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Abstract: In Group Key Exchange (GKE) protocols, users usually extract the group key using 
some auxiliary (ephemeral) secret information generated during the execution. Strong corruptions 
are attacks by which an adversary can reveal these ephemeral secrets, in addition to the possibly 
used long-lived keys. Undoubtedly, security impact of strong corruptions is serious, and thus 
specifying appropriate security requirements and designing secure GKE protocols appears an 
interesting yet challenging task – the aim of our article. We start by investigating the current 
setting of strong corruptions and derive some refinements like opening attacks that allow to 
reveal ephemeral secrets of users without their long-lived keys. This allows to consider even 
stronger attacks against honest, but ‘opened’ users. Further, we define strong security goals for 
GKE protocols in the presence of such powerful adversaries and propose a 3-round GKE 
protocol, named TDH1, which remains immune to their attacks under standard cryptographic 
assumptions. Our security definitions allow adversaries to register users and specify their long-
lived keys, thus, in particular capture attacks of malicious insiders for the appropriate security 
goals such as Mutual Authentication, key confirmation, contributiveness, key control and key-
replication resilience. 
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1 Introduction 
A Group Key Exchange (GKE) protocol provides 
participants with a common secret group key. The main 
(semantic) security requirement called Authenticated 
Key Exchange (AKE; Bresson, Chevassut and Pointcheval, 
2001, 2002a) aims to ensure that the established key is 
indistinguishable from a random one by any outsider 
adversary. The second requirement called Mutual 

Authentication (MA; Bresson, Chevassut and Pointcheval, 
2001) aims to ensure that all legitimate protocol participants 
and only they have actually computed identical session 
group keys. These security requirements have been 
extensively studied in the literature (see the recent survey in 
Manulis, 2006). In the most basic scenarios, all users are 
somehow protected, that is, the adversary has no control 
over them, and is restricted to attacks carried out through 



92 E. Bresson and M. Manulis 

the network (which nevertheless include impersonation 
attacks where the adversary talks on the network by 
pretending being a legitimate user). 

In order to take into account, further real-life threats on 
users and the notion of forward secrecy is usually 
considered. Forward secrecy means that the established 
session key remains secure ‘in the future’, that is, remains 
indistinguishable from random even if the adversary learns 
used long-lived keys in the future. The notion is motivated 
by the fact that, by nature, long-lived keys get more chance 
to be leaked to an attacker than ephemeral secrets. 

The next known kind of corruptions, referred to as 
strong corruptions in Shoup (1999), Steiner (2002) and 
Bresson, Chevassut and Pointcheval (2002a), provides the 
adversary with even more information. Namely, the 
adversary gets the user’s ephemeral secrets in addition to 
the long-lived keys. But, he is not allowed to get the 
established session group key. Shoup (1999) explains why 
such a separation makes sense: session keys are typically 
controlled by higher-level applications that will use them, 
while internal, ephemeral secrets are specific to the GKE 
protocol execution and could be erased once this protocol is 
finished. 

Actually in GKE, it seems impossible to obtain secrecy 
when ephemeral secrets are revealed during the protocol 
session: if the adversary (even ‘passively’) can learn all 
intermediate key material, then he will likely be able to 
compute the final group key. On the other hand, in dynamic 
groups there are many cases where ephemeral secrets of a 
particular session are subsequently re-used (in addition 
to some refreshed data) to update the group key. Then, it 
is important to ask how the knowledge of ephemeral secrets 
in a corrupted session impacts the security of other sessions 
(past and future). This is precisely where the notion of 
strong forward/backward secrecy raises up. 

At this point, we precise the corruption types considered 
in this article. First, we consider users who are corrupted 
and are introduced by the adversary. We assume that the 
users are corrupted in a passive mode (rather than active), 
i.e. the adversary can only ‘read’ secrets held by the 
attacked user (whatever these secrets are ephemeral or long-
lived). Through the knowledge of the long-lived key, the 
adversary can (typically) inject signed messages on behalf 
of the user while preventing the original user’s messages 
from being delivered. In fact, this allows an active 
participation of the adversary during the protocol execution, 
and thus we say the adversary is active; but, this refers to his 
ability to control the network, not the user’s behaviour. On 
the other hand, we also wish to capture security threats 
coming from the users that are fully controlled by the 
adversary. Therefore, we allow the adversary to introduce 
new users and to register their long-lived keys. The 
adversary that corrupts or adds users is adaptive (opposed to 
static) in the sense that it chooses which users to corrupt or 
to introduce based on the information he gained so far and 
in any stage of the protocol execution. Secondly, when 
considering user corruptions, in order to further refine 

the security definitions, our intention is to separate the 
long-lived key from the internal state which contains 
ephemeral secrets and to specify when the adversary can 
learn them. Through this separation, we explicitly allow the 
adversary to reveal ephemeral secrets without revealing the 
long-lived key; we call this opening attacks. They are the 
balanced complement of weak corruption attacks, where 
long-lived keys are revealed, but ephemeral secrets are not. 
We note that under opening attacks, there is a hope to 
prevent the adversary from actively participating in the 
protocol on behalf of the opened parties, since he does not 
receive the long-lived keys. Finally, we notice that the 
strong corruption model in its current form is the best (or 
worst) of two worlds: if the adversary corrupts then it 
obtains the long-lived keys and the ephemeral data, if it 
does not corrupt then it obtains nothing. But, separating the 
attacks in two distinct modes allows to refine and opt for 
stronger security definitions. 

Consideration of the adversary that corrupts and 
introduces users allows us to address security threats against 
GKE protocols that may arise also in the presence of 
malicious participants/insiders – corrupted or introduced 
users whose long-lived keys are known to the adversary. 
The adversary acting as malicious participants might be able 
via opening attacks to obtain information from the internal 
states of the honest users; the goal of the adversary is then to 
influence their behaviour. 

Usually, the AKE requirement is defined from the 
perspective of some (fresh) session, and thus makes sense 
only if the adversary is restricted to neither participate on 
behalf of a user nor to obtain any ephemeral secret in that 
session, i.e. all during the protocol session active users must 
be honest and not opened. On the other hand, the MA 
requirement remains meaningful even without such 
limitations. Even if achieving MA without AKE is of low 
interest for key exchange protocols, it is still legitimate to 
ask whether achieving MA under strong corruptions during 
the attacked session is possible. This especially, since the 
MA requirement still makes sense in the presence of 
malicious participants and may also be useful for protocols 
other than key exchange. Furthermore, consideration of 
malicious insiders raises attacks related to key control and 
contributiveness: for instance, think of a participant who can 
force the same key to be obtained in two different sessions 
(e.g. key-replication; Krawczyk, 2005). Here, we recall that 
the question on who controls the value of the group key 
states the important difference between GKE and group key 
transport protocols (Bresson and Manulis, 2007). In GKE 
protocols, it is essential that the key is computed from 
inputs (contributions) of all participants such that even a 
strict subset of participants cannot enforce the final value of 
the group key. Especially, when considering asynchronous 
communication and malicious participants who can choose 
own contributions arbitrarily and may additionally reveal 
internal states of honest participants at any stage of the 
protocol execution through opening attacks, preventing key 
control and ensuring contributiveness for the honest users 
appears to be a challenging task. 
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1.1 Related work 

1.1.1 Original definitions 
The AKE- and MA-security requirements (without strong 
corruptions and only for honest users) were originally given 
by Bresson et al. (2001), see Katz and Yung, 2003; Dutta, 
Barua and Sarkar, 2004; Kim, Lee and Lee, 2004, for 
variants and Bresson, Manulis and Schwenk, 2007, for some 
flaws. In Bresson, Chevassut and Pointcheval (2002a) and 
Bresson et al. (2001) modelled strong corruptions, but for 
AKE-security only, following the ideas of Shoup (1999) and 
Canetti and Krawczyk (2001) for two-party protocols, for 
which such strong AKE-security has been recently modelled 
in LaMacchia, Lauter and Mityagin (2007). 

Katz and Shin (2005) extended the definition of MA-
security by assuming misbehaving (malicious) protocol 
participants; and they provided a concrete generic solution 
(compiler) to prevent these attacks, however, without 
considering opening attacks against ephemeral secrets as 
well as key control and contributiveness. The significance 
of security against malicious participants was also 
recognised by Choo, Boyd and Hitchcock (2005) through 
unknown-key share attacks, by which an active adversary 
tries to make an honest protocol participant believe that the 
group key is shared with one party when it is in fact shared 
with another party. 

