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Abstract

In a group key exchange protocol, the resulting group key should be computed by all participants such that

none of them can gain any advantage concerning the protocol’s output: misbehaving participants might have personal

advantage in influencing the final value of the key. In fact, the absence of trust relationship is the main feature of

group key exchange (when compared to group key transport) protocols. This paper enlarges existing notions of

security by identifying limitations in some previously proposed security models. To illustrate these notions, two

efficient and provably secure generic solutions – compilers – are presented.
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I. INTRODUCTION

Group Key Exchange protocols (GKE) is a method of key establishment characterized by the fact that no secure

channels are needed and, more important, no party is allowed to choose the key on behalf of the group: in other

words, group members do not trust each other. This strong but much realistic requirement provides background and

motivation for considering malicious participants in such protocols and for defining in a formal way what security

means in that case. Such formalization is one of the main goals of this paper. In the paradigm of provable security,

security is analyzed in the framework of a security model. Such model has been defined for two-party protocols [2],
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[3] and multi-party protocols [8]: a security proof shows that the established key looks random to any outsider

(this is called AKE (Authenticated Key Exchange) security), and that any pair of parties mutually agree on having

computed the same key (this the MA (Mutual Authentication) property). We refer to [7], [18], [17] for refinements

and to [22] for a survey.

A number of papers [24], [1], [11], [17] point out that the consideration of corrupted participants (either curious

or malicious) is of prime importance in the group setting, because they can have catastrophic effects on the protocol

security; for instance, Choo et al. [11] noticed that some protocols proven secure in the BCPQ-like models are

vulnerable to unknown key-share attacks, in which the attacker is believed (from some participant’s view) to be a

group member.

II. CONTRIBUTIONS AND ORGANIZATION

This paper provides an extended treatment of security of GKE protocols in the presence of malicious participants

We formally define what a “secure group key” means in such scenario.

We start by discussing the related work and some limitations in currently known security models (Section III).

Then we describe our extended model and formalize new security definitions (Section IV). Our model is both

general and powerful: in particular, we formalize how to take into account “corruptions” of secrets held by the

participants, both in case of long-term secrets (e.g. authentication keys) and ephemeral data (e.g. randomness or

keying material). To prove the soundness and feasibility of our extensions, in Sections V and VI we propose two

generic solutions (compilers) which turn any AKE-secure GKE protocol into an enhanced protocol, which provably

satisfies our advanced security requirements.

III. RELATED WORK

A. General Security Notions for GKE Protocols

AKE-security for group key exchange was formalized (and later refined) in [8], [7], [18]. We will refer to this

model as the BCPQ security model. The security notion is powerful in the sense that it subsumes several informal

security goals defined in the literature, among which: key secrecy [14], implicit key authentication [23], security

against impersonation attacks [10], resistance against known-key attacks [26], [9], key independence [20]. Also it



E. BRESSON AND M. MANULIS: MALICIOUS PARTICIPANTS IN GROUP KEY EXCHANGE 3

can be combined with (perfect) forward secrecy [16], [14], [23] which requires that the disclosure of long-lived

keys must not compromise the secrecy of the previously established group keys. An even stronger requirement is

that of strong forward secrecy [7], [25] in which the adversary can read the ephemeral secrets used during the

protocol execution. Finally, the formal definition of MA-security in [8] has been designed to cover the informal

definitions of key confirmation [23, § 12.2] and explicit key authentication [23, § 12.2].

B. Informal Definitions of Contributiveness in the Presence of Malicious Players

According to [11], the above definitions of AKE and MA-security are not sufficient to handle unknown key-share

attacks [14], [5], in which a corrupted participant can make an honest participant believe that the key is shared

with one party though in fact it is shared with another party.

