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Abstract: IEEE 802 standards ease the deployment of networking infrastructures and enable
employers to access corporate networks while travelling. These standards provide two modes of
communication called infrastructure and ad hoc modes. A security solution for the IEEE 802.11’s
infrastructure mode took several years to reach maturity and firmware is still been upgraded,
yet a solution for the ad hoc mode needs to be specified. This paper is a first attempt in this
direction. It leverages the latest developments in the area of password-based authentication and
(group) Diffie–Hellman key exchange to develop a provably secure key-exchange protocol for
IEEE 802.11’s ad hoc mode. The protocol allows users to securely join and leave the wireless group
at time, accommodates either a single-shared password or pairwise-shared passwords among the
group members or at least with a central server; achieves security against dictionary attacks in
the ideal-hash model (i.e. random oracles). This is, to the best of our knowledge, the first such
protocol to appear in the cryptographic literature.
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1 Introduction

Wireless technology enables us to use our laptops on the
couch at home or in hotel rooms and gives us flexibility
in where and when we work in the business environments.
This technology makes it very easy to connect devices
(Wi-Fi Alliance, 2007). We only have to insert a wireless card
into our laptop to establish radio link communications with
fixed access points through which we talk to other devices
and access the internet. In this infrastructure mode, our
laptop joins the network by discovering a wireless access
point and negotiating with it the necessary temporal keys.
The IEEE 802.11 working group defined the mechanisms for
negotiating these keys via the Wi-Fi Protected Access (WPA)
and the 802.11i standards (Wi-Fi Alliance, 2007; Winget
et al., 2003). A simpler communication infrastructure for
users that do not need broadband connectivity is to transmit
data by means of the devices themselves. This networking
infrastructure allows rapid developments and minimizes costs
since wireless access points do not need to be deployed.

Wireless devices have the ability to operate an ad hoc
mode as specified by the IEEE 802.11 standards; however, the
WPA protocol does not currently provide a security solution
for it. The first solution that comes to mind is to maintain
a group key for each sending device and to distribute the
key to all the other devices using pairwise keys established
by WPA. This solution, however, becomes impractical for
groups of more than ten devices as the number of keys grows
exponentially in the number of devices. Another solution is to
develop a provably secure group Diffie–Hellman protocol for
the IEEE 802.11i standard. As wireless technology matures
and bugs are fixed, the infrastructure and ad hoc modes
will complement each other to bring the internet where
broadband communication infrastructures do not currently
exist (Motorola Inc., 2004; PacketHop Inc., 2006).

Wireless networks provide security researchers with
an opportunity to develop provably secure cryptographic
technologies that will play an essential role in the deployment
of broadband communication infrastructures. This paper
is a first attempt in this direction. It develops a provably
secure password-based group Diffie–Hellman key exchange
protocol for IEEE 802.11’s ad hoc mode, by extending the
work of Bresson et al. (2002) in three ways.

Its first contribution is to accommodate a single-shared
password or pairwise-shared passwords among the group
members or at least with a central server; unlike Bresson
et al. who only allow for a single-shared password.
Passwords are indeed frequently shared between users
and taken advantage of to exchange a group session key.
For example, a Bluetooth piconet is set-up once the
devices have exchanged a group session via a two-party
Diffie–Hellman key exchange protocol whose flows are
encrypted using pairwise-shared passwords (The Official
Bluetooth Membership Site, 2006). A piconet is also limited
to eight devices.

Our second contribution in this paper is efficiency by
allowing users to securely join and leave the wireless group
at any time – the so-called dynamic case. The dynamic group
Diffie–Hellman key exchange using public-key cryptography
was dealt with in Bresson et al. (2001), yet the password-
based group Diffie–Hellman key exchange was not dealt with

in the literature. We have revisited the scenario of Bresson
et al. to enable users’ devices to join and leave the group as
they move from one wireless domain to the next. Providing
this ‘dynamic’ feature in a secure way is not easy, but of
primary importance to wireless networks. Consequently, the
password-based protocol needs to dynamically update the
group session key so that entering and leaving users do not
gain access to previously exchanged messages. The group
session key can not also be static but needs to be refreshed
at regular intervals to prevent cryptanalysis (Borisov et al.,
2001). Dynamicity in the membership and single-shared
password among the group members seem two
counter-intuitive notions at first. How can a user be forced
to leave when everyone in the group shares the same
password? When a user leaves the remaining group members
exchange a new password by – as in the case of conference
meeting – writing it on the board or – as in the case of home
networking – keying the new password in each of the users’
devices. The latter scenario is made more practical using
pairwise-shared passwords among the group members.