1.1.2 On key control and contributiveness 
Mitchell, Ward and Wilson (1998), see also Boyd and 
Mathuria (2003), gave informal definition of key control, to 
describe attacks where participants try to influence the 
resulting value of the key. Yet informally, Ateniese, Steiner 
and Tsudik (1998) proposed the notion of contributiveness 
meaning that all participants must equally contribute to the 
computation of the key and guarantee its freshness (see 
Steiner, 2002); these definitions emphasise the difference 
between key distribution and key exchange (Menezes, van 
Oorschot and Vanstone, 1996). Following these 
requirements, Bresson and Catalano (2004) have considered 
the (weaker) case where participants are honest, but have 
biased source of randomness so that an adversary can 
possibly gain extra information about the key. Deepening 
this, Bohli, Vasco and Steinwandt (2007) gave definitions of 
key control and contributiveness considering a (stronger) 
case where participants deliberately wish to influence the 
resulting value of the group key. Still, their definitions are 
based on the model from Bresson et al. (2001) and thus, do 
not consider strong corruptions. Finally, Krawczyk (2005) 
mentioned that a key exchange protocol should prevent key-
replication attacks whose goal is to influence the acceptance 
of the same key in different protocol sessions. 

1.1.3 Other work close to ours 
Independent of our work, Desmedt et al. (2006) considered 
a property of non-malleability for GKE protocols, which is 
close to key control and contributiveness. Their security 
goal, called shielded-insider privacy, aims to prevent attacks 
where an outsider adversary upon communication with 

some malicious participants prior to the protocol execution, 
obtains information about the later computed group key. In 
order to ensure shielded-insider privacy, they use Pedersen’s 
(1991) commitments; however, in case of strong corruptions 
committed secrets can still be revealed to the adversary (due 
to opening attacks), so that malicious participants would 
still be able to bias the computation. In our model, we do 
not consider this scenario explicitly, but focus on the 
(in)ability of the adversary representing malicious 
participants to predict the resulting value of the later 
established group key. Recently, Manulis (2006) analysed 
several existing models for GKE protocols with respect to 
considering strong corruptions: he pointed out that security 
against strong corruptions is currently considered in a rather 
restrictive way: only for strong forward secrecy of AKE-
security. Moreover, none of the available game-based 
security models is complete enough to unify the most 
important definitions of AKE-, MA-security, and key 
control and contributiveness. 

1.2 Contributions and organisation 
We solve most of the problems put in light above by 
revisiting the GKE security model from the perspective of 
strong corruptions and key registration attacks. Further, we 
design a provably secure GKE protocol that resists these 
attacks. 

1.2.1 Security model and stronger definitions 
As our first contribution in Section 2, we provide the 
following: 

We model a powerful adversary who is given access to 
strong corruptions, by describing an appropriate game-
based security model for GKE protocols, thus 
significantly extending the ideas from Bresson, 
Chevassut and Pointcheval (2002a). 
We formalise strong AKE-security by considering 
opening attacks that may occur in earlier and later 
protocol sessions. 
In our definition of strong MA-security, we consider 
the adversary that acts as malicious participants during 
the attacked session and opens all other (honest) users; 
due to the opening attacks our definition is stronger 
than the related one from Katz and Shin (2005). 
We formalise strong contributiveness as security 
against attacks that enforce any value chosen by the 
adversary as a group key (this includes key-replication; 
Krawczyk, 2005); since, the adversary can act as 
malicious participants and open all other (honest) 
participants our requirement is stronger compared to 
Bohli, Vasco and Steinwandt (2007). 
We strengthen the GKE security model by allowing the 
adversary to introduce users and register their long-
lived keys; this is similar to the recent models in 2-
party key exchange (LaMacchia, Lauter and Mityagin, 
2007; Menezes and Ustaoglu, 2008) and is the main 
difference to the extended abstract of this article which 
appeared in Bresson and Manulis (2008) and also to 
many previous GKE security models. 
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1.2.2 Group Key Exchange protocol with strong 
security 

As a second contribution in Section 3, we describe a 
3-round GKE protocol, named TDH1, and prove that it 
provides strong versions of AKE-, MA-security and 
contributiveness, while the deployed techniques can be seen 
as general for many GKE protocols. TDH1 tolerates the 
following numbers of malicious insiders (out of n
participants in total): for MA-security up to n–2, for 
contributiveness up to n 1, whereby all remaining honest 
users might be opened! Our security proofs do not rely on 
the Random Oracle Model (ROM; Bellare and Rogaway, 
1993). The AKE-security of TDH1 is based on the Tree 
Decisional Diffie–Hellman (TDDH) assumption, introduced 
by Kim, Perrig and Tsudik (2004a,b). We give a formal 
definition of the underlying TDDH problem and show its 
polynomial equivalence to the standard Decisional Diffie–
Hellman (DDH) problem (Boneh, 1998) by a proof which 
addresses arbitrary full binary trees, i.e. trees where each 
node has exactly zero or two leaves (note, Kim, Perrig and 
Tsudik, 2004a,b addressed only a subset, i.e. linear and 
complete trees). 

2 Strong security definitions for Group Key 
Exchange 

We start by (re)stating existing definitions and classical 
notations using the game-based approach. Note that another 
way (which we do not consider here) to define security 
requirements is to use the simulation-based approach, e.g. 
Katz and Shin, 2005, but see Remark 1. 

2.1 Protocol execution and participants 

2.1.1 Users, instance oracles and long-lived keys 
Let  be a set of at most N users. Each iU  holds a 
long-lived key LLi and has several instances called oracles, 
denoted s

i  for s , participating in distinct concurrent 
executions. (When we do not refer to a specific user Ui we 
use the index U, e.g. s

U ).

2.1.2 Internal states 

Every s
U  maintains an internal state information states

U

which is composed of all ephemeral secret information used 
during the protocol execution. The long-lived key LLU is, in 
nature, excluded from it (moreover, the long-lived key is 
specific to the user, not to the oracle). An oracle s

U  is 
unused until initialisation (by which it is given the long-
lived key LLU). It then becomes a group member, associated 
to a particular session, and turns into the stand-by state 
where it waits for an invocation to execute the protocol. 
When the protocol starts, the oracle learns its partner id 
pids

U  (and possibly session id sids
U ) and turns into a 

processing state where it sends, receives and processes 
messages. During that stage, the internal state information 

states
U is maintained. After having computed s

Uk  oracle s
U

accepts and terminates the execution of the protocol 
operation (possibly after some additional auxiliary steps) 
meaning that it would not send or receive further messages. 
If the protocol fails, s

U  terminates without accepting and 
s
Uk  is set to an undefined value. 

2.1.3 Session group key, session and partner IDs, 
group members 

Every session is identified by a unique, publicly-known 
sids

U . In each session, each oracle s
U  gets a value pids

U

that contains the identities of participating users (including 
U) and computes the session group key {0,1}s

Uk , where 
is a security parameter. 

By ( ) { where pid and sid sid }
i

s t s s t
i j j U i jU , we 

denote the group of oracle s
i  and say that s

i  and t
j  are 

partnered if ( )t s
j i  and ( )s t

i j . Sometimes, we 
simply write  to denote the group of oracles participating 
in the same protocol session. Then, each oracle in  is 
called a group member. Note that oracles in  may be 
ordered, e.g. lexicographically based on the user identities. 

Definition 1. A GKE protocol P consists of a key generation 
algorithm KeyGen and a protocol Setup: 

P.KeyGen (1 ). On input a security parameter 1  each user 
in  is provided with a long-lived key LLU.

P.Setup( ). On input a set of n unused oracles a new 
group is created and set to be . A probabilistic 
interactive protocol is executed between the oracles in
such that all oracles accept with the session group key and 
terminate. 

A protocol is said to be correct if, when no adversary is 
present, all participants compute the same key. Note that our 
definition is independent of the communication channel, e.g. 
(asymmetric) broadcast, multi-cast or unicast. 

2.2 Strong adversarial model 

Now, we consider an adversary  which is a Probabilistic 
Polynomial-Time (PPT) algorithm having complete control 
over the network. As described in the following,  can add 
users to the set  and interact with protocol participants via 
queries to their oracles. Note that our security model 
(similar to Bresson, Chevassut and Pointcheval, 2002a; Katz 
and Shin, 2005; Bohli, Vasco and Steinwandt, 2007) does 
not deal with the issues of denial-of-service and fault-
tolerance; our security definitions aim to prevent honest 
participants from accepting the group key biased by 
malicious insiders. 