There have been, however, only few attempts to consider malicious participants in GKE protocols. Misbehavior

of protocol participants was first mentioned in [24], under the name of key control. Independently, Ateniese et al. [1]

introduced the more general notion of unpredictability (which intuitively preventss key control), and further proposed

a related notion called (verifiable) contributory group key agreement: the property by which each participant equally

contributes to the resulting group key and guarantees its freshness in a verifiable manner. A weaker model (as in

[6]) considers participants who are honest but have biased pseudo-random generators, such that the adversary can

influence the key. In this paper we consider a stronger setting (in spirit of [4]), where malicious participants try

to influence honest participants computing some special value as a group key (thus including the so-called key

replication attacks [21]).

C. Formal Models dealing with Malicious Participants

1) The KS Model: Based on the aforementioned papers, Katz and Shin [17] proposed security definitions against

malicious participants in a BCPQ-like model: they formalize the notion of adversary impersonating player A to

player B and states what security means in such scenario.

The authors of [17] described a compiler to turn any AKE-secure protocol (in the sense of BCPQ) into a protocol

secure in their extended model. It can be shown however, that their compiler is not complete in the sense that the

resulting protocol may not be contributory if the basic protocol is not so.
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2) The BVS Model: Another extension has been proposed by Bohli et al. [4] towards security goals in the

presence of malicious participants. The process dealing with contributiveness, at an informal level, runs as follows.

In a first stage, the adversary A interacts with the users and may corrupt some of them; A then specifies an unused

instance oracle Πs
i and a subset K in the session key space K. In the second stage, the adversary tries to make

Πs
i accept a session key k ∈ K but is not allowed to corrupt Ui. The BVS model defines a GKE protocol as

being t-contributory if the adversary succeeds with only negligible probability, with the total number of corruptions

remains (strictly) less than t. A n-contributory protocol between n participants is called a key agreement.

While quite appealing, this model suffers from two drawbacks: first, the adversary is not adaptive in her choice

of Πs
i and must commit to it in the first stage; second, strong corruptions are not allowed: contributiveness does

not capture attacks in which A tries to influence the session key using the (passive) knowledge of some ephemeral

secrets.

IV. OUR EXTENDED SECURITY MODEL

In the following we propose a security model for GKE protocols that includes extended security definitions

concerning MA-security and contributiveness, while taking into account strong corruptions.

A. Definition of a Group Key Exchange Protocol

1) Users and Oracles: Similar to [7] U is a set of N users; each user Ui ∈ U holds a long-lived key LLi, and

has an unlimited number of instances called oracles, involved in distinct concurrent protocol executions; Πs
i , with

s ∈ N, denotes the s-th instance oracle of Ui. We write Πs
U if no specific user is meant.

Every Πs
U maintains an internal state information statesU which is composed of all ephemeral information used

during the protocol execution. The long-lived key LLU is, in nature, excluded from it (moreover the long-lived key

is specific to the user, not to the oracle).

An oracle Πs
U is unused if it has never been initialized. Each unused oracle Πs

U can be initialized with the

long-lived key LLU , when it becomes part of some group G. When an oracle Πs
U collects enough information

to compute the session group key, it accepts. When it finishes to send or receive messages, the oracle terminates
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the protocol execution. If the execution fails (due to any adversarial actions) then Πs
U terminates without having

accepted, and the session key ksU is set to some undefined value.

2) Session ID, Partner ID, Session Group Key, Group Members: Every session is identified by a unique, publicly-

known session id sidsU . In each session each participating oracle Πs
U gets a value pidsU that contains the identities

of participating users (including U ) and computes session group key ksU ∈ {0, 1}κ where κ is the security parameter.

By G(Πs
i ) = {Πt

j , where Uj ∈ pidsUi and sidsi = sidtj} we denote the group of oracle Πs
i and say that Πs

i and

Πt
j are partnered if Πt

j ∈ G(Πs
i ) and Πs

i ∈ G(Πt
j).

Sometimes we simply write G to denote the group of oracles participating in the same protocol session. Then

each oracle in G is called a group member. Note that oracles in G may be ordered, e.g., lexicographically based

on the user identities.

