
Int. J. Applied Cryptography, Vol. 1, No. 2, 2008 91

Copyright © 2008 Inderscience Enterprises Ltd.

Securing group key exchange against strong
corruptions and key registration attacks

Emmanuel Bresson
DCSSI Crypto Lab,
51, bld de La Tour-Maubourg,
75700 Paris 07 SP, France
E-mail: emmanuel@bresson.org

Mark Manulis*
UCL Crypto Group,
Place du Levant 3,
1348 Louvain-la-Neuve, Belgium
E-mail: mark.manulis@uclouvain.be
*Corresponding author

Abstract: In Group Key Exchange (GKE) protocols, users usually extract the group key using
some auxiliary (ephemeral) secret information generated during the execution. Strong corruptions
are attacks by which an adversary can reveal these ephemeral secrets, in addition to the possibly
used long-lived keys. Undoubtedly, security impact of strong corruptions is serious, and thus
specifying appropriate security requirements and designing secure GKE protocols appears an
interesting yet challenging task – the aim of our article. We start by investigating the current
setting of strong corruptions and derive some refinements like opening attacks that allow to
reveal ephemeral secrets of users without their long-lived keys. This allows to consider even
stronger attacks against honest, but ‘opened’ users. Further, we define strong security goals for
GKE protocols in the presence of such powerful adversaries and propose a 3-round GKE
protocol, named TDH1, which remains immune to their attacks under standard cryptographic
assumptions. Our security definitions allow adversaries to register users and specify their long-
lived keys, thus, in particular capture attacks of malicious insiders for the appropriate security
goals such as Mutual Authentication, key confirmation, contributiveness, key control and key-
replication resilience.

Keywords: authenticated group key exchange; GKE; contributiveness; insider attacks; key
registration; mutual authentication; MA; strong corruptions; tree Diffie–Hellman; TDH1.

Reference to this paper should be made as follows: Bresson, E. and Manulis, M. (2008)
‘Securing group key exchange against strong corruptions and key registration attacks’, Int. J.
Applied Cryptography, Vol. 1, No. 2, pp.91–107.

Biographical notes: Emmanuel Bresson received his PhD at the École normale supérieure in
Paris. He works as a Cryptography Expert for government teams. His main research subjects
involve key exchange mechanisms and authentication for multi-party protocols with provable
security. He has published his work in many international conference papers and security
focusing journals.

Mark Manulis received his PhD in Computer Science from the Ruhr University Bochum in 2007.
His research focuses on security and cryptography related to key management, authentication,
anonymity and privacy in distributed applications and (wireless) communications.

1 Introduction
A Group Key Exchange (GKE) protocol provides
participants with a common secret group key. The main
(semantic) security requirement called Authenticated
Key Exchange (AKE; Bresson, Chevassut and Pointcheval,
2001, 2002a) aims to ensure that the established key is
indistinguishable from a random one by any outsider
adversary. The second requirement called Mutual

Authentication (MA; Bresson, Chevassut and Pointcheval,
2001) aims to ensure that all legitimate protocol participants
and only they have actually computed identical session
group keys. These security requirements have been
extensively studied in the literature (see the recent survey in
Manulis, 2006). In the most basic scenarios, all users are
somehow protected, that is, the adversary has no control
over them, and is restricted to attacks carried out through

92 E. Bresson and M. Manulis

the network (which nevertheless include impersonation
attacks where the adversary talks on the network by
pretending being a legitimate user).

In order to take into account, further real-life threats on
users and the notion of forward secrecy is usually
considered. Forward secrecy means that the established
session key remains secure ‘in the future’, that is, remains
indistinguishable from random even if the adversary learns
used long-lived keys in the future. The notion is motivated
by the fact that, by nature, long-lived keys get more chance
to be leaked to an attacker than ephemeral secrets.

The next known kind of corruptions, referred to as
strong corruptions in Shoup (1999), Steiner (2002) and
Bresson, Chevassut and Pointcheval (2002a), provides the
adversary with even more information. Namely, the
adversary gets the user’s ephemeral secrets in addition to
the long-lived keys. But, he is not allowed to get the
established session group key. Shoup (1999) explains why
such a separation makes sense: session keys are typically
controlled by higher-level applications that will use them,
while internal, ephemeral secrets are specific to the GKE
protocol execution and could be erased once this protocol is
finished.

Actually in GKE, it seems impossible to obtain secrecy
when ephemeral secrets are revealed during the protocol
session: if the adversary (even ‘passively’) can learn all
intermediate key material, then he will likely be able to
compute the final group key. On the other hand, in dynamic
groups there are many cases where ephemeral secrets of a
particular session are subsequently re-used (in addition
to some refreshed data) to update the group key. Then, it
is important to ask how the knowledge of ephemeral secrets
in a corrupted session impacts the security of other sessions
(past and future). This is precisely where the notion of
strong forward/backward secrecy raises up.

At this point, we precise the corruption types considered
in this article. First, we consider users who are corrupted
and are introduced by the adversary. We assume that the
users are corrupted in a passive mode (rather than active),
i.e. the adversary can only ‘read’ secrets held by the
attacked user (whatever these secrets are ephemeral or long-
lived). Through the knowledge of the long-lived key, the
adversary can (typically) inject signed messages on behalf
of the user while preventing the original user’s messages
from being delivered. In fact, this allows an active
participation of the adversary during the protocol execution,
and thus we say the adversary is active; but, this refers to his
ability to control the network, not the user’s behaviour. On
the other hand, we also wish to capture security threats
coming from the users that are fully controlled by the
adversary. Therefore, we allow the adversary to introduce
new users and to register their long-lived keys. The
adversary that corrupts or adds users is adaptive (opposed to
static) in the sense that it chooses which users to corrupt or
to introduce based on the information he gained so far and
in any stage of the protocol execution. Secondly, when
considering user corruptions, in order to further refine

the security definitions, our intention is to separate the
long-lived key from the internal state which contains
ephemeral secrets and to specify when the adversary can
learn them. Through this separation, we explicitly allow the
adversary to reveal ephemeral secrets without revealing the
long-lived key; we call this opening attacks. They are the
balanced complement of weak corruption attacks, where
long-lived keys are revealed, but ephemeral secrets are not.
We note that under opening attacks, there is a hope to
prevent the adversary from actively participating in the
protocol on behalf of the opened parties, since he does not
receive the long-lived keys. Finally, we notice that the
strong corruption model in its current form is the best (or
worst) of two worlds: if the adversary corrupts then it
obtains the long-lived keys and the ephemeral data, if it
does not corrupt then it obtains nothing. But, separating the
attacks in two distinct modes allows to refine and opt for
stronger security definitions.

Consideration of the adversary that corrupts and
introduces users allows us to address security threats against
GKE protocols that may arise also in the presence of
malicious participants/insiders – corrupted or introduced
users whose long-lived keys are known to the adversary.
The adversary acting as malicious participants might be able
via opening attacks to obtain information from the internal
states of the honest users; the goal of the adversary is then to
influence their behaviour.

Usually, the AKE requirement is defined from the
perspective of some (fresh) session, and thus makes sense
only if the adversary is restricted to neither participate on
behalf of a user nor to obtain any ephemeral secret in that
session, i.e. all during the protocol session active users must
be honest and not opened. On the other hand, the MA
requirement remains meaningful even without such
limitations. Even if achieving MA without AKE is of low
interest for key exchange protocols, it is still legitimate to
ask whether achieving MA under strong corruptions during
the attacked session is possible. This especially, since the
MA requirement still makes sense in the presence of
malicious participants and may also be useful for protocols
other than key exchange. Furthermore, consideration of
malicious insiders raises attacks related to key control and
contributiveness: for instance, think of a participant who can
force the same key to be obtained in two different sessions
(e.g. key-replication; Krawczyk, 2005). Here, we recall that
the question on who controls the value of the group key
states the important difference between GKE and group key
transport protocols (Bresson and Manulis, 2007). In GKE
protocols, it is essential that the key is computed from
inputs (contributions) of all participants such that even a
strict subset of participants cannot enforce the final value of
the group key. Especially, when considering asynchronous
communication and malicious participants who can choose
own contributions arbitrarily and may additionally reveal
internal states of honest participants at any stage of the
protocol execution through opening attacks, preventing key
control and ensuring contributiveness for the honest users
appears to be a challenging task.

Securing GKE against strong corruptions and key registration attacks 93

1.1 Related work

1.1.1 Original definitions
The AKE- and MA-security requirements (without strong
corruptions and only for honest users) were originally given
by Bresson et al. (2001), see Katz and Yung, 2003; Dutta,
Barua and Sarkar, 2004; Kim, Lee and Lee, 2004, for
variants and Bresson, Manulis and Schwenk, 2007, for some
flaws. In Bresson, Chevassut and Pointcheval (2002a) and
Bresson et al. (2001) modelled strong corruptions, but for
AKE-security only, following the ideas of Shoup (1999) and
Canetti and Krawczyk (2001) for two-party protocols, for
which such strong AKE-security has been recently modelled
in LaMacchia, Lauter and Mityagin (2007).