AddUser(U, ). If U , then U with the long-lived 
(public) key contained in  is added to ;  may also 
contain some further information. 
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Execute( ).  eavesdrops an honest execution of P.Setup 
between a chosen set of oracles and is given the resulting 
transcript of P.Setup( ).

Send( ,s
U m ).  sends message m to oracle s

U  and 

receives the response s
U  would have generated after 

having (honestly) processed message m. The response may 
be empty if m is incorrect. The adversary can have s

U

invoking P.Setup with the oracles in  via a query of the 
form Send(‘start’, s

U , ):  gets the first message that 
s
U  would generate in this case. 

RevealKey( s
U ).  is given the session group key s

Uk ,

provided s
U  has accepted. 

RevealState( s
U ).  is given the internal state information 

states
U  which includes ephemeral secrets. 

Corrupt(U).  is given the long-lived key LLU.

Test( s
U ).  tests the semantic security of s

Uk . Formally, if 
s
U  has accepted a bit b is privately flipped and  is given 

s
Uk  if b = 1 and a random string if b = 0. 

The adversary has two ways of learning LLU: by asking it – 
Corrupt(U), or by registering it – AddUser(U, ). For 
simplicity, in all definitions of security unless otherwise 
stated, we treat U as corrupted if any of these queries had 
occurred. 

Remark 1. The separation of the queries RevealState and 
Corrupt/AddUser explicitly provides the possibility for the 
opening attacks mentioned in the introduction. By asking 
the RevealState query to an instance oracle s

U , the 
adversary reads out its internal state, but cannot impersonate 
honest U in the protocol execution, unless a Corrupt(U)
query is asked (in which case all instance oracles s

U

become malicious insiders through possible impersonation 
actions of ). Thus, just opening a user does not make him 
malicious. In contrast, simulation-based security models 
(e.g. Universal Composability/Reactive Simulatability) 
handle strong corruptions typically as follows: upon 
corrupting a user the adversary learns all information known 
to that user and controls him thereafter. Obviously, in the 
simulation-based models opening attacks (which strengthen 
the adversary) are currently not modelled. 

2.3 Strong AKE-security 

In case of strong AKE-security, one must also consider the 
knowledge of the adversary about long-lived keys and 
ephemeral secrets of session participants. If the adversary 
obtains a long-lived key before the session is started then it 
can impersonate a user, and thus, learn the session key. And, 
if the adversary is allowed to obtain long-lived keys before 
the session is finished then it should be restricted 

from actively using these keys during that time (Katz and 
Yung, 2003). 

On the other hand, the adversary should be allowed to 
reveal ephemeral secrets of participants before the session 
starts1 and after the session is finished (defined as strong 
forward and weak backward secrecy in Bresson, Manulis 
and Schwenk, 2007). Note that, if one allows long-lived key 
corruptions in later sessions, revealing ephemeral secrets 
during the attacked session would not make sense. In order 
to model the described requirements for the adversarial 
knowledge, we define the notion of oracle freshness, 
extending those given in Bresson, Chevassut and 
Pointcheval (2002a) and Katz and Yung (2003) by the 
conditions concerning key registration and opening attacks. 

Definition 2 (Oracle Freshness). In the execution of P the 
oracle s

U  is fresh if all of the following holds: 

1 no pids
i UU  has been added by  via a corresponding 

AddUser query 

2 no pids
i UU  is asked for a query Corrupt prior to a 

query of the form Send ( , )t
j m  with pids

j UU  until 
s
U  and its partners accept 

3 neither s
U  nor any of its partners is asked for a query 

RevealState until s
U  and its partners accept 

4 neither s
U  nor any of its partners is asked for a query 

RevealKey after having accepted. 

We say that a session is fresh if all participating oracles are 
fresh.

We note that the above definition ensures that if at least 
one oracle participating in a session is fresh then the whole 
session is fresh too because freshness of one oracle requires 
freshness of all its partners. This notion of oracle freshness 
simplifies the following definition of strong AKE-security 
for GKE protocols. 

Definition 3 (Strong AKE-Security). Let P be a correct GKE 
protocol and b a uniformly chosen bit. Consider an 
adversary  against the AKE-security of P. We define the 
adversarial game ake

,PGame ( )b  as follows: 

after initialisation,  interacts with instance oracles via 
queries 

at some point  asks a test query to a fresh oracle s
U

which has accepted 

 continues interacting with instance oracles 

when  terminates, it outputs a bit, which we define to 
be the output of the game. 

We define: ake ake
,P ,PAdv ( ) : 2Pr[Game ( ) ] 1b b  and 

denote with ake
PAdv ( )  the maximum advantage over all 
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PPT adversaries . We say that a GKE protocol P provides
strong AKE-security if this advantage is negligible. 

We again stress that (strong) AKE-security makes sense 
for adversaries that are not able to corrupt users and act on 
their behalf during the attacked session or reveal any 
ephemeral secrets used in that session – this is guaranteed 
by the freshness property. 

2.4 Strong MA-security 

We say that s
U  is a malicious participant/insider if the 

adversary has previously asked Corrupt(U) or AddUser 
(U, ). In all other cases, s

U  is honest. The following 
definition of MA-security unifies the requirements of MA, 
key confirmation and unknown-key share resilience. It 
considers malicious participants and allows opening attacks 
against all honest users at any protocol stage. 

Definition 4 (Strong MA-Security). Let P be a correct GKE 
protocol and  an adversary who is allowed to query Send, 
Execute, RevealKey, RevealState, Corrupt and AddUser.
We denote this interaction as ma

,PGame ( ) . We say that 
wins if at some point, there exists an honest user Ui whose 
instance oracle s

i  has accepted with s
ik  and another user

pids
j iU  that is uncorrupted at the time s

i  accepts such 

that 

1 there is no instance oracle t
j  with

(pid ,sid ) (pid ,sid )t t s s
j j i i  or

2 there is an instance oracle t
j with 

(pid ,sid ) (pid ,sid )t t s s
j j i i  that has accepted with 

t s
j ik k .

The maximum probability of this event is denoted 
ma
PSuc ( ) ; we say that a GKE protocol P provides strong 

MA-security if this probability is negligible. 

2.5 Strong contributiveness 

The following definition models attacks related to key 
control, contributiveness and unpredictability of group keys 
in the presence of malicious participants. Informally, we 
consider an active adversary  that can add, corrupt and 
open participants at any stage of the protocol execution in 
such a way that there exists at least one honest oracle 
(which may nevertheless be opened!) that accepts the 
session group key chosen by the adversary. This subsumes 
key-replication attacks (Krawczyk, 2005) by which honest 
users are forced to accept a group key from another session. 

Definition 5 (Strong Contributiveness). Let P be a correct 
GKE protocol and  an adversary operating in two stages 
(prepare and attack) and having access to the queries Send, 

Execute, RevealKey, RevealState, Corrupt and AddUser.
We define the following game con

,PGame ( ) :

 (prepare) interacts with instance oracles via queries 

 (prepare) outputs {0,1}k , and some state 
information 

the following sets are built: us  consisting of all honest 
used oracles, std  consisting of all honest oracles that 
are in the stand-by state2, and  consisting of session 
ids sidt

i  for every us
t
i

 (attack, ) interacts with instance oracles via queries 

at the end of this stage  outputs (s, U).

The adversary  wins in con
,PGame ( )  if all of the 

following holds: 

1 s
U  is honest, has terminated accepting 

us std, \s
Uk  and sids

U

2 there are at most n–1 corrupted users Ui having oracles 
t
i  partnered with s

U .

We define: con con
,P ,PSuc ( ) : Pr[  wins in Games ( )]  and 

denote with con
PSuc ( )  the maximum probability of this 

event over all PPT adversaries ; we say P provides strong 
contributiveness if this probability is negligible in .