Definition 1 (GKE Protocol): A group key exchange protocol P consists of the key generation algorithm KeyGen,

and a protocol Setup defined as follows:

• P.KeyGen(1κ): On input a security parameter 1κ each user in U is provided with a long-lived key LLU .

• P.Setup(S): On input a set S of n unused oracles a new group G is created and set to be S, then a probabilistic

interactive protocol is executed between oracles in G.

We call P.Setup an operation. We say that a protocol is correct if all oracles accept with the same group key.

We assume it is the case for all protocols in this paper.

B. Adversarial Model

We now consider an adversary A which is a Probabilistic Polynomial-Time (PPT) algorithm having complete

control over the network. A can invoke protocol execution and interact with protocol participants via queries to

their oracles.

• Execute(S): This query models A eavesdropping protocol executions. Formally, P.Setup(S) is run and A is

given the transcript.

• Send(Πs
U ,m): This query models A sending messages to the oracles. A receives the response which Πs

U would

have generated after having processed the message m according to the description of P. An new execution of
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P.Setup(S) can be initiated via a Send(Πs
U ,S) query, which returns the first message that Πs

U would generate

in this case.

• RevealKey(Πs
U ): A is given the session group key ksU . This query is answered only if Πs

U has accepted.

• RevealState(Πs
U ): A is given the internal state information statesU .

• Corrupt(U): A is given the long-lived key LLU .

We say that Πs
U is a malicious participant if the adversary has previously asked the Corrupt(U) query, thus gained

the ability to act on behalf of U . In all other cases Πs
U is honest. We say that the adversary opens an instance if it

asks a RevealState(Πs
U ) query for some honest Πs

U . This is possible since long-lived keys are separated from the

ephemeral secrets stored in statesU .

With the following definition we emphasize the substantial difference between weak and strong corruptions in

our model, namely the access to the query RevealState.

Definition 2 (Weak/Strong Corruption Models): We say that a PPT adversary A operates in the weak corruption

model if it is given access to the queries Execute, Send, RevealKey, Corrupt, and Test; and in the strong corruption

model if it is additionally given access to the query RevealState.

In the following we provide definitions of AKE-/MA-security, and contributiveness whereby distinguishing

between weak and strong corruption models.

C. AKE-Security with Weak/Strong Forward Secrecy

Perfect forward secrecy [8], which we also refer to as weak forward secrecy (wfs), states that AKE-security of

previously computed session keys is preserved if the adversary obtains long-lived keys of protocol participants in

later protocol sessions. As extended in [7], strong forward secrecy (sfs) states that AKE-security should still be

preserved if the adversary obtains additionally ephemeral secrets of participating oracles in later protocol sessions.

Definition 3 (Oracle α-Freshness): Let α ∈ {wfs, sfs}. In the execution of P the oracle Πs
U is wfs-fresh if all

of the following holds:

• no Ui ∈ pidsU is asked for a Corrupt query prior to a query of the form Send(Πt
j ,m) such that Uj ∈ pidsU

before Πs
U and all its partners accept;
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• neither Πs
U nor any of its partners is asked for a RevealKey query after having accepted.

We say oracle Πs
U is sfs-fresh if it is wfs-fresh and neither Πs

U nor its partners are asked for a RevealState query

before Πs
U and all its partners accept. We say that a session is α-fresh if all participating oracles are α-fresh.

We emphasize that the ephemeral data statesU is specific to a session (user instances are so). Thus, and oracle

remains α-fresh if RevealState and RevealKey queries are asked to other oracles owned by the same user. Hence,

in contrast to [7] (and [18]) our definition of sfs-freshness allows the adversary to obtain knowledge of internal

states from earlier sessions too.

Definition 4 (AKE-Security): Let b a uniformly chosen bit, and A an active adversary A operating in the weak

(α = wfs) or strong (α = sfs) corruption model. We define the game Gameake−b
α,P (A, κ) defined as follows:

• in a first stage, A interacts with instance oracles using queries;

• at some point A asks a Test query to a α-fresh oracle Πs
U which has accepted. This query is answered as

follows: if b = 1, A receives k1 := ksU ; if b = 0, it receives k0 ∈R {0, 1}κ;

• in the second stage, A continues interacting with instance oracles;

• when A terminates, it outputs a bit trying to guess b.