Katz and Shin (2005) extended the definition of MA-
security by assuming misbehaving (malicious) protocol
participants; and they provided a concrete generic solution
(compiler) to prevent these attacks, however, without
considering opening attacks against ephemeral secrets as
well as key control and contributiveness. The significance
of security against malicious participants was also
recognised by Choo, Boyd and Hitchcock (2005) through
unknown-key share attacks, by which an active adversary
tries to make an honest protocol participant believe that the
group key is shared with one party when it is in fact shared
with another party.

1.1.2 On key control and contributiveness
Mitchell, Ward and Wilson (1998), see also Boyd and
Mathuria (2003), gave informal definition of key control, to
describe attacks where participants try to influence the
resulting value of the key. Yet informally, Ateniese, Steiner
and Tsudik (1998) proposed the notion of contributiveness
meaning that all participants must equally contribute to the
computation of the key and guarantee its freshness (see
Steiner, 2002); these definitions emphasise the difference
between key distribution and key exchange (Menezes, van
Oorschot and Vanstone, 1996). Following these
requirements, Bresson and Catalano (2004) have considered
the (weaker) case where participants are honest, but have
biased source of randomness so that an adversary can
possibly gain extra information about the key. Deepening
this, Bohli, Vasco and Steinwandt (2007) gave definitions of
key control and contributiveness considering a (stronger)
case where participants deliberately wish to influence the
resulting value of the group key. Still, their definitions are
based on the model from Bresson et al. (2001) and thus, do
not consider strong corruptions. Finally, Krawczyk (2005)
mentioned that a key exchange protocol should prevent key-
replication attacks whose goal is to influence the acceptance
of the same key in different protocol sessions.

1.1.3 Other work close to ours
Independent of our work, Desmedt et al. (2006) considered
a property of non-malleability for GKE protocols, which is
close to key control and contributiveness. Their security
goal, called shielded-insider privacy, aims to prevent attacks
where an outsider adversary upon communication with

some malicious participants prior to the protocol execution,
obtains information about the later computed group key. In
order to ensure shielded-insider privacy, they use Pedersen’s
(1991) commitments; however, in case of strong corruptions
committed secrets can still be revealed to the adversary (due
to opening attacks), so that malicious participants would
still be able to bias the computation. In our model, we do
not consider this scenario explicitly, but focus on the
(in)ability of the adversary representing malicious
participants to predict the resulting value of the later
established group key. Recently, Manulis (2006) analysed
several existing models for GKE protocols with respect to
considering strong corruptions: he pointed out that security
against strong corruptions is currently considered in a rather
restrictive way: only for strong forward secrecy of AKE-
security. Moreover, none of the available game-based
security models is complete enough to unify the most
important definitions of AKE-, MA-security, and key
control and contributiveness.

1.2 Contributions and organisation
We solve most of the problems put in light above by
revisiting the GKE security model from the perspective of
strong corruptions and key registration attacks. Further, we
design a provably secure GKE protocol that resists these
attacks.

1.2.1 Security model and stronger definitions
As our first contribution in Section 2, we provide the
following:

We model a powerful adversary who is given access to
strong corruptions, by describing an appropriate game-
based security model for GKE protocols, thus
significantly extending the ideas from Bresson,
Chevassut and Pointcheval (2002a).
We formalise strong AKE-security by considering
opening attacks that may occur in earlier and later
protocol sessions.
In our definition of strong MA-security, we consider
the adversary that acts as malicious participants during
the attacked session and opens all other (honest) users;
due to the opening attacks our definition is stronger
than the related one from Katz and Shin (2005).
We formalise strong contributiveness as security
against attacks that enforce any value chosen by the
adversary as a group key (this includes key-replication;
Krawczyk, 2005); since, the adversary can act as
malicious participants and open all other (honest)
participants our requirement is stronger compared to
Bohli, Vasco and Steinwandt (2007).
We strengthen the GKE security model by allowing the
adversary to introduce users and register their long-
lived keys; this is similar to the recent models in 2-
party key exchange (LaMacchia, Lauter and Mityagin,
2007; Menezes and Ustaoglu, 2008) and is the main
difference to the extended abstract of this article which
appeared in Bresson and Manulis (2008) and also to
many previous GKE security models.

94 E. Bresson and M. Manulis

1.2.2 Group Key Exchange protocol with strong
security

As a second contribution in Section 3, we describe a
3-round GKE protocol, named TDH1, and prove that it
provides strong versions of AKE-, MA-security and
contributiveness, while the deployed techniques can be seen
as general for many GKE protocols. TDH1 tolerates the
following numbers of malicious insiders (out of n
participants in total): for MA-security up to n–2, for
contributiveness up to n 1, whereby all remaining honest
users might be opened! Our security proofs do not rely on
the Random Oracle Model (ROM; Bellare and Rogaway,
1993). The AKE-security of TDH1 is based on the Tree
Decisional Diffie–Hellman (TDDH) assumption, introduced
by Kim, Perrig and Tsudik (2004a,b). We give a formal
definition of the underlying TDDH problem and show its
polynomial equivalence to the standard Decisional Diffie–
Hellman (DDH) problem (Boneh, 1998) by a proof which
addresses arbitrary full binary trees, i.e. trees where each
node has exactly zero or two leaves (note, Kim, Perrig and
Tsudik, 2004a,b addressed only a subset, i.e. linear and
complete trees).

2 Strong security definitions for Group Key
Exchange

We start by (re)stating existing definitions and classical
notations using the game-based approach. Note that another
way (which we do not consider here) to define security
requirements is to use the simulation-based approach, e.g.
Katz and Shin, 2005, but see Remark 1.

2.1 Protocol execution and participants

2.1.1 Users, instance oracles and long-lived keys
Let be a set of at most N users. Each iU holds a
long-lived key LLi and has several instances called oracles,
denoted s

i for s , participating in distinct concurrent
executions. (When we do not refer to a specific user Ui we
use the index U, e.g. s

U).

2.1.2 Internal states

Every s
U maintains an internal state information states

U

which is composed of all ephemeral secret information used
during the protocol execution. The long-lived key LLU is, in
nature, excluded from it (moreover, the long-lived key is
specific to the user, not to the oracle). An oracle s

U is
unused until initialisation (by which it is given the long-
lived key LLU). It then becomes a group member, associated
to a particular session, and turns into the stand-by state
where it waits for an invocation to execute the protocol.
When the protocol starts, the oracle learns its partner id
pids

U (and possibly session id sids
U) and turns into a

processing state where it sends, receives and processes
messages. During that stage, the internal state information

states
U is maintained. After having computed s

Uk oracle s
U

accepts and terminates the execution of the protocol
operation (possibly after some additional auxiliary steps)
meaning that it would not send or receive further messages.
If the protocol fails, s

U terminates without accepting and
s
Uk is set to an undefined value.

2.1.3 Session group key, session and partner IDs,
group members

Every session is identified by a unique, publicly-known
sids

U . In each session, each oracle s
U gets a value pids

U

that contains the identities of participating users (including
U) and computes the session group key {0,1}s

Uk , where
is a security parameter.

By () { where pid and sid sid }
i

s t s s t
i j j U i jU , we

denote the group of oracle s
i and say that s

i and t
j are

partnered if ()t s
j i and ()s t

i j . Sometimes, we
simply write to denote the group of oracles participating
in the same protocol session. Then, each oracle in is
called a group member. Note that oracles in may be
ordered, e.g. lexicographically based on the user identities.

Definition 1. A GKE protocol P consists of a key generation
algorithm KeyGen and a protocol Setup:

P.KeyGen (1). On input a security parameter 1 each user
in is provided with a long-lived key LLU.

P.Setup(). On input a set of n unused oracles a new
group is created and set to be . A probabilistic
interactive protocol is executed between the oracles in
such that all oracles accept with the session group key and
terminate.

A protocol is said to be correct if, when no adversary is
present, all participants compute the same key. Note that our
definition is independent of the communication channel, e.g.
(asymmetric) broadcast, multi-cast or unicast.

2.2 Strong adversarial model

Now, we consider an adversary which is a Probabilistic
Polynomial-Time (PPT) algorithm having complete control
over the network. As described in the following, can add
users to the set and interact with protocol participants via
queries to their oracles. Note that our security model
(similar to Bresson, Chevassut and Pointcheval, 2002a; Katz
and Shin, 2005; Bohli, Vasco and Steinwandt, 2007) does
not deal with the issues of denial-of-service and fault-
tolerance; our security definitions aim to prevent honest
participants from accepting the group key biased by
malicious insiders.

AddUser(U,). If U , then U with the long-lived
(public) key contained in is added to ; may also
contain some further information.

Securing GKE against strong corruptions and key registration attacks 95

Execute(). eavesdrops an honest execution of P.Setup
between a chosen set of oracles and is given the resulting
transcript of P.Setup().

Send(,s
U m). sends message m to oracle s

U and

receives the response s
U would have generated after

having (honestly) processed message m. The response may
be empty if m is incorrect. The adversary can have s

U

invoking P.Setup with the oracles in via a query of the
form Send(‘start’, s

U ,): gets the first message that
s
U would generate in this case.

