to consider
collision between two bytes from two different encryptions.

scenario 2 The attacker carefully chooses M < 256 plaintexts pi and encrypts
each of them N times. The difference with the previous scenario is that the
attacker follows an optimal choice of the plaintexts {pi}i<M such that for
every pair of bytes (a, b), for all (i, j) s.t. i 6= j, we have pia ⊕ pib 6= pja ⊕ p

j
b.

We propose in Annex B such an optimal strategy.

Data Complexity: here also the data complexity is M ·N plaintexts. For the
success rate, the context is pretty similar to scenario 1, the main difference
being that there is no difference anymore between NEqu and NCol since by
construction of the plaintexts there cannot exist a colliding collision. In this
scenario the average number of byte collisions when considering M ≤ 256
successive plaintexts (with an average probability of success of Pr(N) for
collision detection):

NEqu(M ·N) = Pr(N) · E
(∑

M

∑
0≤a<b<16 1za=zb

)
= Pr(N) ·M

((
16
2

)
· 1
256

) (4)

Hence, when M = 256, this strategy is equivalent to the known plaintext
setting. Furthermore, we will observe by simulations (Section 4) that Pr(N)
is a linear function of N (over some fixed range Pr(N) ∈ [0 + ε, 1 − ε]),
making this chosen plaintexts scenario completely equivalent to the known
plaintexts approach (it can be easily checked that Equ. 2 and Equ. 4 are
then similar).

B Finding an Optimal Sequence of Plaintexts for the
Collision-Correlation Attack

Proposition 1. Let v0, v1, · · · , vn−1 be n ≤ 256 distinct elements in GF (256).
Let consider the (255×n) matrix A defined as follows: the kth element of row i,
denoted ai,k, is such that

ai,k = vk × αi ,
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where α is a primitive element of GF (256).
The addition in (GF (256))255 of any pair of columns of A is a vector that con-
tains all the non-zero values of GF (256).

Proof. For any value i < n and any value j < n such that i 6= j, let us consider
the ith and jth column of A, denoted respectfully Ai and Aj , and the vector W
resulting from the addition of Ai and Aj . The elements of W , denoted (wk)k<256,
are such that

wk = (vi ⊕ vj)× αk

Hence, assuming that there exists two elements of W that are equal means that
there exists k < l < 256 such that

wk ⊕ wl = (vi ⊕ vj)× (αk ⊕ αl) = 0 .

Since vi 6= vj by definition, we have αk ⊕ αl = 0, which is absurd from the fact
that α is a primitive element of GF (256).
For the same reasons, wk = 0 is also absurd. �

From Proposition 1, we can straightforwardly build a sequence of 255 plaintexts
such that the exclusive-or between two fixed bytes is distinct among all the
plaintexts and also different from 0. Furthermore, a plaintext composed with
the repetition of the same byte (and then for which any difference between two
bytes is null) completes the sequence to form an optimal chain of 256 plaintexts.

C 2nd-order CPA

In this Annex we propose a 2nd-order Correlation Power Analysis (CPA) algo-
rithm, that we call 2-byte 2nd-order CPA attack, dedicated to the target imple-
mentation. As a matter of fact, the mask reuse scheme allows to combine pairs of
masked sensitive variables, which leads to an interesting termination algorithm
that focuses on retrieving the whole 16-byte secret key.

Let us assume that the attacker encrypts a set of N plaintexts {pi}, the
attack will focus on the handling of the Sbox outputs of the first AES round.
Hence, for each encryption i ≤ N , there are 16 sensitive variables of interest:
∀a ∈ {0 · · · 15}, zia = SubBytes(pia ⊕ ka). Moreover, for each sensitive variable
we will assume that the consumption leakage Lia retrieved by the attacker is of
the form: Lia = HW (zia ⊕mi) + N , where mi is the random byte used during
the first round of the ith encryption to mask every SubBytes output and N is a
noise component, independent of the sensitive variable and of the mask (usually
modeled as a Gaussian noise with mean µ and standard deviation σ).

The idea of 2nd-order DSCA (due to Messerges [23]) is to combine the two
leakages corresponding to the handling of the two shares of a masked interme-
diate variable and then apply a 1st-order DSCA attack.

Different leakage combining functions have been proposed in the literature
(see for instance [8, 23, 31]). Eventually, in [27], Prouff et al. proved that, if one
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assumes that the device leaks in the Hamming Weight model (HW), and if one
considers the Pearson correlation as distinguisher (i.e. CPA [7]), the best known
combining function is the normalized product of the two leakages. We will then
consider the following 2nd-order attack described below (denoted by 1-Byte 2nd-
order CPA in the sequel).