The output of A is the output of the game. The advantage function (over all adversaries running within time κ) in

winning this game is defined as:

Advake
α,P(κ) := max

A

∣∣2 Pr[Gameake−b
α,P (A, κ) = b]− 1

∣∣
A GKE protocol P is AKE-secure with weak forward secrecy (AGKE-wfs) if Advake

wfs,P(κ) is negligible, and AKE-

secure with strong forward secrecy (AGKE-sfs) if Advake
sfs,P(κ) is negligible.

D. MA-Security in the Presence of Malicious Participants

Our definition enlarges the one in [7], [8] by considering malicious participants. In the weak corruption model

it can be seen as a replacement for definitions in [17]. In the strong corruption model it is even stronger due to

RevealState queries to honest oracles.

Definition 5 (MA-Security): Let A be an active adversary and Gamema
P (A, κ) the interaction between A and

the instance oracles, in the weak/strong corruption model. We say that A wins if, at some point, there exist an
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uncorrupted user Ui whose instance oracle Πs
i has accepted with ksi and another user Uj with Uj ∈ pidsi that is

uncorrupted at the time Πs
i accepts, such that

1) there is no instance oracle Πt
j with (pidtj , sid

t
j) = (pidsi , sid

s
i ), or

2) there is an instance oracle Πt
j with (pidtj , sid

t
j) = (pidsi , sid

s
i ) that accepted with ktj 6= ksi .

The maximum probability of this event (over all adversaries running within time κ) is denoted Succma
P (κ). We say

that a GKE protocol P is MA-secure (MAGKE) if this probability is a negligible function of κ.

Note that Ui and Uj must be uncorrupted, however, A operating in the strong corruption model can ask RevealState

queries to all honest oracles, including Πs
i and Πt

j .

E. Contributiveness in the Presence of Malicious Participants

We start with the definition of contributiveness in the strong corruption model. Informally, an active adversary

allowed to corrupt n− 1 group members and reveal internal states of all n oracles must not be able to predict the

key computed by an (instance of) honest player.

Definition 6 (Contributiveness in the Strong Corruption Model): Let A be an adversary (in the strong corrup-

tion model) that interacts with oracles in two stages: prepare and attack, according to the following game

Gamecon
P (A, κ):

• A(prepare) interacts with the oracles. At the end of the stage, it outputs k̃ ∈ {0, 1}κ, and some state

information ζ;

• the following sets are built: Gus consisting of all honest used oracles, Grun consisting of all honest oracles that

are involved in one execution (Grun ⊆ Gus), and Ψ consisting of session ids sidtj for every Πt
j ∈ Gus;

• A(attack, ζ) continues its interaction. At the end of the stage A outputs (s, U).

The adversary A wins in Gamecon
A,P(κ) if all of the following holds:

1) Πs
U has accepted and terminated with k̃, no Corrupt(U) has been asked, Πs

U 6∈ Gus \ Grun and sidsU 6∈ Ψ.

2) There are at most n− 1 corrupted users Uj having oracles Πt
j partnered with Πs

U .

The maximal probability (over all adversaries running within time κ) in winning the game is defined as

Succcon
P (κ) := max

A

∣∣ Pr[A wins in Gamecon
P (A, κ)]

∣∣
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We say that a GKE protocol P is contributory in the strong corruption model (sCGKE) if this probability is a

negligible function of κ.

a) Comments: The condition Πs
U 6∈ Gus \ Grun rules out the trivial case where A as malicious participant of

a session outputs k̃ which is then accepted by Πs
U participating in the same session (note that participants do not

compute group key synchronously). The condition sidsU 6∈ Ψ rules out another trivial case where A during its

attack stage outputs (s, U) such that Πs
U has accepted with k̃ earlier in the prepare stage.