RevealKey(s
U). is given the session group key s

Uk ,

provided s
U has accepted.

RevealState(s
U). is given the internal state information

states
U which includes ephemeral secrets.

Corrupt(U). is given the long-lived key LLU.

Test(s
U). tests the semantic security of s

Uk . Formally, if
s
U has accepted a bit b is privately flipped and is given

s
Uk if b = 1 and a random string if b = 0.

The adversary has two ways of learning LLU: by asking it –
Corrupt(U), or by registering it – AddUser(U,). For
simplicity, in all definitions of security unless otherwise
stated, we treat U as corrupted if any of these queries had
occurred.

Remark 1. The separation of the queries RevealState and
Corrupt/AddUser explicitly provides the possibility for the
opening attacks mentioned in the introduction. By asking
the RevealState query to an instance oracle s

U , the
adversary reads out its internal state, but cannot impersonate
honest U in the protocol execution, unless a Corrupt(U)
query is asked (in which case all instance oracles s

U

become malicious insiders through possible impersonation
actions of). Thus, just opening a user does not make him
malicious. In contrast, simulation-based security models
(e.g. Universal Composability/Reactive Simulatability)
handle strong corruptions typically as follows: upon
corrupting a user the adversary learns all information known
to that user and controls him thereafter. Obviously, in the
simulation-based models opening attacks (which strengthen
the adversary) are currently not modelled.

2.3 Strong AKE-security

In case of strong AKE-security, one must also consider the
knowledge of the adversary about long-lived keys and
ephemeral secrets of session participants. If the adversary
obtains a long-lived key before the session is started then it
can impersonate a user, and thus, learn the session key. And,
if the adversary is allowed to obtain long-lived keys before
the session is finished then it should be restricted

from actively using these keys during that time (Katz and
Yung, 2003).

On the other hand, the adversary should be allowed to
reveal ephemeral secrets of participants before the session
starts1 and after the session is finished (defined as strong
forward and weak backward secrecy in Bresson, Manulis
and Schwenk, 2007). Note that, if one allows long-lived key
corruptions in later sessions, revealing ephemeral secrets
during the attacked session would not make sense. In order
to model the described requirements for the adversarial
knowledge, we define the notion of oracle freshness,
extending those given in Bresson, Chevassut and
Pointcheval (2002a) and Katz and Yung (2003) by the
conditions concerning key registration and opening attacks.

Definition 2 (Oracle Freshness). In the execution of P the
oracle s

U is fresh if all of the following holds:

1 no pids
i UU has been added by via a corresponding

AddUser query

2 no pids
i UU is asked for a query Corrupt prior to a

query of the form Send (,)t
j m with pids

j UU until
s
U and its partners accept

3 neither s
U nor any of its partners is asked for a query

RevealState until s
U and its partners accept

4 neither s
U nor any of its partners is asked for a query

RevealKey after having accepted.

We say that a session is fresh if all participating oracles are
fresh.

We note that the above definition ensures that if at least
one oracle participating in a session is fresh then the whole
session is fresh too because freshness of one oracle requires
freshness of all its partners. This notion of oracle freshness
simplifies the following definition of strong AKE-security
for GKE protocols.

Definition 3 (Strong AKE-Security). Let P be a correct GKE
protocol and b a uniformly chosen bit. Consider an
adversary against the AKE-security of P. We define the
adversarial game ake

,PGame ()b as follows:

after initialisation, interacts with instance oracles via
queries

at some point asks a test query to a fresh oracle s
U

which has accepted

 continues interacting with instance oracles

when terminates, it outputs a bit, which we define to
be the output of the game.

We define: ake ake
,P ,PAdv () : 2Pr[Game ()] 1b b and

denote with ake
PAdv () the maximum advantage over all

96 E. Bresson and M. Manulis

PPT adversaries . We say that a GKE protocol P provides
strong AKE-security if this advantage is negligible.

We again stress that (strong) AKE-security makes sense
for adversaries that are not able to corrupt users and act on
their behalf during the attacked session or reveal any
ephemeral secrets used in that session – this is guaranteed
by the freshness property.

2.4 Strong MA-security

We say that s
U is a malicious participant/insider if the

adversary has previously asked Corrupt(U) or AddUser
(U,). In all other cases, s

U is honest. The following
definition of MA-security unifies the requirements of MA,
key confirmation and unknown-key share resilience. It
considers malicious participants and allows opening attacks
against all honest users at any protocol stage.

Definition 4 (Strong MA-Security). Let P be a correct GKE
protocol and an adversary who is allowed to query Send,
Execute, RevealKey, RevealState, Corrupt and AddUser.
We denote this interaction as ma

,PGame () . We say that
wins if at some point, there exists an honest user Ui whose
instance oracle s

i has accepted with s
ik and another user

pids
j iU that is uncorrupted at the time s

i accepts such

that

1 there is no instance oracle t
j with

(pid ,sid) (pid ,sid)t t s s
j j i i or

2 there is an instance oracle t
j with

(pid ,sid) (pid ,sid)t t s s
j j i i that has accepted with

t s
j ik k .

The maximum probability of this event is denoted
ma
PSuc () ; we say that a GKE protocol P provides strong

MA-security if this probability is negligible.

2.5 Strong contributiveness

The following definition models attacks related to key
control, contributiveness and unpredictability of group keys
in the presence of malicious participants. Informally, we
consider an active adversary that can add, corrupt and
open participants at any stage of the protocol execution in
such a way that there exists at least one honest oracle
(which may nevertheless be opened!) that accepts the
session group key chosen by the adversary. This subsumes
key-replication attacks (Krawczyk, 2005) by which honest
users are forced to accept a group key from another session.

Definition 5 (Strong Contributiveness). Let P be a correct
GKE protocol and an adversary operating in two stages
(prepare and attack) and having access to the queries Send,

Execute, RevealKey, RevealState, Corrupt and AddUser.
We define the following game con

,PGame () :

 (prepare) interacts with instance oracles via queries

 (prepare) outputs {0,1}k , and some state
information

the following sets are built: us consisting of all honest
used oracles, std consisting of all honest oracles that
are in the stand-by state2, and consisting of session
ids sidt

i for every us
t
i

 (attack,) interacts with instance oracles via queries

at the end of this stage outputs (s, U).

The adversary wins in con
,PGame () if all of the

following holds:

1 s
U is honest, has terminated accepting

us std, \s
Uk and sids

U

2 there are at most n–1 corrupted users Ui having oracles
t
i partnered with s

U .

We define: con con
,P ,PSuc () : Pr[wins in Games ()] and

denote with con
PSuc () the maximum probability of this

event over all PPT adversaries ; we say P provides strong
contributiveness if this probability is negligible in .

The first requirement ensures that s
U belongs to an

honest user. The set us std\ consists of all oracles that at
the end of the prepare stage have already terminated or
remain in the processing state. Thus, requiring

us std\s
U prevents the case where while being a

session participant outputs k for the still running protocol
execution which is then accepted by s

U that participates in
the same execution (this is not an attack since participants
do not compute group keys synchronously). Similarly, the
condition sids

U prevents that while being in the
attack stage outputs (s, U) such that s

U has accepted with

k already in the prepare stage. Finally, since in every
session id is unique, ssidU holds if at least one new
session has been executed with s

U in the attack stage. The
second requirement allows to corrupt at most n–1 (out of
totally n) participants in the session where s

U accepts

with k .
Note also that U must be honest, but is allowed to

reveal the internal state of s
U during the execution of the

attack stage (this is because our model separates LLU from
states

U). The goal of the adversary is to influence the honest
participants to accept the chosen key. Our game appears

Securing GKE against strong corruptions and key registration attacks 97

stronger than Bohli, Vasco and Steinwandt (2007), since the
adversary can open honest users’ internal state (furthermore,
he can make corruptions in an adaptive manner).

Remark 2. The main difference to the non-malleability
definition from Desmedt et al. (2006) is that we allow to
open honest users during the attacked session, however, at
the cost that we do not deal with the ability of to bias the
probability distribution of the resulting group key (similar to
Bohli, Vasco and Steinwandt (2007)). It seems to be hard to
achieve this goal if corrupts n – 1 users and opens the
last nth honest user, which is allowed by our definition. At
least, the commitment techniques used in Desmedt et al.
(2006) would not help since committed secrets that become
part of the internal state can be revealed.

3 TDH1 protocol with strong security
In this section, we present our constant-round GKE protocol
denoted TDH1 and show that it satisfies the strong versions
of AKE-, MA-security and contributiveness. Its AKE-
security relies on the TDDH assumption, introduced by
Kim, Perrig and Tsudik (2004a,b).

3.1 Number-theoretic assumptions

First, we formally specify the TDDH assumption and
quantify the reduction to the classical DDH assumption
(Boneh, 1998). Our protocol and those (unauthenticated) in
Kim, Perrig and Tsudik (2004a,b) require a special
multiplicative group in which DDH is assumed to be hard

and for which there exists an efficient bijection3 from
to . Thus, not every DDH-hard group can be used,

e.g. no such bijection is known for elliptic curves.