The first requirement ensures that s
U  belongs to an 

honest user. The set us std\  consists of all oracles that at 
the end of the prepare stage have already terminated or 
remain in the processing state. Thus, requiring 

us std\s
U  prevents the case where  while being a 

session participant outputs k  for the still running protocol 
execution which is then accepted by s

U  that participates in 
the same execution (this is not an attack since participants 
do not compute group keys synchronously). Similarly, the 
condition sids

U  prevents that  while being in the 
attack stage outputs (s, U) such that s

U  has accepted with 

k  already in the prepare stage. Finally, since in every 
session id is unique, ssidU  holds if at least one new 
session has been executed with s

U  in the attack stage. The 
second requirement allows  to corrupt at most n–1 (out of 
totally n) participants in the session where s

U  accepts 

with k .
Note also that U must be honest, but  is allowed to 

reveal the internal state of s
U  during the execution of the 

attack stage (this is because our model separates LLU from 
states

U ). The goal of the adversary is to influence the honest 
participants to accept the chosen key. Our game appears 
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stronger than Bohli, Vasco and Steinwandt (2007), since the 
adversary can open honest users’ internal state (furthermore, 
he can make corruptions in an adaptive manner). 

Remark 2. The main difference to the non-malleability 
definition from Desmedt et al. (2006) is that we allow  to 
open honest users during the attacked session, however, at 
the cost that we do not deal with the ability of  to bias the 
probability distribution of the resulting group key (similar to 
Bohli, Vasco and Steinwandt (2007)). It seems to be hard to 
achieve this goal if  corrupts n – 1 users and opens the 
last nth honest user, which is allowed by our definition. At 
least, the commitment techniques used in Desmedt et al. 
(2006) would not help since committed secrets that become 
part of the internal state can be revealed. 

3 TDH1 protocol with strong security 
In this section, we present our constant-round GKE protocol 
denoted TDH1 and show that it satisfies the strong versions 
of AKE-, MA-security and contributiveness. Its AKE-
security relies on the TDDH assumption, introduced by 
Kim, Perrig and Tsudik (2004a,b). 

3.1 Number-theoretic assumptions 

First, we formally specify the TDDH assumption and 
quantify the reduction to the classical DDH assumption 
(Boneh, 1998). Our protocol and those (unauthenticated) in 
Kim, Perrig and Tsudik (2004a,b) require a special 
multiplicative group  in which DDH is assumed to be hard 

and for which there exists an efficient bijection3 from 
to . Thus, not every DDH-hard group can be used, 

e.g. no such bijection is known for elliptic curves. 

3.1.1 Algebraic group 

Let p be a safe prime, i.e. p = 2q + 1, with q a -bit prime. 
The set of quadratic residue modulo p is a cyclic group ˆ

of order q; let g be a generator: ˆ g . Consider the 

following mapping u: *
p q  defined as 

mod if
( ) :

( ) mod if .
z q z q

u z
p z q q z p

Consider the set : { ( ) | }i
qu g i . It can be shown 

(Kim, Perrig and Tsudik, 2004b) that the function 
: ( )xf x u g  from q to  is a bijection, and that the 

operation 2( , ) ( mod )a b u ab p  is a group law on .

Since,  = q (as sets), we can define the exponentiation 

ab: = u(ab mod p) for all a, b . Also, due to the fact that f

is a bijection, we have f(x) is random, uniform in  as soon 

as x is so. 

Finally, it is believed (Boneh, 1998) that the DDH 
assumption holds in , that is, the distributions of 

1 2 1 2( ,  ,  )x x x xg g g  and 1 2( ,  ,  )x x rg g g  are computationally 

indistinguishable for x1, x2, r R .

3.1.2 Tree Decisional Diffie–Hellman assumption 

Let n  be the set of all full4 binary trees with n leaves. For a 

n nT  of depth 
nTd , each node is identified via a label 

l, v , where l  [0, 
nTd ] is the level of the node and v its 

position within this level: the position is such that the child 
nodes of l, v  (if present) are labelled l + 1, 2v  and l + 1, 

2v + 1  (this implies that the nodes positions are in [0, 2l 1], 

but may be not contiguous). The root node is labelled 0, 0 .

In the following, we will denote Tn\ 0, 0  by *
nT . The set of 

leaf nodes and the set of internal nodes of Tn are defined as 
(respectively): 

LN  := { , | , , 1,2 , 1,2 1 },
nT n n nl v l v T l v T l v T

*IN  := { , | , , 1,2 , 1,2 1 }.
nT n n nl v l v T l v T l v T

For a set X of n randomly chosen variables x l, v R , with 

, LN
nTl v , we (recursively) define for each , IN

nTl v :

1,2 1, 2 1
,

l v l vx x
l vx g , and 

,

*,
TDH ( ) , , .l v

n
n

x
T

l v T
X l v g

In addition, for a randomly chosen r R , we define the 

tuples TDDH ( )
nT X  and $TDDH ( )

nT X  as follows: 

1,0 1,1*TDDH ( ) TDH ( ) ( 0,0 , )
n n

x x
T TX X g ,

and 
$TDDH ( , ) TDH ( ) ( 0,0 , ).

n n

r
T TX r X g

The TDDH assumption states that the respective 
distributions of these tuples induced by uniform choices of r
and the x l, v , for , LN

nTl v  are computationally 

indistinguishable. 
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Definition 6 (TDDH Assumption). For all n > 1, any 

n nT , any group , and any PPT algorithm , the 

distinguishing advantage TDDH
,Adv ( )

nT , defined as follows, 

is negligible (in log ):

* $

,
Pr TDDH ( ) 1 Pr TDDH ( , ) 1 .

n nT T
X X r

X X r

Theorem 1 (DDH  TDDH). The TDDH problem in  is

polynomially equivalent to the DDH problem in q, and we 

have: DDH TDDH DDH
,Adv ( ) Adv ( ) (2 3)Adv ( ).

nT n

The proof appears in Appendix A and is more general 
than those in Kim, Perrig and Tsudik (2004a,b) that focus 
only on complete and linear binary trees. For n = 2, we get 
the classical DDH assumption in  with the advantage 

DDHAdv ( )  defined as 

$
,

Pr (DDH*( )) 1 Pr[ (DDH ( , )) 1] .
X X r

X X r

3.2 Light description of TDH1 

The main mechanism of the protocol is that of Kim, Perrig 
and Tsudik (2004a,b), so we first recall it. The differences 
will be in message authentication, key derivation and 
applied erasure technique to prevent the ephemeral session 
secrets from being leaked once the session is finished. 
Erasure of the internal state can be seen as a general method 
to achieve AKE-security in the presence of opening attacks 
for static GKE protocols. 

3.2.1 The setup operation 

Every oracle is assigned to a leaf node of a so-called linear 
binary tree Tn: a full binary tree with one leaf at each level, 
except for the deepest one with two leaves (see Figure 1). In 
other words, *

1, 1 , 0,1: { , }n l n vT l v .

Round 1 – All. Each oracle at position li, vi  chooses a 
secret exponent x li, vi R  and broadcasts 

,
,  : l vi i

i i

x
l vy g .

Round 2 – First player. 1  at position n–1,0  is able to 
build a set X1 of secret values for each node x l,0  in its path 
up to the root 0, 0 . This is because for each internal node 

1,0
,0 1,1  ( ) lx

l lx y  Then, 1
s  computes the set consisting 

of y l,0 : = ,0lx
g  for each previously computed internal 

node’s secret value x l,0  except for x 0,0 , and broadcasts .

Figure 1 Example of a linear binary tree T3 for the group 
1 2 3{ , , }

Round 3 – No communication. Upon receiving , all other 
oracles 1i  are able to compute their own set Xi consisting 
of all secret values x l,v  in their paths up to the root. Hence, 
every oracle finally learns x 0,0 . We emphasise that x 0,0  is 
never exposed, and that there is no y 0,0 in the protocol 
(see description of function TDH1_Exp*(l, X) below). 

3.2.2 Group key confirmation and derivation 
To derive the session group key K, each participant 
iteratively computes a sequence of values 0, , n using a 
Pseudo-Random Function (PRF) f with a public value v0 as 
input. The key (secret seed) of f is initially set to x 0,0 , and is 
changed in each invocation of f by embedding successive 
nonces using an appropriate one-way permutation . These 
nonces are provided by participants during the protocol 
execution. 

Intuitively, these successive evaluations of f and 
prevent malicious participants from influencing values of 
the PRF keys and ensures contributiveness for the 
intermediate value n, which is then used as a seed for f
to derive the key confirmation token μ (on input a constant 
public value v1) and the actual session group key K 
(on input another constant public value v2 v1). Prior to 
accepting K:  

1 participants exchange and verify signatures on μ to 
ensure MA-security (similar to Katz and Shin (2005)) 

2 erase (Crescenzo et al., 1999) all ephemeral secrets, 
used to obtain K from their internal states, to achieve 
strong AKE-security. 