Definition 6 ensures unpredictability of group keys and is sufficient for preventing key-replication attacks.

However, (similar to [4]) this definition does not deal with the unpredictability of some bits of the group key.

The main reason is that all ephemeral secrets used by the honest participants during the protocol execution can be

revealed by the adversary. Intuitively, unpredictability of some bits of the group key, or in other words the uniform

distribution of session group keys computed in the presence of malicious participants, is related to the problem of

asynchronous distributed coin tossing for probabilistic algorithms without trusted parties and trapdoor permutations

for which a theoretical bound of at most (n − 1)/2 corrupted parties exists [12]. On the other hand, in the weak

corruption model (without RevealState queries) this can be easily achieved, e.g., via commitments as in [24], [19],

[13], whereas strong corruptions can reveal the committed secrets as part of statesU .

For completeness, we give in the following an alternative definition for contributiveness in the weak corruption

model.

Definition 7 (Contributiveness in the Weak Corruption Model): Let b a uniformly chosen bit, K := ∅ an initially

empty set of keys, and A an adversary operating in the weak corruption model running in three stages, prepare,

attack and decide, according to Gamecon−b
P (A, κ):

• A(prepare) interacts with the oracles and finally outputs some state information ζ;

• the following sets are built: Gus consisting of all honest used oracles, Grun consisting of all honest oracles

involved in an execution (Grun ⊆ Gus), and Ψ consisting of session ids sidtj for every Πt
j ∈ Gus;

• A(attack, ζ) interacts with oracles and finally outputs some updated state information ζ ′;

• Let qs denote the number of sessions invoked by A in the stages prepare and attack. Then the sets G1, . . . ,Gq,

q ≤ qs are built as follows: each set Gi, i ∈ [1, q] consists of all honest oracles Πt
j holding the same pair
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(pidtj , sid
t
j) with Πt

j 6∈ Gus and sidtj 6∈ Ψ. Then, for each Gi, the session group key accepted by the first

honest oracle in Gi (if b = 1) or a random element (if b = 0) is added to K. If K is not empty then A is

invoked for the decide stage.

• A(decide, ζ,K) without asking any further queries outputs a bit trying to guess b.

The output of A in the stage decide is the output of the game. The advantage function (over all adversaries running

within time κ) in winning this game is defined as:

Advcon
P (κ) := max

A

∣∣2 Pr[Gamecon−b
P (A, κ) = b]− 1

∣∣
We say that a GKE protocol P is contributory in the weak corruption model (wCGKE) if Advcon

P (κ) is negligible.

b) Comments: The state information ζ returned by A in the prepare stage is given as input to the stages

attack and decide. However, A in the decide stage does not obtain any state information from the attack stage.

Thus, these stages run isolated. The core idea in the definition is to let A to distinguish whether elements of K are

real session group keys, computed by honest participants in the presence of malicious ones (b = 1), or randomly

chosen values (b = 0).

V. COMPILER C-MACONS

In this section we propose a compiler which can be used to turn any AKE-secure GKE protocol into a GKE

protocol which is additionally MA-secure and provides contributiveness in the strong corruption model. If P is a

GKE protocol, by C-MACONSP we denote the compiled protocol.

A. Main Ideas

In the following, we assume that each message sent by Πs
U can be parsed as U |m consisting of the sender’s

identity U and a message m; for simplicity we will use the same s for all oracles of the session. Additionally, an

authentication token σ, e.g., a digital signature on m, can be attached.

After computing the session group key k in the underlying protocol P participants execute C-MACONS. In a first

communication round they exchange random nonces ri that are concatenated into a session id sid (a classical way

to define unique session ids). Then, each participant iteratively computes values ρ1, . . . , ρn by adequately using a
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pseudo-random function f, in such a way that every random nonce (contribution of each participant) is embedded

into the computation of K := ρn. The intuition is that malicious participants cannot influence this computation.