Let the two shares of the sensitive variable z be z ⊕ m and m, with m
the mask, and their respective leakages being L1 and L2. Then, the normalized
product combining function consists in computing:

Cprod(L1, L2) = (L1 − E(L1)) ∗ (L2 − E(L2)) ,

with E being the Expectation function. In addition, authors of [27] show that
the optimal prediction function (to be correlated with Cprod(L1, L2) over, say,
N messages), denoted fopt, is:

fopt(ẑ) =
1

256
·

255∑
m=0

(HW (ẑ ⊕m)− E(HW (ẑ ⊕m))) · (HW (m)− E(HW (m))) ,

where ẑ = SubBytes(p ⊕ k̂) with p a plaintext byte and k̂ a guess on the
secret key byte. Thus, the adversary computes, for each key byte candidate, the
correlation between fopt(ẑ) and Cprod(L1, L2). As the number N of plaintexts
grows, the correct key candidate leads to the highest correlation value.

Application to AES Mask Reuse Scheme In the implementation described in
Section 1, a unique masked Sbox is recomputed before the beginning of each
encryption. If it can be easy to identify the position of the AES rounds in the side-
channel trace, it is not always the case for the leakage of the Sbox recomputation.
Thus, applying a 2nd-order CPA as explained before will imply to select large
strips of samples to be sure to include the handling of the mask during the Sbox
recomputation, and the handling of the masked Sbox output.

Another method would be to combine the handling of two masked Sbox out-
puts during the first round computation, and guess two key bytes at a time (this
attack will then be denoted by 2-Bytes 2nd-order CPA in all the following). In
this case one combines the handling of the leakage of two masked sensitive vari-
ables, za⊕m and zb⊕m. Since the same mask is used for both sensitive variables,
the normalized product combining function Cprod will reveal a dependence on
za and zb. Hence, following [27], the optimal prediction function becomes:

fopt(ẑa, ẑb) = 1
256 ·

∑255
m=0 (HW (ẑa ⊕m)− E(HW (ẑa ⊕m)))

· (HW (ẑb ⊕m)− E(HW (ẑb ⊕m))) .
(5)

Such a method implies to make an hypothesis on two key bytes at a time
(ka and kb), but will eventually give information about both key bytes. Further-
more, it is possible to attack all pairs of key bytes independently, i.e. the 120
pairs of key bytes (ka, kb), with a 6= b, and a, b ∈ {0 · · · 15} (similarly to the
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collision-correlation attack presented in Section 3). This last remark leads to a
key-recovery algorithm that is specific to our target implementation and attack
choice. In the following are described the two main components of the 2-byte
2nd-order CPA attack, namely the MaxCorrelation function that provides the
best hypothesis of pair of key bytes from a set of side-channel leakages and the
key-recovery algorithm which, from 120 best key byte pair candidates, provide
the full 16-byte secret key. The complete 2-byte 2nd-order CPA algorithm is
given in Algorithm 6. It can be noted that the 1-Byte 2nd-order CPA does not
lead to such key-recovery mechanism, since each key byte is retrieved indepen-
dently from the others. Eventually, this will make this attack less efficient than
the 2-Bytes 2nd-order CPA (see Section 4.1).

C.1 MaxCorrelation

We propose in Algorithm 4 to expose the MaxCorrelation function for purpose
of completeness, this is a basic component of 2nd-order CPA, we do not provide
improvement to the state of the art (the 1-Byte version of the attack is well
known and then not recalled here).

Algorithm 4’s inputs are 4 vectors of sizeN , namely (pia)i≤N and (pib)i≤N that
correspond respectively to the ath and the bth bytes of N plaintexts and (Lia)i≤N
and (Lib)i≤N that are the information leakages corresponding to the handling of
za ⊕ m and zb ⊕ m retrieved during the encryption of the N plaintexts. The
function outputs the best guess for the pair of key bytes (ka, kb).

Algorithm 4 MaxCorrelation for 2-Bytes 2nd-order CPA

Input: (pia)i≤N , (p
i
b)i≤N , (L

i
a)i≤N , (L

i
b)i≤N

Output: 2 key bytes: (ka, kb)

1. for k̂a = 0 to 255

2. for k̂b = 0 to 255

3. do ρk̂a,k̂b ← ρ((fopt(ẑia, ẑ
i
b))i≤N , (Cprod(L

i
a, L

i
b))i≤N )

[Evaluate the Pearson Correlation Coefficient for the hypothesis (k̂a, k̂b)]

4. return (ka, kb) = argmax(ρk̂a,k̂b)

C.2 Key-Recovery

Bayesian Extension and LDPC Soft-Decoding In a very similar context,
the use of Bayesian extension and LDPC soft-decoding have been shown to be
very efficient to reduce the data complexity of collision-correlation attack (see
Section 3.2 and results in Section 4.2). However, to our knowledge, no such
treatment has been conducted on 2nd-order CPA and we observed that a direct
application of the above mentioned mechanism in our context does not provide
relevant results. One reason may be that the Bayesian extension is done under
the hypothesis that a Fisher transformation of the correlation coefficient follows
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a Gaussian law (see [15]). This is a good approximation when the two corre-
lated random variables follow a Gaussian law (as in 1st-order CPA or collision-
correlation attack) but not anymore in 2nd-order CPA (where the normalized
product appears).