3.3 Detailed description of TDH1 

3.3.1 Preliminary notations 

We assume that long-lived keys LLi = (ski, pki) are 
generated via . Gen (1 ), where  = (Gen, Sign, Verify) is 
an existentially unforgeable (under chosen message attacks) 
digital signature scheme. We define the following key 
exchange functions: 

TDH1_Exp(x l, v ). Simple exponentiation. The function 

returns y l, v  : = ,l vx
g .
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TDH1_Pick(1 ). The function returns a randomly chosen 
secret exponent x l,v R  and the corresponding public 

value y l,v  := TDH1_Exp(x l,v ).

TDH1_Exp*(l, X) where X = {x j,0 }1 j l: Computation of 
corresponding public values for secret exponents in X. The 
function returns Y: = {y j,0 } where each y j,0

: = TDH1_Exp(x j,0 ).

TDH1_Up(l, v, x l,v , y l,1 – v , Y), where :Y ,1 { jy j

[1, 1]}l : iterative computation of the Diffie–Hellman 

values up the tree starting at position l, v . The function 

computes ,
 –1 ,0 ,1 – : ( ) l vx

l l vx y , and returns 

1,0
, 1,0 ,0 1,1 1,1: { , } { : ( ) | , 2, ,0}.jx

l v l j j jX x x x y y Y j l

Let F := {{fk}k {0,1} }  be a collision-resistant PRF 
ensemble with domain and range {0,1}  (see Appendix B 
for definitions). Let  : {0, 1}  {0, 1}  be a one-way 
permutation. We denote by v0; v1 and v2 three distinct, 
public values in {0, 1} . The following function is used to 
compute the intermediate value K and the key confirmation 
token μ.

TDH1_Con 0,0 1( , | | )nx r r : The function computes 

0 : =
0,0 0( )xf v , and each l: = 

1 ( ) 0( )
l lrf v  for all 

l = {1, , n}. Let K: = n. Finally, the function computes 
μ: = fK(v1), and returns (K, μ).

3.3.2 The protocol TDH1.Setup 

In the following, we assume that an oracle aborts without 
accepting if any performed check fails. 

Round 1. Given the tree structure Tn, each oracle i

proceeds as follows: 

pick at random nonce ri R {0, 1}

invoke TDH1_Pick(1 ) to generate a secret 
exponent ,i il vx ; and the value ,

,
l vi i

l vi i

xy g

invoke .Sign to obtain a signature i on 

,0 pid
i i

i il vy r  using the private key ski

broadcast ,0
i ii l v i iU y r .

Round 2. Each oracle i  proceeds as follows: 

check if .Verify ,( ,0 pid , ) 1
j jj l v j i jpk y r

for j i; check if jr  for j i

define 1 1,1   –1,  ,  1sid :  | | and :  { }
ii n i l lr r Y y .

In addition, 1  does the following 

compute X1:= TDH1_Up(n – 1, 0, x n–1,0 , y n – 1,1 , Y1)
and := TDH1_Exp* (n – 2, X1)

invoke .Sign to obtain a signature 1  on 1| |sid1| pid1

using the private key sk1

broadcast '
1 1

ˆ1U Y .

Round 3. Each i  with i > 1 proceeds as follows: 

check if .Verify '
1 1

ˆ( ,1 sid pid , ) 1i ipk Y

compute Xi as TDH1_Up , ,1( , , , , )
i i i ii i l v l v il v x y Y .

Then, every oracle (including 1 ) does the following: 

compute both Ki and μi using TDH1_Con(x 0,0 , sidi);

[note that x 0,0 Xi]

erase any private information from statei (including all 
x l,v , and 0, , n) except for Ki

invoke .Sign to obtain a signature "
i  on 2|μi|sidi|pidi

using the private key ski

broadcast "2i iU .

Group Key Computation. When i  receives "2j jU  from 

all other oracles, it proceeds as follows: 

check if .Verify "( , 2 | | sid | pid , ) 1j i i i jpk ;
Compute 2K : ( )

ii Kf v

erase any private information from statei (including Ki),
and accept with Ki.
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Figure 2 Example of operation Tree Diffie–Hellman 1 setup with 1 2 3{ , , }

Public values: sidi = r1|r2|r3, Y1 = Y2 = {y1,1}, Y3 = ,  = {y1,0}, where 
1,1 1,0

1,1 1,0   ,    x xy g y g . Secret values: X1 = {x2,0,

x1,0 , x0,0}, X2 = {x2,1 , x1,0, x0,0}, X3 = {x1,1, x0,0} where 
1,0 1,1

0,0  ,xxx g 2,0 2,1
1,0

x xx g  and 2,0 2,1 1,1, , Rx x x

Figure 2 sketches the execution of TDH1.Setup for three 
participants (necessary checks and erasure steps are 
omitted). In this example, oracle 1  builds X1 = {x 2,0 ,

x 1,0 , x 0,0 } with 2,0
1,0 2,1: ( )x

x y  and 1,0
0,0 1,1: ( )x

x y

(remember that y 2,1  and y 1,1  were received in the previous 

round). The set broadcasted by 1  is  = {y 1,0 } where 
1,0

1,0 : xy g . In the third round oracle 2  computes 

X2 = {x 2,1 , x 1,0 , x 0,0 }, where 2,1
1,0 2,0: ( )xx y , and 

1,0
0,0 1,1: ( )xx y . In parallel, oracle 3  computes 

X3 = {x 1,1 , x 0,0 } where 1,1
0,0 1,0: ( )xx y . Hence, 

every oracle is in possession of x 0,0 . Finally, all three 
oracles can compute the intermediate value K,
i.e.

0 1 1 20,00 0 1 ( ) 0 2 ( ) 0: ( ), : ( ), : ( )x r rf v f v f v ,

and 
2 23 ( ) 0: ( )rK f v , and the key confirmation token 

: = fK (v1). Note that the value 0,0)x  is never sent over the 

public channel, but computed locally by all participants 
upon receiving enough information. Furthermore, there 
exists no 0,0)y  in the protocol. 

3.4 Security and performance of TDH1 

In our security proofs following the specification of our 
model, we consider that ephemeral secret information kept 
in stateU is always independent of the long-lived key skU.
That is, in each session, stateU contains XU consisting of all 
secrets ,l vx  known to 0, ,U n , and possibly some 
(implementation specific) temporary variables used to 
compute these values. Furthermore, we assume that 
the signing algorithm .Sign which implicitly uses skU is 

executed under the same protection mechanism as skU, e.g. 
in a smart card as in Bresson, Chevassut and Pointcheval 
(2002a, although smart cards have limited resources we 
observe that in TDH1.Setup each oracle has to generate at 
most three signatures). This is important since the signing 
algorithm may generate some randomness which should 
also be protected from being revealed via a RevealState 
query; otherwise the adversary may be able to obtain some 
information about skU.

The following theorems show that TDH1 satisfies the 
requirements of strong AKE-, MA-security and 
contributiveness; the last two also under consideration of 
insider attacks. In all theorems, qs is the total number of 
executed protocol sessions during the corresponding attack 
game. 

Theorem 2 (Strong AKE-Security of TDH1). If  is 
existentially unforgeable under chosen message attacks, F is 
pseudo-random, and  is TDDH-hard then TDH1 provides 

strong AKE-security, and 

,

2
ake euf-cma TDDHs
TDH1 s1

prf
s F

Adv ( ) 2 Suc ( ) 2 Adv ( )
2

2( 3) Adv ( ).

NT G
Nq

N q

N q

Proof (Sketch). We define a sequence of games Gi,
i = 0, , 7 with the adversary  against the AKE-security 
of TDH1. In each game, we denote akeWini  the event that 
the bit b  output by  is identical to the randomly chosen 
bit b in game Gi.

Game G0. This game is the real game ake-
, TDH1Game ( )b

where we use a simulator  to maintain set , simulate the 
execution of the protocol (on behalf of uncorrupted users), 
and answer all queries of .
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Game G1. This game is identical to Game G0 with the only 
exception that  fails and bit b  is set at random if  asks a 
send query on some | seqn | |iU m , with seqn  {0, 1, 2} 
and  a valid signature on m, that has not been previously 
output by an oracle s

i  before querying Corrupt(Ui)
(note that Corrupt queries can be generally asked after the 
Test query) or AddUser(Ui, ).