3.1.1 Algebraic group

Let p be a safe prime, i.e. p = 2q + 1, with q a -bit prime.
The set of quadratic residue modulo p is a cyclic group ˆ

of order q; let g be a generator: ˆ g . Consider the

following mapping u: *
p q defined as

mod if
() :

() mod if .
z q z q

u z
p z q q z p

Consider the set : { () | }i
qu g i . It can be shown

(Kim, Perrig and Tsudik, 2004b) that the function
: ()xf x u g from q to is a bijection, and that the

operation 2(,) (mod)a b u ab p is a group law on .

Since, = q (as sets), we can define the exponentiation

ab: = u(ab mod p) for all a, b . Also, due to the fact that f

is a bijection, we have f(x) is random, uniform in as soon

as x is so.

Finally, it is believed (Boneh, 1998) that the DDH
assumption holds in , that is, the distributions of

1 2 1 2(, ,)x x x xg g g and 1 2(, ,)x x rg g g are computationally

indistinguishable for x1, x2, r R .

3.1.2 Tree Decisional Diffie–Hellman assumption

Let n be the set of all full4 binary trees with n leaves. For a

n nT of depth
nTd , each node is identified via a label

l, v , where l [0,
nTd] is the level of the node and v its

position within this level: the position is such that the child
nodes of l, v (if present) are labelled l + 1, 2v and l + 1,

2v + 1 (this implies that the nodes positions are in [0, 2l 1],

but may be not contiguous). The root node is labelled 0, 0 .

In the following, we will denote Tn\ 0, 0 by *
nT . The set of

leaf nodes and the set of internal nodes of Tn are defined as
(respectively):

LN := { , | , , 1,2 , 1,2 1 },
nT n n nl v l v T l v T l v T

*IN := { , | , , 1,2 , 1,2 1 }.
nT n n nl v l v T l v T l v T

For a set X of n randomly chosen variables x l, v R , with

, LN
nTl v , we (recursively) define for each , IN

nTl v :

1,2 1, 2 1
,

l v l vx x
l vx g , and

,

*,
TDH () , , .l v

n
n

x
T

l v T
X l v g

In addition, for a randomly chosen r R , we define the

tuples TDDH ()
nT X and $TDDH ()

nT X as follows:

1,0 1,1*TDDH () TDH () (0,0 ,)
n n

x x
T TX X g ,

and
$TDDH (,) TDH () (0,0 ,).

n n

r
T TX r X g

The TDDH assumption states that the respective
distributions of these tuples induced by uniform choices of r
and the x l, v , for , LN

nTl v are computationally

indistinguishable.

98 E. Bresson and M. Manulis

Definition 6 (TDDH Assumption). For all n > 1, any

n nT , any group , and any PPT algorithm , the

distinguishing advantage TDDH
,Adv ()

nT , defined as follows,

is negligible (in log):

* $

,
Pr TDDH () 1 Pr TDDH (,) 1 .

n nT T
X X r

X X r

Theorem 1 (DDH TDDH). The TDDH problem in is

polynomially equivalent to the DDH problem in q, and we

have: DDH TDDH DDH
,Adv () Adv () (2 3)Adv ().

nT n

The proof appears in Appendix A and is more general
than those in Kim, Perrig and Tsudik (2004a,b) that focus
only on complete and linear binary trees. For n = 2, we get
the classical DDH assumption in with the advantage

DDHAdv () defined as

$
,

Pr (DDH*()) 1 Pr[(DDH (,)) 1] .
X X r

X X r

3.2 Light description of TDH1

The main mechanism of the protocol is that of Kim, Perrig
and Tsudik (2004a,b), so we first recall it. The differences
will be in message authentication, key derivation and
applied erasure technique to prevent the ephemeral session
secrets from being leaked once the session is finished.
Erasure of the internal state can be seen as a general method
to achieve AKE-security in the presence of opening attacks
for static GKE protocols.

3.2.1 The setup operation

Every oracle is assigned to a leaf node of a so-called linear
binary tree Tn: a full binary tree with one leaf at each level,
except for the deepest one with two leaves (see Figure 1). In
other words, *

1, 1 , 0,1: { , }n l n vT l v .

Round 1 – All. Each oracle at position li, vi chooses a
secret exponent x li, vi R and broadcasts

,
, : l vi i

i i

x
l vy g .

Round 2 – First player. 1 at position n–1,0 is able to
build a set X1 of secret values for each node x l,0 in its path
up to the root 0, 0 . This is because for each internal node

1,0
,0 1,1 () lx

l lx y Then, 1
s computes the set consisting

of y l,0 : = ,0lx
g for each previously computed internal

node’s secret value x l,0 except for x 0,0 , and broadcasts .

Figure 1 Example of a linear binary tree T3 for the group
1 2 3{ , , }

Round 3 – No communication. Upon receiving , all other
oracles 1i are able to compute their own set Xi consisting
of all secret values x l,v in their paths up to the root. Hence,
every oracle finally learns x 0,0 . We emphasise that x 0,0 is
never exposed, and that there is no y 0,0 in the protocol
(see description of function TDH1_Exp*(l, X) below).

3.2.2 Group key confirmation and derivation
To derive the session group key K, each participant
iteratively computes a sequence of values 0, , n using a
Pseudo-Random Function (PRF) f with a public value v0 as
input. The key (secret seed) of f is initially set to x 0,0 , and is
changed in each invocation of f by embedding successive
nonces using an appropriate one-way permutation . These
nonces are provided by participants during the protocol
execution.

Intuitively, these successive evaluations of f and
prevent malicious participants from influencing values of
the PRF keys and ensures contributiveness for the
intermediate value n, which is then used as a seed for f
to derive the key confirmation token μ (on input a constant
public value v1) and the actual session group key K
(on input another constant public value v2 v1). Prior to
accepting K:

1 participants exchange and verify signatures on μ to
ensure MA-security (similar to Katz and Shin (2005))

2 erase (Crescenzo et al., 1999) all ephemeral secrets,
used to obtain K from their internal states, to achieve
strong AKE-security.

3.3 Detailed description of TDH1

3.3.1 Preliminary notations

We assume that long-lived keys LLi = (ski, pki) are
generated via . Gen (1), where = (Gen, Sign, Verify) is
an existentially unforgeable (under chosen message attacks)
digital signature scheme. We define the following key
exchange functions:

TDH1_Exp(x l, v). Simple exponentiation. The function

returns y l, v : = ,l vx
g .

Securing GKE against strong corruptions and key registration attacks 99

TDH1_Pick(1). The function returns a randomly chosen
secret exponent x l,v R and the corresponding public

value y l,v := TDH1_Exp(x l,v).

TDH1_Exp*(l, X) where X = {x j,0 }1 j l: Computation of
corresponding public values for secret exponents in X. The
function returns Y: = {y j,0 } where each y j,0

: = TDH1_Exp(x j,0).

TDH1_Up(l, v, x l,v , y l,1 – v , Y), where :Y ,1 { jy j

[1, 1]}l : iterative computation of the Diffie–Hellman

values up the tree starting at position l, v . The function

computes ,
 –1 ,0 ,1 – : () l vx

l l vx y , and returns

1,0
, 1,0 ,0 1,1 1,1: { , } { : () | , 2, ,0}.jx

l v l j j jX x x x y y Y j l

Let F := {{fk}k {0,1} } be a collision-resistant PRF
ensemble with domain and range {0,1} (see Appendix B
for definitions). Let : {0, 1} {0, 1} be a one-way
permutation. We denote by v0; v1 and v2 three distinct,
public values in {0, 1} . The following function is used to
compute the intermediate value K and the key confirmation
token μ.

TDH1_Con 0,0 1(, | |)nx r r : The function computes

0 : =
0,0 0()xf v , and each l: =

1 () 0()
l lrf v for all

l = {1, , n}. Let K: = n. Finally, the function computes
μ: = fK(v1), and returns (K, μ).

3.3.2 The protocol TDH1.Setup

In the following, we assume that an oracle aborts without
accepting if any performed check fails.

Round 1. Given the tree structure Tn, each oracle i

proceeds as follows:

pick at random nonce ri R {0, 1}

invoke TDH1_Pick(1) to generate a secret
exponent ,i il vx ; and the value ,

,
l vi i

l vi i

xy g

invoke .Sign to obtain a signature i on

,0 pid
i i

i il vy r using the private key ski

broadcast ,0
i ii l v i iU y r .

Round 2. Each oracle i proceeds as follows:

check if .Verify ,(,0 pid ,) 1
j jj l v j i jpk y r

for j i; check if jr for j i

define 1 1,1 –1, , 1sid : | | and : { }
ii n i l lr r Y y .

In addition, 1 does the following

compute X1:= TDH1_Up(n – 1, 0, x n–1,0 , y n – 1,1 , Y1)
and := TDH1_Exp* (n – 2, X1)

invoke .Sign to obtain a signature 1 on 1| |sid1| pid1

using the private key sk1

broadcast '
1 1

ˆ1U Y .