Hence we let for future work the Bayesian approach in the case of 2nd-order
CPA.

Termination Algorithm We call key-recovery the part of the attack algorithm
which, from the output of the MaxCorrelation function applied independently
to the 120 pairs (za, zb)0≤a<b<16 of sensitive bytes, delivers the most probable
full secret key candidate. Thus the attacker receives a list of equations involving
the key bytes: ∀0 ≤ a < b < 16, (ka, kb) = (αa, αb). Solving the equation system
is trivial when there is no erroneous equation, all the work is then dedicated to
identifying and correcting (if possible) the erroneous equations5.

Detection/Correction of Erroneous Equations It can be easily checked that the
equation system possesses 120 equations and 16 unknowns. Hence, 120-16 of
these equations may be considered as redundant and then used to detect, and
eventually correct, some potential erroneous equations. Although generic decod-
ing algorithms may exist, we have not investigated this direction as the equation
system possesses a very specific structure that led us to an efficient algorithm,
we let open the question of a better, if not optimal, decoding algorithm for the
equation system.

Algorithm 5 describes the so-called decoding algorithm, the main idea of the
algorithm is to consider that, in a given equation (ka, kb) = (αa, αb), if one of
the two values αi is erroneous it would be merely by chance that the other one
is correct. The other way around, if one half of the equation can be asserted as
correct, there is a good chance than the other half is also correct.

Algorithm 5 SolveSystem 20CPA

Input: A noisy equation system Sin
Output: A clean equation system Sout

1. Initialize an Empty Equation System Sout

2. Initialize 3 arrays to zero: max val[16],max count[16] and B[16][256]

3. for a = 0 to 15

4. do Set in max val[a] the value that is proposed the most often for the byte ka

5. do Set inmax count[a] the number of timesmax val[a] is proposed for the byte ka

6. for a = 0 to 15

7. for b = 0 to 15, b 6= a

8. do Consider the equation (ka, kb) = (αa, αb) from Sin

5 this study would be useless if all the sensitive variables were leaking exactly the same
way. We believe that this is not a realistic assumption specifically when dealing with
secure devices (for instance because of random clock). Indeed, our real experiment
invalidated the idealist assumption
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9. if max val[a] = αa then do B[b][αb]← B[b][αb] +max count[a]

10. for a = 0 to 15

11. do Find the index α such that B[a][α] is maximum, set ka = α into Sout

12. return Sout

We give the simulation results of the algorithm in Section 4.1 and compare
them to the system solving success rate in the case of the collision-correlation
attack. Using the Algorithm 5, the equation system will be correctly solved with
a success probability above 90% when only 30% of the equations are correct6.
In Section 4.2, we also show that the simulation results match our experimental
results with respect to the key-recovery, i.e. the repartition of erroneous equa-
tions in the system does not have a special structure that helps/handicaps the
detection algorithm.

C.3 Full 2nd-order CPA Algorithm

In this section is described the full attack algorithm based on 2nd-order CPA.

Algorithm 6 2-Bytes 2nd-order CPA
Input: A 1st-order mask reuse AES implementation, a number of plaintexts N
Output: The 16-byte secret key

1. Initialize an Empty Equation System Sin

2. do Encrypt N new plaintexts {pi}1≤i≤N , retrieve N×16 leakages {Lia}1≤i≤N,0≤a≤15

[Lia being the leakage of the ath Sbox output during the encryption of the ith

plaintext]

3. for a = 0 to 15

4. for b = a+ 1 to 15

5. do (αa, αb)← MaxCorrelation({pia, pib, Lia, Lib}i≤N )

[Find the best choice (αa, αb) for the pair of key bytes (ka, kb)]

6. do Add (ka,kb) = (αa, αb) to Sin

7. do Sout ←SolveSystem 2OCPA(Sin) [The secret key k is retrieved from the
equation system.]

8. return (ka)a<16 [contained in Sout]

A study of the data complexity (N) of the attack is proposed in Section 4
and compared with the collision-correlation attack.

6 when the erroneous equations are uniformly distributed