In other words, the simulation fails if  outputs a 
successful forgery; such event is denoted Forge. A classical 
reductionist argument (see for instance Bresson et al. (2001) 
shows that in that case we can build a forger against the 
signature scheme and upper-bound the probability 
difference between G1 and G0 by euf-cmaSuc ( ).N

Game G2. This game is identical to Game G1 except that 
fails if two instances of an honest user used the same nonce 
twice. Since, there are N users and at most qs sessions the 
difference between games can be upper-bounded 
by 2( ) / 2sNq .

This game ensures the uniqueness of sids
i  and excludes 

replay attacks on the last two messages of TDH1. 

Game G3. In this game, we add the following rule: 
chooses * [1, ]s sq q  and aborts if the test query does not 

occur in the *thsq  session. Let Q be the event that this guess 

for *
sq  is correct and Pr[Q] = 1/qs. Thus, we get 

ake ake ake
3 3 3

ake
2

s s

Pr Win Pr Win | Pr[ ] Pr Win | Pr[ ] 

1 1 1Pr Win 1 .
2

Q Q Q Q

q q

This implies, 

ake ake
2 3

1 1Pr Win Pr Win .
2 2s= q

Game G4. This game is identical to Game G3 except that 
is given a tuple from the real *TDDH

NT  distribution (as 

specified in Section 3.1.2) where TN is a linear tree. In all 
sessions, except the *thsq  one,  simulates the honest 

participants as specified by the protocol. In the *thsq  session 

with n participants  injects public values ,l vxg  from 
*TDDH

NT  into the protocol execution. Note that in the *thsq

session the group size n might be smaller than N, thus the 
simulator will use the subtree Tn which is composed of TN’s 
nodes from level 0 to level n – 1. The idea is to assign 1

s

to the (internal) node 21,0 , sn  to the leaf node 

21,1 , , sn  to the leaf node 1,1 , and to use for each 

node , \ 0,0nl v T  public values ,l vxg  taken from the 

given *TDDH
NT  distribution. The secret value 0,0x  used 

for the key confirmation is also taken from this distribution. 

Since, the *thsq  session is fresh, no RevealState queries to 
s
i  or to any of its partners have been asked (  would not 

be able to answer them since it does not know the secret 
values ,l vx  of internal and leaf nodes). Of course, in all 
other sessions RevealState queries can be easily answered. 
Since, *TDDH

NT  is a real distribution we conclude that this 

game is a ‘bridging step’ (as named in Shoup, 2006) and 
ake ake
4 3Pr Win Pr Win .

Game G5. This game is identical to Game G4 except that 
is given a tuple from the random $TDDH

NT  distribution. 
Thus, for honest players, the secret 0,0x  is simulated 
using the provided random element gr. Obviously, 

ake ake TDDH
5 4 ,Pr Win Pr Win Adv ( )

NT G .

Game G6. This game is identical to Game G5 except that in 
the *thsq  session  replaces f by a truly random function, 
implying the uniform distribution of K = n. Considering 
n N, we obtain by a ‘hybrid argument’5

prfake ake
6 5Pr Win Pr Win ( 1) Adv ( ).FN

Game G7. This is the continuation of the hybrid argument, 
but for clarity we specify a separate game; the confirmation 
token  and the session key K are replaced by two random 

-bit values, s.t., prfake ake
7 6Pr Win Pr Win 2Adv ( )F .

Since, K is uniform: ake
7Pr Win 1/ 2 . Combining the 

previous equations, we conclude the proof. 

Theorem 3 (Strong MA-Security of TDH1). If  is 
existentially unforgeable under chosen message attacks and 
F is collision-resistant then TDH1 provides strong MA-
security, and 

2
ma euf-cma coll
TDH1Suc ( ) Suc ( )+ Suc ( ).

2
s

s F
Nq

N q

Proof (Sketch). We define a sequence of games 
Gi,i = 0, , 2 and corresponding events ma

iWin  meaning 
that  wins in Gi.

Game G0. This is the real game ma
TDH1Game ( )  played 

between a simulator  and . The goal of  is to 
achieve that there exists an honest user Ui whose 
corresponding oracle s

i  accepts with s
iK  and another user 

pids
j iU  who is uncorrupted at the time s

i  accepts and 

either does not have a corresponding oracle t
j  with 

pid ,sid pid ,sidt t s s
j j i i  or has such an oracle, but this 

oracle accepts with .t s
j iK K
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Game G1. Here, we proceed as in the previous proof and 
eliminate executions in which forgeries occur, obtaining 

ma ma euf-cma
1 0Pr Win Pr Win Suc ( )N .

Game G2. This game is identical to Game G1 except that 
fails if a nonce ri is used by any uncorrupted user’s oracle 

s
i  in two different sessions. Similar to the previous proof 

we get ma ma 2
2 1Pr Win Pr Win /2sNq . Having 

excluded forgeries and replay attacks we follow that for 
every user pids

j iU  that is uncorrupted at the time s
i

accepts there exists a corresponding instance oracle t
j

with pid ,sid pid ,sidt t s s
j j i i . Thus, according to 

Definition 4  wins in this game only if any of these 
oracles has accepted with 2 2K ( ) ( ) Kt s

j i

t s
j iK Kf v f v .

However, the validity of signatures on tokens i and j

implies that I = j. Thus, the probability difference 
between these games is upper-bounded by 

1 1Pr K K ( ) ( )t s
j i

t s
s j i K Kq f v f v , which is equivalent to 

2 2 1 1Pr ( ) ( ) ( ) ( )t s t s
j i j i

s K K K Kq f v f v f v f v , and results 

in collSuc ( ).s Fq

Combining the previous equations, we get the desired 
result. 

Theorem 4 (Strong Contributiveness of TDH1). If F is 
collision-resistant pseudo-random and  is one-way then 
TDH1 provides strong contributiveness, and 

2
con coll
TDH1

prf ow

+ +2
Suc ( ) ( 2) Suc ( )

2
Adv ( )+ Suc ( ).

s s s
s F

s sF

Nq Nq q
N q

q Nq

Note that in TDH1 the adversary is able to enforce the 
resulting value for 0,0x  by opening oracles of honest users 
during the protocol execution. More precisely,  can 
enforce that the same 0,0x  is computed by the oracles of 
some uncorrupted user in two different sessions. To show 
this, assume for simplicity three participants: 1

s , 2
s  and 

3
s , and consider that 1

s  and 3
s  are malicious 

(corrupted) whereas 2
s  is honest. We consider two 

different sessions: sessions A and B, whereby session B 
takes place later than A. In both sessions, the tree is as in 
Figure 1. Assume that in session A, all oracles behave as 
specified in the protocol except that neither 1

s  nor 3
s

erase their states. At some point before session B is started, 
the adversary  (that can impersonate 1

s  and 3
s )

computes 1,0 1,1:z x x  where 1,0x is a value computed by 

1
s  and 1,1x  is the exponent chosen by 3

s , both in 
session A. Obviously, gz equals to 0,0x  computed in 

session A. The goal of  is to inuence honest 2
s  to 

compute the same 0,0x  in session B. In session B, the 

exponent 2,1x  used by honest 2
s  is likely to be different 

compared to session A. To proceed with the attack  waits 
for 2

s  to broadcast 2, 1
2,1

xy g  in session B (note the 
communication is asymmetric). Then, the adversary opens 
the oracle holding node 2,1x  (via the RevealState( '

2
s )

query); chooses on behalf of '
1 2,0
s x  truly at random, 

computes 2,0 2,1
1,0 : x xx g  and 1,1 1,0: /x z x . To 

complete the attack,  broadcasts 2,0
2,0 : xy g  and 

1, 1
1,1 :

x
y g  on behalf of '

1
s  and '

3
s , respectively. It is 

easy to check that '
2
s  computes 0,0

zx g  in session B. 

In our proof of Theorem 4, we show that despite of 
being able to enforce 0,0x  the adversary is still unable to 
enforce the resulting session group key K. We make use of 
the following ‘difference lemma’. 

Lemma 1. Let A, B, C be events defined in some probability 
distribution, and suppose that Pr[B] Pr[A | C].  Then, 

Pr[A] Pr[B] Pr[ C].

The proof follows from the equation: 
Pr[A] Pr[A|C] Pr[C] Pr[A| C] Pr[ C]

Pr[B] Pr[C] Pr[A| C] Pr[ C]
Pr[B] Pr[ C].