Round 3. Each i with i > 1 proceeds as follows:

check if .Verify '
1 1

ˆ(,1 sid pid ,) 1i ipk Y

compute Xi as TDH1_Up , ,1(, , , ,)
i i i ii i l v l v il v x y Y .

Then, every oracle (including 1) does the following:

compute both Ki and μi using TDH1_Con(x 0,0 , sidi);

[note that x 0,0 Xi]

erase any private information from statei (including all
x l,v , and 0, , n) except for Ki

invoke .Sign to obtain a signature "
i on 2|μi|sidi|pidi

using the private key ski

broadcast "2i iU .

Group Key Computation. When i receives "2j jU from

all other oracles, it proceeds as follows:

check if .Verify "(, 2 | | sid | pid ,) 1j i i i jpk ;
Compute 2K : ()

ii Kf v

erase any private information from statei (including Ki),
and accept with Ki.

100 E. Bresson and M. Manulis

Figure 2 Example of operation Tree Diffie–Hellman 1 setup with 1 2 3{ , , }

Public values: sidi = r1|r2|r3, Y1 = Y2 = {y1,1}, Y3 = , = {y1,0}, where
1,1 1,0

1,1 1,0 , x xy g y g . Secret values: X1 = {x2,0,

x1,0 , x0,0}, X2 = {x2,1 , x1,0, x0,0}, X3 = {x1,1, x0,0} where
1,0 1,1

0,0 ,xxx g 2,0 2,1
1,0

x xx g and 2,0 2,1 1,1, , Rx x x

Figure 2 sketches the execution of TDH1.Setup for three
participants (necessary checks and erasure steps are
omitted). In this example, oracle 1 builds X1 = {x 2,0 ,

x 1,0 , x 0,0 } with 2,0
1,0 2,1: ()x

x y and 1,0
0,0 1,1: ()x

x y

(remember that y 2,1 and y 1,1 were received in the previous

round). The set broadcasted by 1 is = {y 1,0 } where
1,0

1,0 : xy g . In the third round oracle 2 computes

X2 = {x 2,1 , x 1,0 , x 0,0 }, where 2,1
1,0 2,0: ()xx y , and

1,0
0,0 1,1: ()xx y . In parallel, oracle 3 computes

X3 = {x 1,1 , x 0,0 } where 1,1
0,0 1,0: ()xx y . Hence,

every oracle is in possession of x 0,0 . Finally, all three
oracles can compute the intermediate value K,
i.e.

0 1 1 20,00 0 1 () 0 2 () 0: (), : (), : ()x r rf v f v f v ,

and
2 23 () 0: ()rK f v , and the key confirmation token

: = fK (v1). Note that the value 0,0)x is never sent over the

public channel, but computed locally by all participants
upon receiving enough information. Furthermore, there
exists no 0,0)y in the protocol.

3.4 Security and performance of TDH1

In our security proofs following the specification of our
model, we consider that ephemeral secret information kept
in stateU is always independent of the long-lived key skU.
That is, in each session, stateU contains XU consisting of all
secrets ,l vx known to 0, ,U n , and possibly some
(implementation specific) temporary variables used to
compute these values. Furthermore, we assume that
the signing algorithm .Sign which implicitly uses skU is

executed under the same protection mechanism as skU, e.g.
in a smart card as in Bresson, Chevassut and Pointcheval
(2002a, although smart cards have limited resources we
observe that in TDH1.Setup each oracle has to generate at
most three signatures). This is important since the signing
algorithm may generate some randomness which should
also be protected from being revealed via a RevealState
query; otherwise the adversary may be able to obtain some
information about skU.

The following theorems show that TDH1 satisfies the
requirements of strong AKE-, MA-security and
contributiveness; the last two also under consideration of
insider attacks. In all theorems, qs is the total number of
executed protocol sessions during the corresponding attack
game.

Theorem 2 (Strong AKE-Security of TDH1). If is
existentially unforgeable under chosen message attacks, F is
pseudo-random, and is TDDH-hard then TDH1 provides

strong AKE-security, and

,

2
ake euf-cma TDDHs
TDH1 s1

prf
s F

Adv () 2 Suc () 2 Adv ()
2

2(3) Adv ().

NT G
Nq

N q

N q

Proof (Sketch). We define a sequence of games Gi,
i = 0, , 7 with the adversary against the AKE-security
of TDH1. In each game, we denote akeWini the event that
the bit b output by is identical to the randomly chosen
bit b in game Gi.

Game G0. This game is the real game ake-
, TDH1Game ()b

where we use a simulator to maintain set , simulate the
execution of the protocol (on behalf of uncorrupted users),
and answer all queries of .

Securing GKE against strong corruptions and key registration attacks 101

Game G1. This game is identical to Game G0 with the only
exception that fails and bit b is set at random if asks a
send query on some | seqn | |iU m , with seqn {0, 1, 2}
and a valid signature on m, that has not been previously
output by an oracle s

i before querying Corrupt(Ui)
(note that Corrupt queries can be generally asked after the
Test query) or AddUser(Ui,).

In other words, the simulation fails if outputs a
successful forgery; such event is denoted Forge. A classical
reductionist argument (see for instance Bresson et al. (2001)
shows that in that case we can build a forger against the
signature scheme and upper-bound the probability
difference between G1 and G0 by euf-cmaSuc ().N

Game G2. This game is identical to Game G1 except that
fails if two instances of an honest user used the same nonce
twice. Since, there are N users and at most qs sessions the
difference between games can be upper-bounded
by 2() / 2sNq .

This game ensures the uniqueness of sids
i and excludes

replay attacks on the last two messages of TDH1.

Game G3. In this game, we add the following rule:
chooses * [1,]s sq q and aborts if the test query does not

occur in the *thsq session. Let Q be the event that this guess

for *
sq is correct and Pr[Q] = 1/qs. Thus, we get

ake ake ake
3 3 3

ake
2

s s

Pr Win Pr Win | Pr[] Pr Win | Pr[]

1 1 1Pr Win 1 .
2

Q Q Q Q

q q

This implies,

ake ake
2 3

1 1Pr Win Pr Win .
2 2s= q

Game G4. This game is identical to Game G3 except that
is given a tuple from the real *TDDH

NT distribution (as

specified in Section 3.1.2) where TN is a linear tree. In all
sessions, except the *thsq one, simulates the honest

participants as specified by the protocol. In the *thsq session

with n participants injects public values ,l vxg from
*TDDH

NT into the protocol execution. Note that in the *thsq

session the group size n might be smaller than N, thus the
simulator will use the subtree Tn which is composed of TN’s
nodes from level 0 to level n – 1. The idea is to assign 1

s

to the (internal) node 21,0 , sn to the leaf node

21,1 , , sn to the leaf node 1,1 , and to use for each

node , \ 0,0nl v T public values ,l vxg taken from the

given *TDDH
NT distribution. The secret value 0,0x used

for the key confirmation is also taken from this distribution.

Since, the *thsq session is fresh, no RevealState queries to
s
i or to any of its partners have been asked (would not

be able to answer them since it does not know the secret
values ,l vx of internal and leaf nodes). Of course, in all
other sessions RevealState queries can be easily answered.
Since, *TDDH

NT is a real distribution we conclude that this

game is a ‘bridging step’ (as named in Shoup, 2006) and
ake ake
4 3Pr Win Pr Win .

Game G5. This game is identical to Game G4 except that
is given a tuple from the random $TDDH

NT distribution.
Thus, for honest players, the secret 0,0x is simulated
using the provided random element gr. Obviously,

ake ake TDDH
5 4 ,Pr Win Pr Win Adv ()

NT G .

Game G6. This game is identical to Game G5 except that in
the *thsq session replaces f by a truly random function,
implying the uniform distribution of K = n. Considering
n N, we obtain by a ‘hybrid argument’5

prfake ake
6 5Pr Win Pr Win (1) Adv ().FN

Game G7. This is the continuation of the hybrid argument,
but for clarity we specify a separate game; the confirmation
token and the session key K are replaced by two random

-bit values, s.t., prfake ake
7 6Pr Win Pr Win 2Adv ()F .

Since, K is uniform: ake
7Pr Win 1/ 2 . Combining the

previous equations, we conclude the proof.

Theorem 3 (Strong MA-Security of TDH1). If is
existentially unforgeable under chosen message attacks and
F is collision-resistant then TDH1 provides strong MA-
security, and

2
ma euf-cma coll
TDH1Suc () Suc ()+ Suc ().

2
s

s F
Nq

N q

Proof (Sketch). We define a sequence of games
Gi,i = 0, , 2 and corresponding events ma

iWin meaning
that wins in Gi.

Game G0. This is the real game ma
TDH1Game () played

between a simulator and . The goal of is to
achieve that there exists an honest user Ui whose
corresponding oracle s

i accepts with s
iK and another user

pids
j iU who is uncorrupted at the time s

i accepts and

either does not have a corresponding oracle t
j with

pid ,sid pid ,sidt t s s
j j i i or has such an oracle, but this

oracle accepts with .t s
j iK K

102 E. Bresson and M. Manulis

Game G1. Here, we proceed as in the previous proof and
eliminate executions in which forgeries occur, obtaining

ma ma euf-cma
1 0Pr Win Pr Win Suc ()N .