The second communication round of C-MACONS is used to ensure key confirmation. For this purpose, as in [17],

every participant computes a key confirmatory token µi = fK (v2) using a public input value v2, signs it and sends

it to other participants. After verifying signatures each party accepts with the session group key K = fK (v3) with

public input value v3 6= v2. All intermediate values are then erased.

Definition 8 (Compiler C-MACONS): Let P be a GKE protocol from Definition 1, π : {0, 1}κ → {0, 1}κ a

permutation, F :=
{
fk

}
k∈{0,1}κ , κ ∈ N a function ensemble with domain and range {0, 1}κ, and Σ := (Gen, Sign,

Verify) a digital signature scheme. A compiler for MA-security and contributiveness in the strong corruption

model, denoted C-MACONSP, consists of the algorithm INIT and a two-round protocol MACONS defined as follows:

• INIT: In the initialization phase each Ui ∈ U generates own private/public key pair (sk′i, pk
′
i) using Σ.Gen(1κ).

This is in addition to any key pair (ski, pki) used in P.

• MACONS: After an oracle Πs
i computes ksi in the execution of P it proceeds as follows.

Round 1: It chooses a random MACON nonce ri ∈R {0, 1}κ and sends Ui|ri to every oracle Πs
j with

Uj ∈ pidsi . After Πs
i receives Uj |rj from Πs

j with Uj ∈ pidsi it checks whether |rj | ?= κ. If this

verification fails then Πs
i terminates without accepting;

Round 2: Otherwise, after having received and verified these messages from all other partnered oracles it

computes ρ1 := fksi⊕π(r1)(v1) and each ρl := fρl−1⊕π(rl)
(v1) for all l ∈ {2, . . . , n} where v1

is a public value. Then, it defines the intermediate key Ks
i := ρn and sidsi := r1| . . . |rn and

computes a MACON token µi := fKs
i
(v2) where v2 is a public value, together with a signature

σi := Σ.Sign(sk′i, µi|sidsi |pidsi ). Then, it sends Ui|σi to every oracle Πs
j with Uj ∈ pidsi and

every other private information from statesi (including ksi and each ρl, l ∈ [1, n]).

After Πs
i receives Uj |σj from Πs

j with Uj ∈ pidsi it checks whether Σ.Verify(pk′j , µi|sidsi |pidsi ,

σj) ?= 1. If this verification fails then Πs
i terminates without accepting; otherwise it accepts with

the session group key Ks
i := fKs

i
(v3) where v3 6= v2 is another public value, and erases every

other private information from statesi (including Ks
i ).
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B. Complexity of C-MACONS

Obviously, C-MACONS requires two communication rounds. This is similar to the KS compiler [17] in case that

no session ids are predefined and have to be negotiated first. Each participant must generate one digital signature

and verify n signatures where n is the total number of session participants. This is also similar to the KS compiler.

C-MACONS achieves contributiveness at an additional cost of n executions of the one-way permutation π and n

executions of the pseudo-random function f per participant. Note that costs of XOR operations are usually omitted

in the complexity analysis if public-key cryptography operations are present. Note also that pseudo-random functions

can be realized using techniques of the symmetric cryptography massively reducing the required computational

effort.

C. Security Analysis of C-MACONS

Let P be a GKE protocol from Definition 1. For this analysis we require Σ to be existentially unforgeable under

chosen message attacks (EUF-CMA) [15], π to be one-way, and F to be collision-resistant pseudo-random [17].

Recall that we assume ephemeral secret information being independent of the long-lived key; that is, statesU

may contain ephemeral secrets used in P, the session key ksU computed in P, and ρ1, . . . , ρn together with some

(implementation specific) temporary variables used to compute these values. Note that statesU is erased at the end

of the protocol. By contrast, temporary data used by Σ.Sign(sk′U ,m) usually depends on the long-lived key and

thus should be executed under the same protection mechanism as sk′U , e.g., in a smart card [7]1. Let qs be the total

number of executed protocol sessions during the attack.