With this lemma, we can define sequence games based on 
condition events. In game Gi + 1 constructed from Gi with 
respect to some appropriate condition event C the event 
Wini + 1 is defined as Wini|C. Then, according to Lemma 1 

1Pr[Win ] Pr[Win ] Pr[ ].i i C  In order to estimate the 
probability distance between Gi and Gi + 1 it is sufficient to 
compute Pr[ ]C . Note that Gi and Gi + 1 proceed identical 
from the adversarial perspective. Therefore, it is not 
necessary for the simulator to detect whether this condition 
event occurs or not (this in contrast to failure events, used 
for example in G1 of Theorem 2). Furthermore, by 
conditioning the success of the adversary with C we do not 
restrict the adversarial strategy. Note that the inequality 

1

1

Pr[Win ] Pr[Win ] Pr[C] Pr[Win | C] Pr[ C]
Pr[Win ] Pr[ C]

i i i

i

considers Wini + 1 and Win | Ci , and so focusing on 
one strategy represented by 1Win =Win | Ci i  in Gi + 1

does not rule out all other strategies represented 
by Win | Ci because of the total probability 

1Pr[Win ] Pr[Win ] Pr[ C]i i .

The main idea of the following proof is to use the fact 
that every honest oracle , [1, ]s

j i n  computes the 

sequence 1, , n prior to the acceptance of K so that each 
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1, l  [1,n] depends on the previously computed l – 1. We 
consider the probability that for an honest *

s
i  the 

adversary  is able to enforce any of the values i*, , n

(note that K = n), or K computed by the collision-resistant 
PRF f. This is equivalent to the event that in the prepare 
stage  is able to output any i*, , n, or K which *

s
i

computes in any session of the attack stage. On the other 
hand, applying Lemma 1 in our proof we do also consider 
the upper-bound for the success probability of the adversary 
in case that its strategy differs from inuencing any value in 

i*, , n.

Proof (of Theorem 4, Sketch). Assume that an adversary 
from Definition 5 wins in con

,TDH1Game ( )  (which event we 

denote conWin ). Then, at the end of the stage prepare it 
returned K  such that in the stage attack there exist 
i*  [1, n] and an honest oracle *

s
i  that accepts with 

*K Ks
i = . Remind that 

*
2K ( )s

iKf v=  where *
s
iK  is the 

intermediate value computed by *
s
i .

Game G0. This is the real game con
,TDH1Game ( ) , in which 

the honest players are simulated by .

Game G1. In this game  aborts if the same nonce ri is used 
by any honest oracle s

i  in two different sessions. As in 
previous proofs we get: con con 2

0 1Pr[Win ] Pr[Win ] / 2sNq .

Game G2. This game is identical to Game G1 with the 
condition event that  being in the prepare stage is NOT 
able to output i* computed by *

s
i  in any session of the 

attack stage.6 We show how to evaluate the probability that 
 outputs i* in the prepare stage. Recall, i* is computed 

as 
* 1 *( ) 0( )
i irf v  in the attack stage. If  does not know 

the PRF key in the prepare stage, he can either use a 
different PRF key (thus finding a PRF-collision) or guess i*
at random. If  knows the PRF key in the first stage, he 
has to force *

s
i  to compute that key in the attack 

stage. However, since ri’s are uniform and chosen in the 
second stage,  must inuence i*–1 this would allow to 
distinguish f from a random function. Since there are at 
most qs sessions we have (according to Lemma 1): 

con con coll
1 2

PRF

Pr[Win ] Pr[Win ] Suc ( )

Adv ( ) / 2
s F

s F s

q

q q
.

Game G3. In this game, we consider a condition event that 
 (being in the prepare stage) is NOT able to output 

* :s
i nK =  computed by *

s
i  in any session of the attack 

stage. Evaluating probabilities that n, n – 1, , can be 
predicted is done via a hybrid argument. In a nutshell, either 
the adversary can find the same output with a different key 

(which breaks collision-resistance) or he inuences the PRF 
key 1 ( ) :i ir  this can be done either by inverting  or 
by a random guess. According to Lemma 1 we finally 
obtain: 

con con coll
2 3

ow

Pr[Win ] Pr[Win ] Suc ( )

+ Suc ( ) / 2
s F

s s

Nq

Nq Nq
.

Game G4. The condition event here is that  (being 
in the prepare stage) is NOT able to output *

s
iK  computed 

by *
s
i  in any session of the attack stage. Having excluded 

the case where *
s
iK  is known to , the probability of 

such event is (as above) bounded by: 
con con coll
3 4Pr[Win ] Pr[Win ] Suc ( )+ / 2s F sq q . Having 

con
4Pr[Win ] 0  (by definition of the game) one can 

conclude. 

3.4.1 Comparison of security and performance of 
TDH1 and other static group key exchange 
protocols 

In Table 1, we compare TDH1 protocol with several well-
known provably secure GKE protocols in terms of their 
performance and achieved security goals. Our comparison is 
done based on the security arguments and adversarial 
settings given in the original publications (sometimes 
transformed to the terminology of our model). In general, 
‘weak’ (or ‘strong’) denotes consideration of weak (or 
strong) corruptions for each of the security requirements, 
whereas ‘honest’ (or ‘malicious’) denotes the assumption on 
the type of the protocol participants. Note again that by 
strong corruptions we mean not only adaptive attacks 
revealing the long-lived key (thus, weak corruptions), but 
also opening attacks which read out the ephemeral secrets. 
We also distinguish whether a protocol has been proven 
under standard or non-standard assumptions such as Ideal 
Cipher Model (ICM) or ROM. We remark that TDH1 is the 
only protocol which provably satisfies strong versions of 
AKE-, MA-security and contributiveness (under 
consideration of malicious insiders where appropriate, that 
is for MA and contributiveness) while being proven in the 
standard model. The protocol proposed by Desmedt et al. 
(2006) has similar properties as TDH1, but deals only with 
weak corruptions (ephemeral secrets never leak). The work 
by Katz and Shin (2005)7 can also be seen as close to ours 
since they provide MA-security against malicious insiders; 
the main differences are that their model (although 
considering strong corruptions) does not allow separate 
opening attacks, i.e. the scenario in which the adversary 
learns the ephemeral secrets of other honest users is not 
considered, and it also does not allow the adversary to 
register long-lived keys of the users under its control. 

Last, but not least, we note that the overall effciency of 
TDH1 is similar to the most efficient currently known 
provably secure GKE protocols (in the standard model).
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Table 1 Efficiency and security goals of TDH1 and other static provably secure group key exchange protocols 

Efficiency Security goals 
GKE protocol Comm Comp AKE MA Contributiveness Model 
Abdalla et al. (2006) O(1) O(n) weak – – ICM, ROM 
Bresson and Catalano (2004) O(1) O(n) weak weak, honest weak, honest standard 
Bresson et al. (2001) O(n) O(n) weak weak, honest – ROM 
Bresson, Chevassut and Pointcheval (2002b) O(n) O(n) weak weak, honest – ROM 
Desmedt et al. (2006) O(1) O(n) weak weak, malicious weak, malicious standard 
Dutta, Barua and Sarkar (2004) O(1) O(n) weak – – standard 
Katz and Shin (2005) O(1) O(n) strong strong8, malicious – standard 
Katz and Yung (2003) O(1) O(n) weak weak, honest – standard 
TDH1 O(1) O(n) strong strong, malicious strong, malicious standard 

4 Conclusions and future work 
In this article, we have addressed security of GKE protocols 
against strong (adaptive) corruptions which reveal internal 
states (incl. ephemeral secrets) of participants and proposed 
appropriate definitions of strong AKE-, MAsecurity, and 
contributiveness. Additionally, we presented a 3-round GKE 
protocol TDH1 which satisfies strong security under 
standard cryptographic assumptions. 

The function TDH1_Con 0,0 1( , | | )nx r r  is of 
independent interest and can be seen as an add-on compiler 
for our definition of contributiveness if 0,0x  is the 
common ephemeral secret computed in the underlying GKE 
protocol (see (Bresson and Manulis, 2007) for details). 

The equivalence between the TDDH and DDH 
assumptions is also of independent interest since it is 
valuable for the construction of other cryptographic 
schemes with provable security in the standard model. An 
interesting open question: Is TDDH randomly self-
reducible? 