Game G2. This game is identical to Game G1 except that
fails if a nonce ri is used by any uncorrupted user’s oracle

s
i in two different sessions. Similar to the previous proof

we get ma ma 2
2 1Pr Win Pr Win /2sNq . Having

excluded forgeries and replay attacks we follow that for
every user pids

j iU that is uncorrupted at the time s
i

accepts there exists a corresponding instance oracle t
j

with pid ,sid pid ,sidt t s s
j j i i . Thus, according to

Definition 4 wins in this game only if any of these
oracles has accepted with 2 2K () () Kt s

j i

t s
j iK Kf v f v .

However, the validity of signatures on tokens i and j

implies that I = j. Thus, the probability difference
between these games is upper-bounded by

1 1Pr K K () ()t s
j i

t s
s j i K Kq f v f v , which is equivalent to

2 2 1 1Pr () () () ()t s t s
j i j i

s K K K Kq f v f v f v f v , and results

in collSuc ().s Fq

Combining the previous equations, we get the desired
result.

Theorem 4 (Strong Contributiveness of TDH1). If F is
collision-resistant pseudo-random and is one-way then
TDH1 provides strong contributiveness, and

2
con coll
TDH1

prf ow

+ +2
Suc () (2) Suc ()

2
Adv ()+ Suc ().

s s s
s F

s sF

Nq Nq q
N q

q Nq

Note that in TDH1 the adversary is able to enforce the
resulting value for 0,0x by opening oracles of honest users
during the protocol execution. More precisely, can
enforce that the same 0,0x is computed by the oracles of
some uncorrupted user in two different sessions. To show
this, assume for simplicity three participants: 1

s , 2
s and

3
s , and consider that 1

s and 3
s are malicious

(corrupted) whereas 2
s is honest. We consider two

different sessions: sessions A and B, whereby session B
takes place later than A. In both sessions, the tree is as in
Figure 1. Assume that in session A, all oracles behave as
specified in the protocol except that neither 1

s nor 3
s

erase their states. At some point before session B is started,
the adversary (that can impersonate 1

s and 3
s)

computes 1,0 1,1:z x x where 1,0x is a value computed by

1
s and 1,1x is the exponent chosen by 3

s , both in
session A. Obviously, gz equals to 0,0x computed in

session A. The goal of is to inuence honest 2
s to

compute the same 0,0x in session B. In session B, the

exponent 2,1x used by honest 2
s is likely to be different

compared to session A. To proceed with the attack waits
for 2

s to broadcast 2, 1
2,1

xy g in session B (note the
communication is asymmetric). Then, the adversary opens
the oracle holding node 2,1x (via the RevealState('

2
s)

query); chooses on behalf of '
1 2,0
s x truly at random,

computes 2,0 2,1
1,0 : x xx g and 1,1 1,0: /x z x . To

complete the attack, broadcasts 2,0
2,0 : xy g and

1, 1
1,1 :

x
y g on behalf of '

1
s and '

3
s , respectively. It is

easy to check that '
2
s computes 0,0

zx g in session B.

In our proof of Theorem 4, we show that despite of
being able to enforce 0,0x the adversary is still unable to
enforce the resulting session group key K. We make use of
the following ‘difference lemma’.

Lemma 1. Let A, B, C be events defined in some probability
distribution, and suppose that Pr[B] Pr[A | C]. Then,

Pr[A] Pr[B] Pr[C].

The proof follows from the equation:
Pr[A] Pr[A|C] Pr[C] Pr[A| C] Pr[C]

Pr[B] Pr[C] Pr[A| C] Pr[C]
Pr[B] Pr[C].

With this lemma, we can define sequence games based on
condition events. In game Gi + 1 constructed from Gi with
respect to some appropriate condition event C the event
Wini + 1 is defined as Wini|C. Then, according to Lemma 1

1Pr[Win] Pr[Win] Pr[].i i C In order to estimate the
probability distance between Gi and Gi + 1 it is sufficient to
compute Pr[]C . Note that Gi and Gi + 1 proceed identical
from the adversarial perspective. Therefore, it is not
necessary for the simulator to detect whether this condition
event occurs or not (this in contrast to failure events, used
for example in G1 of Theorem 2). Furthermore, by
conditioning the success of the adversary with C we do not
restrict the adversarial strategy. Note that the inequality

1

1

Pr[Win] Pr[Win] Pr[C] Pr[Win | C] Pr[C]
Pr[Win] Pr[C]

i i i

i

considers Wini + 1 and Win | Ci , and so focusing on
one strategy represented by 1Win =Win | Ci i in Gi + 1

does not rule out all other strategies represented
by Win | Ci because of the total probability

1Pr[Win] Pr[Win] Pr[C]i i .

The main idea of the following proof is to use the fact
that every honest oracle , [1,]s

j i n computes the

sequence 1, , n prior to the acceptance of K so that each

Securing GKE against strong corruptions and key registration attacks 103

1, l [1,n] depends on the previously computed l – 1. We
consider the probability that for an honest *

s
i the

adversary is able to enforce any of the values i*, , n

(note that K = n), or K computed by the collision-resistant
PRF f. This is equivalent to the event that in the prepare
stage is able to output any i*, , n, or K which *

s
i

computes in any session of the attack stage. On the other
hand, applying Lemma 1 in our proof we do also consider
the upper-bound for the success probability of the adversary
in case that its strategy differs from inuencing any value in

i*, , n.

Proof (of Theorem 4, Sketch). Assume that an adversary
from Definition 5 wins in con

,TDH1Game () (which event we

denote conWin). Then, at the end of the stage prepare it
returned K such that in the stage attack there exist
i* [1, n] and an honest oracle *

s
i that accepts with

*K Ks
i = . Remind that

*
2K ()s

iKf v= where *
s
iK is the

intermediate value computed by *
s
i .

Game G0. This is the real game con
,TDH1Game () , in which

the honest players are simulated by .

Game G1. In this game aborts if the same nonce ri is used
by any honest oracle s

i in two different sessions. As in
previous proofs we get: con con 2

0 1Pr[Win] Pr[Win] / 2sNq .

Game G2. This game is identical to Game G1 with the
condition event that being in the prepare stage is NOT
able to output i* computed by *

s
i in any session of the

attack stage.6 We show how to evaluate the probability that
 outputs i* in the prepare stage. Recall, i* is computed

as
* 1 *() 0()
i irf v in the attack stage. If does not know

the PRF key in the prepare stage, he can either use a
different PRF key (thus finding a PRF-collision) or guess i*
at random. If knows the PRF key in the first stage, he
has to force *

s
i to compute that key in the attack

stage. However, since ri’s are uniform and chosen in the
second stage, must inuence i*–1 this would allow to
distinguish f from a random function. Since there are at
most qs sessions we have (according to Lemma 1):

con con coll
1 2

PRF

Pr[Win] Pr[Win] Suc ()

Adv () / 2
s F

s F s

q

q q
.

Game G3. In this game, we consider a condition event that
 (being in the prepare stage) is NOT able to output

* :s
i nK = computed by *

s
i in any session of the attack

stage. Evaluating probabilities that n, n – 1, , can be
predicted is done via a hybrid argument. In a nutshell, either
the adversary can find the same output with a different key

(which breaks collision-resistance) or he inuences the PRF
key 1 () :i ir this can be done either by inverting or
by a random guess. According to Lemma 1 we finally
obtain:

con con coll
2 3

ow

Pr[Win] Pr[Win] Suc ()

+ Suc () / 2
s F

s s

Nq

Nq Nq
.

Game G4. The condition event here is that (being
in the prepare stage) is NOT able to output *

s
iK computed

by *
s
i in any session of the attack stage. Having excluded

the case where *
s
iK is known to , the probability of

such event is (as above) bounded by:
con con coll
3 4Pr[Win] Pr[Win] Suc ()+ / 2s F sq q . Having

con
4Pr[Win] 0 (by definition of the game) one can

conclude.

3.4.1 Comparison of security and performance of
TDH1 and other static group key exchange
protocols

In Table 1, we compare TDH1 protocol with several well-
known provably secure GKE protocols in terms of their
performance and achieved security goals. Our comparison is
done based on the security arguments and adversarial
settings given in the original publications (sometimes
transformed to the terminology of our model). In general,
‘weak’ (or ‘strong’) denotes consideration of weak (or
strong) corruptions for each of the security requirements,
whereas ‘honest’ (or ‘malicious’) denotes the assumption on
the type of the protocol participants. Note again that by
strong corruptions we mean not only adaptive attacks
revealing the long-lived key (thus, weak corruptions), but
also opening attacks which read out the ephemeral secrets.
We also distinguish whether a protocol has been proven
under standard or non-standard assumptions such as Ideal
Cipher Model (ICM) or ROM. We remark that TDH1 is the
only protocol which provably satisfies strong versions of
AKE-, MA-security and contributiveness (under
consideration of malicious insiders where appropriate, that
is for MA and contributiveness) while being proven in the
standard model. The protocol proposed by Desmedt et al.
(2006) has similar properties as TDH1, but deals only with
weak corruptions (ephemeral secrets never leak). The work
by Katz and Shin (2005)7 can also be seen as close to ours
since they provide MA-security against malicious insiders;
the main differences are that their model (although
considering strong corruptions) does not allow separate
opening attacks, i.e. the scenario in which the adversary
learns the ephemeral secrets of other honest users is not
considered, and it also does not allow the adversary to
register long-lived keys of the users under its control.