The following theorem shows that C-MACONSP preserves the AKE-security with strong forward secrecy of the

underlying protocol P. Due to space limitations all the theorem proofs have been left out and will be available

from the authors’ websites.

Theorem 1 (AKE-Security of C-MACONSP): For any AGKE-sfs protocol P if Σ is EUF-CMA and F is pseudo-

random then C-MACONSP is also a AGKE-sfs protocol, and

Advake
sfs,C-MACONSP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvake

sfs,P(κ) + 2(N + 2)qsAdvprf
F (κ).

1Smart cards have limited resources. However, in C-MACONS each Πs
U has to generate only one signature.
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The following theorems concern the MA-security and the contributiveness of C-MACONSP in the presence of

malicious participants and strong corruptions.

Theorem 2 (MA-Security of C-MACONSP): For any GKE protocol P if Σ is EUF-CMA and F is collision-resistant

then C-MACONSP is MAGKE, and

Succma
C-MACONSP(κ) ≤ NSucceuf−cmaΣ (κ) +

Nq2
s

2κ
+ qsSucccoll

F (κ).

Theorem 3 (Contributiveness of C-MACONSP): For any GKE protocol P if π is one-way and F is collision-resistant

pseudo-random then C-MACONSP is sCGKE, and

Succcon
C-MACONSP(κ) ≤ Nq2

s +Nqs + 2qs

2κ
+ (N + 2)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ).

Remark 1: Note that the contributiveness of C-MACONSP depends neither on AKE-security of P nor on the security

of the digital signature scheme Σ. Hence our compiler can also be used for unauthenticated GKE protocols by

omitting digital signatures of exchanged messages. However, in this case it would guarantee only contributiveness

but not MA-security in the presence of malicious participants. The latter can be only guaranteed using digital

signatures (as also noticed in [17] for their definition of security against insider attacks). Note also that C-MACONSP

provides contributiveness in some even stronger sense than required in Definition 6, i.e., A may even be allowed

to output K̃ before the uncorrupted user’s oracle Πs
U (that is supposed to accept with K̃ in Gamecon

C-MACONSP(A, κ))

starts with the MACONS protocol of the compiler, and not necessarily before the execution of the new C-MACONSP

session.

VI. COMPILER C-MACONW

In this section we slightly modify C-MACONS to obtain a compiler C-MACONW which provides MA-security and

contributiveness for any AKE-secure GKE protocol in the weak corruption model.

A. Main Differences to C-MACONS

The main difference to C-MACONS is that every participant uses own random nonce ri as a seed for the pseudo-

random function f to compute the PRF commitment ci which is sent to all other participants in the first communica-

tion round. Upon receiving PRF commitments from other participants the random nonce will be revealed such that
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after the verification of PRF commitments C-MACONW proceeds similar to C-MACONS. Intuitively, pseudo-randomness

and collision-resistance of f ensure that malicious participants chose own nonces before they learn nonces chosen

by the honest participants, which will then be used to derive the session group key. Further differences are: (i) the

computation of the one-way permutation π on chosen MACON nonces are omitted, and (ii) due to the absence of

RevealState queries no erasure of internal state information is necessary.

Definition 9 (Compiler C-MACONW): Let P be a GKE protocol from Definition 1, π : {0, 1}κ → {0, 1}κ a

permutation, F :=
{
fk

}
k∈{0,1}κ , κ ∈ N a function ensemble with domain and range {0, 1}κ, and Σ := (Gen,

Sign, Verify) a digital signature scheme. A compiler for MA-security and contributiveness in the weak corruption

model, denoted C-MACONWP, consists of the algorithm INIT and a three-round protocol MACONW defined as follows:

• INIT: In the initialization phase each Ui ∈ U generates own private/public key pair (sk′i, pk
′
i) using Σ.Gen(1κ).

This is in addition to any key pair (ski, pki) used in P.