Beside the extension of TDH1 towards dynamic groups, 
general future work in the area of GKE security might 
address: consideration of strong corruptions in combination 
with fault-tolerance and security against DoS attacks 
discussed in Cachin and Strobl (2004) and Desmedt et al. 
(2006) and strengthening of the simulation-based security 
models for GKE protocols (e.g. (Katz and Shin, 2005)) 
towards opening attacks due to our Remark 1. 
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Notes 
1 A GKE protocol may use auxiliary secrets pre-computed offline 
in order to achieve better performance during the communication 
phase. Such protocols are not strong AKE-secure since the 
adversary can break into the internal states prior to the protocol 
execution. 

2 Note that std us .

3 The exponentiation xx g  is a bijection from  to . We 

require that there exists an efficiently computable (bijective) 
mapping in the opposite direction, but we do NOT require this 
mapping to be the discrete logarithm!

4 Binary tree is called full if each of its nodes has exactly 0 or 2 
children. Sometimes such trees are also called proper.

5 More precisely, one constructs n + 1 auxiliary ‘hybrid games’ 
G6,1, l = 0, , n and replaces in each game l by a random value 
from {0, 1} . The difference between two neighbour hybrids is 
upper-bounded by the PRF advantage.

6 Note, in G0 and G1 the adversary only outputs a value for the 
resulting group key. In G2, we consider the additional (in)ability 
of the adversary to output the value for *

i . Since we are only 
interested in the success probability of  under this condition 
does not need to detect whether  is able to output the correct 
value or not. The same considerations are applicable to G3 with 
respect to *

s
iK .

7 Note that Katz and Shin proposed an add-on compiler and not a 
concrete protocol. 

8 MA-security related definitions in Katz and Shin (2005) do not 
consider opening attacks, i.e. the adversary is not allowed to 
obtain internal states of other uncorrupted participants. 
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Appendix A 

Proof of theorem 1 (DDH  TDDH) 

DDH TDDH
,Adv ( ) Adv ( )

nT : this holds trivially since 

distributions *TDDH
nT  and $TDDH

nT  contain a triple 

of the form 1,0 1,11,0 , , 1,1 , , ( 0,0 , )x xg g Z  where 
1,0 1,1x xZ g  in case of *TDDH

nT  or Z is random 

otherwise. 
TDDH DDH

,Adv ( ) (2 3) Adv ( )
nT n : to prove this, we 

use a TDDH
nT -distinguisher , and show how to solve an 

instance of the DDH problem: on input (A, B, C) 3 ,
where A = ga and B = gb for random a and b, we build a PPT 
algorithm  that distinguishes whether C = gab or C is 
random. 

First, we sort the nodes of any Tn R Tn in the postfix 
order, s.t. each node is listed after its two children (if any). 
For simplicity, we slightly modify this order: we separate 
nodes by re-numbering all n leaves to negative indices 
(without changing their order), and the internal nodes to 
indices 1 to n–1 (also without changing their order). In other 
words, for internal nodes, we ‘shrink’ the sequence that 
remains after having moved the leaves. This results in the 
following map  from Tn to [ n, 1]  [1,n 1]: 

number assigned toleaves internalnodes

, 1, , 1 ,1, , 1n n n

Note that any node still appears after its children, e.g. the 
root node is assigned number ( 0,0 ) 1n . By a ‘hybrid 
argument’ we consider the following sequence of games. In 
each game Gi for i = 0, , n–2,  chooses a set X of n
random values in , denoted x n through x 1. In addition, 
for i > 0, in Gi,  chooses a set Yi of i random values in 
that are denoted x1 through xi. Then,  builds a set TDHi

(X, Yi) defined (recursively) as ,

*,
, , l v

n

x

l v T
l v g , with 

,2 1,2 1

, ( , )

, ( , )

,

if ( , ) 0,

if 0 ( , ) ,

otherwise.l v l v

l v l v

l v l v i

x x
l v

x x X l v

x x Y l v i

x g

Finally, in each game,  flips a coin b and provides 
with a set TDDH ( , , , ) TDH ( , ) {( 0,0 , )}i i i iX Y b r X Y Z

where 1,0 1,1x xZ g  if b = 1 and Z = gr is a random element 
in  if b = 0. 

Let Pri [ ] denote the probabilities as induced by 
random choices in Gi. In G0 the constructed TDH0(X, Yi)
is exactly TDH ( )

nT X  (due to Y0 = ) s.t. the distance 

between Pr0[ (TDDH0(X, , b, r)) = 1|b = 1] and 

Pr0[ (TDDH0(X, , b, r)) = 1|b = 0] is upper-bounded by 
TDDH

,Adv ( )
nT  On the other hand, in Gn–2, all values ,l vx

for l > 1 are random and independent, and also indepen- 
dent from random 1,0x  and 1,1x . Furthermore, 

1,0 1,1
0,0

x xx g  iff b = 1 s.t. the distance between 

Pr[ (TDDHn–2(X, Yn 2, b, r)) = 1|b = 0] and Pr[ (TDDHn–

2(X, Yn–2, b, r)) = 1|b = 0] is upper-bounded by 
D DHAdv ( ) . The last experiment G* is identical to Gn–2

except that A, B and C are used in the computation of 
TDDHn–2(X, Yn–2, b, r) instead of 1,1xg  and 0,0x ,
respectively. In particular, the flipping of b is ignored here: 
whatever b, the last input of  is set to C. Let  denote the 
hidden bit that  is trying to guess. Note, the random 
variables (b, 1,0xg , 1,1xg , 0,0x ) and ( , A, B, C) are 
identically distributed. It follows that (for simplicity we 
removed 's  inputs that are identical and independent 
from the rest in both cases): 

1,0 1,1

1,0 1,1

2 0,0

*

2 0,0

*

Pr , , 1 | 1

Pr ( , , ) 1 | 1

Pr , , 1 | 0

Pr ( , , ) 1 | 0 .

x x
n

x x
n

g g x b

A B C

g g x b

A B C

Finally, it is straightforward to see that the computational 
distance between two consecutive games is upper-bounded 
by DDHAdv ( )  since the only difference between them is to 

replace a value 1,2 1,2 1l v l vx xg  by a random one. Hence, 

* 0 0
DDH

* 0 0

DDH

Pr ( , , ) 1 | 1 Pr (TDDH ( , , , )) 1 | 1]

( 2)Adv ( )

Pr ( , , ) 1 | 0 Pr (TDDH ( , , , )) 1 | 0]

( 2)Adv ( ).

A B C X b r b

n

A B C X b r b

n

Their sum gives us the desired inequality: 

TDDH
, 0 0

0 0

*

*
DDh

DDh

Adv ( ) Pr (TDDH ( , , , )) 1 | 1

Pr (TDDH ( , , , )) 1 | 0 |

Pr ( , , ) 1 | 1 |

Pr ( , , ) 1 | 0 |

2( 2)Adv ( )

(2 3)Adv ( ).

nT X b r b

X b r b

A B C

A B C

n

n

Appendix B 
Security definitions for F

Definition 7 (PRF Family). A family of functions 
( ) ( )

{0,1}
: :{0,1} {0,1}p p

k k
F f  with p a 
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polynomial, is called an (efficiently computable) PRF 
ensemble if: 

1 Efficient computation. There exists a polynomial-time 
algorithm that on input k and x returns fk(x).

2 Pseudo-Randomness. Choose uniformly {0,1}Rk

and a function f  in the set of all functions with 
domain and range ( ){0,1}p . Consider a PPT adversary 

 asking queries of the form Tag(x) and participating 
in one of the following two games: 

prf-1Game ( ),F  where a query Tag(x) is answered 
with ( )kf x

prf-0Game ( ),F  where a query Tag(x) is answered 

with ( )f x .

At the end of the execution  outputs a bit b trying to 
guess which game was played. The output of  is also the 
output of the game. 

We define: 

prf prf-Adv ( ) : 2Pr Game ( ) 1 .b
,F ,F b

and denote prfAdv ( ),F  the maximum advantage over all 
adversaries . We say that F is pseudo-random if this 
advantage is a negligible function in .

By an (efficiently computable) PRF, we mean a function 
fk  F for some random {0,1}Rk .

Definition 8 (Collision-Resistance). Let {0,1}: k kF f

be a PRF ensemble. We say that F is collision-resistant if 
there is an efficient procedure Sample such that for all PPT 
adversaries  the following success probability (over all 
adversaries ) is a negligible function 
in :

coll

'

Sample(1 ); , ' {0,1}
Suc ( ) : Pr : ' .

, ' (1 , ) ( ) ( )
F

k k

x k k
k k

k k x f x f x
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