Last, but not least, we note that the overall effciency of
TDH1 is similar to the most efficient currently known
provably secure GKE protocols (in the standard model).

104 E. Bresson and M. Manulis

Table 1 Efficiency and security goals of TDH1 and other static provably secure group key exchange protocols

Efficiency Security goals
GKE protocol Comm Comp AKE MA Contributiveness Model
Abdalla et al. (2006) O(1) O(n) weak – – ICM, ROM
Bresson and Catalano (2004) O(1) O(n) weak weak, honest weak, honest standard
Bresson et al. (2001) O(n) O(n) weak weak, honest – ROM
Bresson, Chevassut and Pointcheval (2002b) O(n) O(n) weak weak, honest – ROM
Desmedt et al. (2006) O(1) O(n) weak weak, malicious weak, malicious standard
Dutta, Barua and Sarkar (2004) O(1) O(n) weak – – standard
Katz and Shin (2005) O(1) O(n) strong strong8, malicious – standard
Katz and Yung (2003) O(1) O(n) weak weak, honest – standard
TDH1 O(1) O(n) strong strong, malicious strong, malicious standard

4 Conclusions and future work
In this article, we have addressed security of GKE protocols
against strong (adaptive) corruptions which reveal internal
states (incl. ephemeral secrets) of participants and proposed
appropriate definitions of strong AKE-, MAsecurity, and
contributiveness. Additionally, we presented a 3-round GKE
protocol TDH1 which satisfies strong security under
standard cryptographic assumptions.

The function TDH1_Con 0,0 1(, | |)nx r r is of
independent interest and can be seen as an add-on compiler
for our definition of contributiveness if 0,0x is the
common ephemeral secret computed in the underlying GKE
protocol (see (Bresson and Manulis, 2007) for details).

The equivalence between the TDDH and DDH
assumptions is also of independent interest since it is
valuable for the construction of other cryptographic
schemes with provable security in the standard model. An
interesting open question: Is TDDH randomly self-
reducible?

Beside the extension of TDH1 towards dynamic groups,
general future work in the area of GKE security might
address: consideration of strong corruptions in combination
with fault-tolerance and security against DoS attacks
discussed in Cachin and Strobl (2004) and Desmedt et al.
(2006) and strengthening of the simulation-based security
models for GKE protocols (e.g. (Katz and Shin, 2005))
towards opening attacks due to our Remark 1.

Acknowledgement
The authors wish to thank Berkant Ustaoglu for his
comments on key registration attacks.

References
Abdalla, M., Bresson, E., Chevassut, O. and Pointcheval, D.

(2006) ‘Password-based group key exchange in a constant
number of rounds’, Paper presented in the Proceedings of the
PKC’06 of LNCS, Vol. 3958, pp.427–442, Springer, April.

Ateniese, G., Steiner, M. and Tsudik, G. (1998) ‘Authenticated
group key agreement and friends’, Paper presented in the
Proceedings of the ACM CCS’98, pp.17–26. ACM Press.

Bellare, M. and Rogaway, P. (1993) ‘Random oracles are practical:
a paradigm for designing efficient protocols’, Paper presented
in the Proceedings of the ACM CCS’93, pp.62–73. ACM
Press.

Bohli, J-M., Vasco, M.I.G. and Steinwandt, R. (2007) ‘Secure
group key establishment revisited’, Int. J. Information
Security, Vol. 6, pp.243–254.

Boneh, D. (1998) ‘The decision Diffie–Hellman problem’, Paper
presented in the Proceedings of the ANTS-III, pp.48–63.
Springer.

Boyd, C. and Mathuria, A. (2003) Protocols for Authentication
and Key Establishment. New York, NY: Springer.

Bresson, E. and Catalano, D. (2004) ‘Constant round authenticated
group key agreement via distributed computation’, Paper
presented in the Proceedings of the PKC’04 of LNCS,
Vol. 2947, pp.115–129. Springer.

Bresson, E. and Manulis, M. (2007) ‘Malicious participants in
group key exchange: key control and contributiveness in the
shadow of trust’, Paper presented in the Proceedings of the
ATC ’07 of LNCS, Vol. 4610, pp.395–409. Springer.

Bresson, E. and Manulis, M. (2008) ‘Securing group key exchange
against strong corruptions’, Paper presented in the
Proceedings of the ASI-ACCS ’08, pp.249–260. ACM.

Bresson, E., Chevassut, O. and Pointcheval, D. (2001) ‘Provably
authenticated group Diffie–Hellman key exchange – the
dynamic case’, ASIACRYPT’01 of LNCS, Vol. 2248,
pp.290–390. Springer.

Bresson, E., Chevassut, O. and Pointcheval, D. (2002a) ‘Dynamic
group Diffie–Hellman key exchange under standard
assumptions’, EUROCRYPT’02 of LNCS, Vol. 2332,
pp.321–336. Springer.

Bresson, E., Chevassut, O. and Pointcheval, D. (2002b) ‘Group
Diffie–Hellman key exchange secure against dictionary
attacks’, ASIACRYPT’02 of LNCS, Vol. 2501, pp.497–514.
Springer, December.

Bresson, E., Manulis, M. and Schwenk, J. (2007) ‘On security
models and compilers for group key exchange protocols’,
Paper presented in the Proceedings of the IWSEC ’07 of
LNCS, Vol. 4752, pp.292–307. Springer.

Bresson, E., Chevassut, O., Pointcheval, D. and Quisquater, J-J.
(2001) ‘Provably authenticated group Diffie–Hellman key
exchange’, Paper presented in the Proceedings of the ACM
CCS’01, pp.255–264. ACM Press.

Cachin, C. and Strobl, R. (2004) ‘Asynchronous group key
exchange with failures’, Paper presented in the Proceedings of
the PODC ’04, pp.357–366. ACM Press.

Securing GKE against strong corruptions and key registration attacks 105

Canetti, R. and Krawczyk, H. (2001) ‘Analysis of key-exchange
protocols and their use for building secure channels’,
EUROCRYPT’01, Vol. 2045 of LNCS, pp.453–474. Springer.

Choo, K-K.R., Boyd, C. and Hitchcock, Y. (2005) ‘Examining
indistinguishability-based proof models for key establishment
protocols’, ASIACRYPT’05, Vol. 3788 of LNCS, pp.585–604.
Springer.

Crescenzo, G.D., Ferguson, N., Impagliazzo, R. and Jakobsson, M.
(1999) ‘How to forget a secret’, Paper presented in the
Proceedings of the STACS’99, Vol. 1563 of LNCS,
pp.500–509. Springer.

Desmedt, Y.G., Pieprzyk, J., Steinfeld, R. and Wang, H. (2006) ‘A
non-malleable group key exchange protocol robust against
active insiders’, Paper presented in the Proceedings of the
ISC’06 of LNCS, Vol. 4176, pp.459–475. Springer.

Dutta, R., Barua, R. and Sarkar, P. (2004) ‘Provably secure
authenticated tree-based group key agreement’, Paper
presented in the Proceedings of the ICICS’04, Vol. 3269 of
LNCS, pp.92–104. Springer.

Katz, J. and Shin, J.S. (2005) ‘Modeling insider attacks on group
key exchange protocols’, Paper presented in the Proceedings
of the ACM CCS’05, pp.180–189. ACM Press.

Katz, J. and Yung, M. (2003) ‘Scalable protocols for authenticated
group key exchange’, CRYPTO’03 of LNCS, Vol. 2729,
pp.110–125. Springer.

Kim, H-J., Lee, S-M. and Lee, D.H. (2004) ‘Constant-round
authenticated group key exchange for dynamic groups’,
ASIACRYPT’04 of LNCS, Vol. 3329, pp.245–259.

Kim, Y., Perrig, A. and Tsudik, G. (2004a) ‘Group key agreement
efficient in communication’, IEEE Transactions on
Computers, Vol. 53, pp.905–921.

Kim, Y., Perrig, A. and Tsudik, G. (2004b) ‘Tree-based group key
agreement’, ACM Transactions on Information and System
Security, Vol. 7, pp.60–96.

Krawczyk, H. (2005) ‘HMQV: ‘a high-performance secure Diffie–
Hellman protocol’, CRYPTO’05 of LNCS, Vol. 3621,
pp.546–566. Springer.

LaMacchia, B., Lauter, K. and Mityagin, A. (2007) ‘Stronger
security of authenticated key exchange’, Paper presented in
the Proceedings of the ProvSec’07 of LNCS, Vol. 4784,
pp.1–16. Springer.