Our third contribution is a more meaningful security
result since security against dictionary attacks is achieved
in the ideal-hash model (i.e. random oracles); unlike Bresson
et al. (2002a) who achieve it in both the ideal-cipher and
ideal-hash models. We have leveraged these researchers’
formalization, wherein group members are modelled as
oracles and the attacks of the adversary through queries
to these oracles, to reach this cryptographic result. The
protocol is a one-mask Group Open Diffie–Hellman Key
Encrypted (GOKE)–in the sense of (Bresson et al.,
2004; Mackenzie, 2001, 2002)–since not all the flows
of the original group Diffie–Hellman key exchange are
encrypted but only the down-flow. The protocol indeed
minimizes the use of the ‘encryption’ function (i.e. a
mask-generation function) and is provably secure in the
ideal-hash model and under the standard Computational
Diffie–Hellman (CDH) assumption. The ideal-hash
assumption is easier for engineers to implement than the
ideal-cipher model since engineers just have to replace it
with a straightforward construction from SHA-1 (Bellare and
Rogaway, 1993). The end result is a secure password-based
authenticated group Diffie–Hellman protocol well-suited to
the IEEE 802.11i standard.

Organisation of this paper: our paper is organized as
follows. In the rest of this section, we summarize the related
work. In Section 2, we recall the formalization proposed by
Bresson et al. (2002a) to model security against dictionary
attacks in the group setting and refer the reader to their
paper for further details on this model. In Section 3, we
present the intractability assumptions upon which the security
of the protocol is based. In Section 4, we describe the
password-authenticated GOKE protocol, while Section 5 is
devoted to the security analysis. We finally conclude this
paper.

1.1 Related work

The cryptographic literature on designing secure protocols
for password-authenticated key exchange is quite
voluminous. Protocols for two-party Diffie–Hellman key
exchange (Diffie and Hellman, 1976) have been proposed
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and refined for over a decade. The seminal work in this area
is the Encrypted Key Exchange (EKE) protocol proposed by
Bellovin and Merritt (1992, 1993) in the early 1990s. Security
researchers, however, were only recently able to come up with
formal arguments to support the security of the complete suite
of EKE protocols (Abdalla and Pointcheval, 2005; Abdalla
et al., 2005; Bellare et al., 2000; Bresson et al., 2003, 2004;
Boyko et al., 2000; Mackenzie, 2001, 2002)Instantiations
for the encryption primitive are either password-keyed
symmetric ciphers (Bellare and Rogaway, 2000; Bellare
et al., 2000; Bresson et al., 2003) or mask-generation
functions computed as the product of the message with the
hash of a password (Abdalla et al., 2005; Boyko et al., 2000;
Bresson et al., 2004; Mackenzie, 2001, 2002). Recently,
Abdalla et al. proposed an original mask-generation function
computed as the product of the message with a constant value
raised to the power of the password (Abdalla and Pointcheval,
2005); this new mask generation function alleviates the
need of a full-domain hash function in the group. Security
researchers also provided constructions secured in the
standard model based on general computational assumptions,
the Decisional Diffie–Hellman assumption (using a variant
of the Cramer-Shoup encryption scheme) or even strong
computational assumptions; however, these construction are
not efficient enough for practical use (Goldreich and Lindell,
2001; Katz et al., 2001). Engineers are now given a suite of
secure protocols to choose from depending on their security
requirements (ideal-cipher model versus ideal-hash model)
and the constraints of their software (one-flow or two-flows
of the Diffie–Hellman key exchange are encrypted).

In the light of these recent developments it was
natural to provide engineers with a suite of secure
password-authenticated group Diffie–Hellman protocols.
Password-based protocols for the group setting have not been
studied as extensively as the two-party case. Bresson et al.
(2002a) adapted the formal model of Bellare et al. (2000)
and defined in it the execution of a password-authenticated
group Diffie–Hellman protocol. The protocol is the original
group Diffie–Hellman key exchange (Steiner et al., 1996)
with the flows randomized and encrypted using a symmetric
cipher keyed with a single password shared among the group
members (Bresson et al., 2002a). The protocol, however, does
not allow the parties to join and leave the group at any time
which is a feature of prime importance to the IEEE 802.11
standards since users join and leave a group as they move
from one wireless realm to another. Bresson et al. protocol is
secure against dictionary attacks in both the ideal-cipher and
random-oracle models.

This paper extends the work of Bresson et al. (2002a)
to allow dynamicity in the membership, pairwise-shared
passwords and stronger security results.