• MACONW: After an oracle Πs
i computes ksi in the execution of P it proceeds as follows.

Round 1: It chooses a random MACON nonce ri ∈R {0, 1}κ, computes the PRF commitment ci := fri(v0)

where v0 is a public value, and sends Ui|ci to every oracle Πs
j with Uj ∈ pidsi .

Round 2: After having received these messages from all other participating oracles it sends Ui|ri to every

oracle Πs
j with Uj ∈ pidsi . After Πs

i receives Uj |rj from Πs
j with Uj ∈ pidsi it checks whether

cj ?= frj (v0) and |rj | ?= κ. If these verifications fail then Πs
i terminates without accepting.

Round 3: Otherwise, after having received and verified these messages from all other oracles it computes

ρ1 := fksi⊕r1(v1) and each ρl := fρl−1⊕rl(v1) for all l ∈ {2, . . . , n} where v1 is a public value.

Then, it defines the intermediate key Ks
i := ρn and sidsi := r1| . . . |rn and computes a MACON

token µi := fKs
i
(v2) where v2 is a public value, together with a signature σi := Σ.Sign(sk′i,

µi|sidsi |pidsi ). Then, it sends Ui|σi to every oracle Πs
j with Uj ∈ pidsi .

After Πs
i receives Uj |σj from Πs

j with Uj ∈ pidsi it checks whether Σ.Verify(pk′j , µi|sidsi |pidsi ,

σj) ?= 1. If this verification fails then Πs
i terminates without accepting; otherwise it accepts with

the session group key Ks
i := fKs

i
(v3) where v3 6= v2 is another public value.
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B. Complexity of C-MACONW

C-MACONW requires three communication rounds. Each participant must generate one digital signature and verify

n signatures where n is the total number of session participants. Furthermore, C-MACONW requires 2n+1 executions

of the pseudo-random function f per participant.

C. Security Analysis of C-MACONW

Security analysis of C-MACONW is widely similar to that of C-MACONS. Especially the requirements of AKE- and

MA-security require only minor additional modifications.

Theorem 4 (AKE-Security of C-MACONWP): For any AGKE-wfs protocol P if Σ is EUF-CMA and F is collision-

resistant pseudo-random then C-MACONWP is also a AGKE-wfs protocol, and

Advake
wfs,C-MACONWP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2NqsSucccoll

F (κ) +

+2qsAdvake
wfs,P(κ) + 2(N + 2)qsAdvprf

F (κ).

Theorem 5 (MA-Security of C-MACONWP): For any GKE protocol P if Σ is EUF-CMA and F is collision-resistant

then C-MACONWP is MAGKE, and

Succma
C-MACONWP(κ) ≤ NSucceuf−cmaΣ (κ) +

Nq2
s

2κ
+ qsSucccoll

F (κ).

Theorem 6 (Contributiveness of C-MACONWP): For any GKE protocol P if F is collision-resistant pseudo-random

then C-MACONWP is wCGKE, and

Advcon
C-MACONWP(κ) ≤ Nq2

s

2κ−1
+ 2NqsSucccoll

F (κ) + 2(N + 1)qsAdvprf
F (κ).

VII. CONCLUSION

In this paper we have addressed the main difference in the trust relationship between participants of group key

exchange (GKE) and whose of group key transport (GKT) protocols, namely, the question of key control and

contributiveness. This has been done from the perspective of malicious participants and powerful adversaries who

are able to reveal the internal memory of honest participants. The proposed security model based on the extension

of the well-known notion of AKE-security with strong forward secrecy from [7] towards additional requirements of

MA-security and contributiveness seems to be stronger than the previous models for group key exchange protocols
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that address similar issues. The described compilers C-MACONS and C-MACONW satisfy these additional security

requirements and extend the list of currently known compilers for GKE protocols, i.e., the compiler for AKE-

security by Katz and Yung [18] and the compiler for security against “insider attacks” by Katz and Shin [17] (that

according to our model provides MA-security but not contributiveness).
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