Manulis, M. (2006) Survey on Security Requirements and Models
for Group Key Exchange. Technical Report 2006/02. Horst-
Görtz Institute, November.

Menezes, A. and Ustaoglu, B. (2008) ‘Security arguments for the
UM key agreement protocol in the NIST SP 800-56A
standard’, Paper presented in the Proceedings of the
ASIACCS ’08, pp.261–270. ACM.

Menezes, A., van Oorschot, P. and Vanstone, S. (1996) Hand-
Book of Applied Cryptography. New York, NY: CRC Press.

Mitchell, C.J., Ward, M. and Wilson, P. (1998) ‘Key control in key
agreement protocols’, Electronic Letters, Vol. 34,
pp.980–981.

Pedersen, T.P. (1991) ‘Non-interactive and information-theoretic
secure verifiable secret sharing’, CRYPTO ’91 of LNCS,
Vol. 576, pp.129–140. Springer.

Shoup, V. (1999) On Formal Models for Secure Key Exchange
(Version 4). Technical Report RZ 3120, IBM Research,
November.

Shoup, V. (2006) ‘Sequences of games: a tool for taming
complexity in security proofs’, Cryptology ePrint Archive,
Report 2004/332, January.

Steiner, M. (2002) Secure Group Key Agreement. PhD Thesis,
Saarland University, March.

Notes
1 A GKE protocol may use auxiliary secrets pre-computed offline
in order to achieve better performance during the communication
phase. Such protocols are not strong AKE-secure since the
adversary can break into the internal states prior to the protocol
execution.

2 Note that std us .

3 The exponentiation xx g is a bijection from to . We

require that there exists an efficiently computable (bijective)
mapping in the opposite direction, but we do NOT require this
mapping to be the discrete logarithm!

4 Binary tree is called full if each of its nodes has exactly 0 or 2
children. Sometimes such trees are also called proper.

5 More precisely, one constructs n + 1 auxiliary ‘hybrid games’
G6,1, l = 0, , n and replaces in each game l by a random value
from {0, 1} . The difference between two neighbour hybrids is
upper-bounded by the PRF advantage.

6 Note, in G0 and G1 the adversary only outputs a value for the
resulting group key. In G2, we consider the additional (in)ability
of the adversary to output the value for *

i . Since we are only
interested in the success probability of under this condition
does not need to detect whether is able to output the correct
value or not. The same considerations are applicable to G3 with
respect to *

s
iK .

7 Note that Katz and Shin proposed an add-on compiler and not a
concrete protocol.

8 MA-security related definitions in Katz and Shin (2005) do not
consider opening attacks, i.e. the adversary is not allowed to
obtain internal states of other uncorrupted participants.

106 E. Bresson and M. Manulis

Appendix A

Proof of theorem 1 (DDH TDDH)

DDH TDDH
,Adv () Adv ()

nT : this holds trivially since

distributions *TDDH
nT and $TDDH

nT contain a triple

of the form 1,0 1,11,0 , , 1,1 , , (0,0 ,)x xg g Z where
1,0 1,1x xZ g in case of *TDDH

nT or Z is random

otherwise.
TDDH DDH

,Adv () (2 3) Adv ()
nT n : to prove this, we

use a TDDH
nT -distinguisher , and show how to solve an

instance of the DDH problem: on input (A, B, C) 3 ,
where A = ga and B = gb for random a and b, we build a PPT
algorithm that distinguishes whether C = gab or C is
random.

First, we sort the nodes of any Tn R Tn in the postfix
order, s.t. each node is listed after its two children (if any).
For simplicity, we slightly modify this order: we separate
nodes by re-numbering all n leaves to negative indices
(without changing their order), and the internal nodes to
indices 1 to n–1 (also without changing their order). In other
words, for internal nodes, we ‘shrink’ the sequence that
remains after having moved the leaves. This results in the
following map from Tn to [n, 1] [1,n 1]:

number assigned toleaves internalnodes

, 1, , 1 ,1, , 1n n n

Note that any node still appears after its children, e.g. the
root node is assigned number (0,0) 1n . By a ‘hybrid
argument’ we consider the following sequence of games. In
each game Gi for i = 0, , n–2, chooses a set X of n
random values in , denoted x n through x 1. In addition,
for i > 0, in Gi, chooses a set Yi of i random values in
that are denoted x1 through xi. Then, builds a set TDHi

(X, Yi) defined (recursively) as ,

*,
, , l v

n

x

l v T
l v g , with

,2 1,2 1

, (,)

, (,)

,

if (,) 0,

if 0 (,) ,

otherwise.l v l v

l v l v

l v l v i

x x
l v

x x X l v

x x Y l v i

x g

Finally, in each game, flips a coin b and provides
with a set TDDH (, , ,) TDH (,) {(0,0 ,)}i i i iX Y b r X Y Z

where 1,0 1,1x xZ g if b = 1 and Z = gr is a random element
in if b = 0.

Let Pri [] denote the probabilities as induced by
random choices in Gi. In G0 the constructed TDH0(X, Yi)
is exactly TDH ()

nT X (due to Y0 =) s.t. the distance

between Pr0[(TDDH0(X, , b, r)) = 1|b = 1] and

Pr0[(TDDH0(X, , b, r)) = 1|b = 0] is upper-bounded by
TDDH

,Adv ()
nT On the other hand, in Gn–2, all values ,l vx

for l > 1 are random and independent, and also indepen-
dent from random 1,0x and 1,1x . Furthermore,

1,0 1,1
0,0

x xx g iff b = 1 s.t. the distance between

Pr[(TDDHn–2(X, Yn 2, b, r)) = 1|b = 0] and Pr[(TDDHn–

2(X, Yn–2, b, r)) = 1|b = 0] is upper-bounded by
D DHAdv () . The last experiment G* is identical to Gn–2

except that A, B and C are used in the computation of
TDDHn–2(X, Yn–2, b, r) instead of 1,1xg and 0,0x ,
respectively. In particular, the flipping of b is ignored here:
whatever b, the last input of is set to C. Let denote the
hidden bit that is trying to guess. Note, the random
variables (b, 1,0xg , 1,1xg , 0,0x) and (, A, B, C) are
identically distributed. It follows that (for simplicity we
removed 's inputs that are identical and independent
from the rest in both cases):

1,0 1,1

1,0 1,1

2 0,0

*

2 0,0

*

Pr , , 1 | 1

Pr (, ,) 1 | 1

Pr , , 1 | 0

Pr (, ,) 1 | 0 .

x x
n

x x
n

g g x b

A B C

g g x b

A B C

Finally, it is straightforward to see that the computational
distance between two consecutive games is upper-bounded
by DDHAdv () since the only difference between them is to

replace a value 1,2 1,2 1l v l vx xg by a random one. Hence,

* 0 0
DDH

* 0 0

DDH

Pr (, ,) 1 | 1 Pr (TDDH (, , ,)) 1 | 1]

(2)Adv ()

Pr (, ,) 1 | 0 Pr (TDDH (, , ,)) 1 | 0]

(2)Adv ().

A B C X b r b

n

A B C X b r b

n

Their sum gives us the desired inequality:

TDDH
, 0 0

0 0

*

*
DDh

DDh

Adv () Pr (TDDH (, , ,)) 1 | 1

Pr (TDDH (, , ,)) 1 | 0 |

Pr (, ,) 1 | 1 |

Pr (, ,) 1 | 0 |

2(2)Adv ()

(2 3)Adv ().

nT X b r b

X b r b

A B C

A B C

n

n

Appendix B
Security definitions for F

Definition 7 (PRF Family). A family of functions
() ()

{0,1}
: :{0,1} {0,1}p p

k k
F f with p a

Securing GKE against strong corruptions and key registration attacks 107

polynomial, is called an (efficiently computable) PRF
ensemble if:

1 Efficient computation. There exists a polynomial-time
algorithm that on input k and x returns fk(x).

2 Pseudo-Randomness. Choose uniformly {0,1}Rk

and a function f in the set of all functions with
domain and range (){0,1}p . Consider a PPT adversary

 asking queries of the form Tag(x) and participating
in one of the following two games:

prf-1Game (),F where a query Tag(x) is answered
with ()kf x

prf-0Game (),F where a query Tag(x) is answered

with ()f x .

At the end of the execution outputs a bit b trying to
guess which game was played. The output of is also the
output of the game.

We define:

prf prf-Adv () : 2Pr Game () 1 .b
,F ,F b

and denote prfAdv (),F the maximum advantage over all
adversaries . We say that F is pseudo-random if this
advantage is a negligible function in .

By an (efficiently computable) PRF, we mean a function
fk F for some random {0,1}Rk .

Definition 8 (Collision-Resistance). Let {0,1}: k kF f

be a PRF ensemble. We say that F is collision-resistant if
there is an efficient procedure Sample such that for all PPT
adversaries the following success probability (over all
adversaries) is a negligible function
in :

coll

'

Sample(1); , ' {0,1}
Suc () : Pr : ' .

, ' (1 ,) () ()
F

k k

x k k
k k

k k x f x f x

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