2 The model

Players: the players belongs to a non-empty set U of n
users who can participate in the group Diffie–Hellman key
exchange protocol P . A player Ui ∈ U may have many
instances called oracles involved in distinct executions of P .
The players also share a low-entropy secret pw taken from
a small dictionary Password of size N . This password pw

follows a certain distribution Dpw (uniform or not) in the
Password set. The probability Dpw(q) to be in the most
probable set of q passwords is denoted as follows:

Dpw(q) = max
P⊆Password

#P≤q

{
Prpw∈Dpw [pw ∈ P ]}

where Dpw(q) = q/#Password = q/N when the
distribution is uniform.

Queries: the adversary A and its interactions with the
players are modelled by the following queries:

• Execute(U): the adversary gets access to honest
executions of the protocol. A gets back the protocol
flows of an honest execution of the protocol P between
the players.

• Send(Ui,m): A sends a message to the oracle Ui and
gets back the response oracle Ui generates in processing
the message m according to P . A initializes the
protocol using the Send(U1,Start)-query and gets
back the flow the first player should send out to the
second player.

• Reveal(Ui): this query is only available to A if oracle
Ui holds a session key. A gets back the session key hold
by an oracle.

• T est (Ui): the query can be only asked once by A, and is
answered by flipping a coin b and forwarding the value
of Reveal(Ui) if b = 1 or a random value if b = 0. The
query is only available to A if Ui is Fresh (see below).

Dealing separately with the Execute and Send-queries
is especially significant in the password-based setting.
In effect the number of Execute-queries reflects the number
of off-line attempts the adversary can make to guess the
password, while the number of Send-queries reflects the
(online) attacks, thus the number of passwords, he may
have tried. Security against dictionary attacks is achieved
when the security bound does not depend on the number of
Execute-queries, but tightly on Dpw(qs), where qs is the
number of Send-queries.

Security notions: the notion of AKE Security needs to be
achieved in the setting of game Gameake(A, P ):

• Gameake(A, P ) is initialized by providing coin tosses
to A, all Ui , and then:

– provide each player with a password pw
distributed in Password

– initialize any Ui with skUi ← NULL

– initialize adversary A with 1� and oracle access to
all Ui

– run adversary A and answer queries made by A
and

– at the end of the game, A outputs its guess b′ for
the bit b involved in the Test-query.

• AKE security: in an execution of P , we say that A wins
if it asks a single Test-query to a Fresh player U and
correctly guesses the bit b used in Gameake(A, P ). An
oracle Ui is said to be Fresh (or holds a Fresh key sk)
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if �t
i has computed a session key sk �= NULL and neither

�t
i nor one of its partners has been asked for a

Reveal-query. The AKE advantage is denoted
Advake

P (A) = 2 Pr[b = b′] − 1, where the probability
space is over all the random coins of the adversary and
all the oracles.

3 The computational assumptions

CDH assumption: let’s G = 〈g〉 be a cyclic group of prime
order q. A (t, ε)-CDH-attacker for G is a probabilistic Turing
machine� running in time t that given the triplet (g, gx, gy),
can find gxy with probability greater than ε. We denote this
probability Succcdh

G
(�):

Succcdh
G
(�) = Pr

x,y

[
�(gx, gy) = gxy]

Trigon Group Computational Diffie–Hellman assumption
(TG-CDH): let n ∈ N be a parameter denoting the number of
participants that can join the group, In be {1, . . . , n}, P(In)
be the set of all subsets of In and Tn be the trigon subset of
P(In) as described below, which does not contain In:

Tn =
j=n⋃
j=1

Lj with Lj =
k=j⋃
k=1

{{i | 1 ≤ i �= k ≤ j, i �= k}}

= {{}} ∪ {{2}, {1}} ∪ {{2, 3}, {1, 3}, {1, 2}}

∪ {{2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}} . . .
The trigon structure for n = 4 is represented on Figure 1.
Let also GDHTn be the set:

GDHTn =
{
DTn(x1, . . . , xn) | x1, . . . , xn ∈R Zq

}

where

DTn(x1, . . . , xn) =
{(
J, g

∏
j∈J xj

)
J ∈ Tn

}

A (t, ε)-TG-CDHn-attacker for G is a probabilistic Turing
machine � running in time t that given a group
Diffie–Hellman trigon D = DTn(x1, . . . , xn) ∈ GDHTn , can
find gx1,...,xn with probability greater than ε. We denote this
probability Succtgcdhn

G
(�):

Succtgcdhn
G

(�)= Pr
x1,...,xn

[
�(DTn(x1, . . . , xn))= gx1,...,xn

]

Relation betweenTG-CDH and CDH: theTG-CDH problem
has been used previously in the literature and shown to be
equivalent to the CDH problem (Bresson et al., 2002a,b).
The TG-CDH is random self-reducible which means that
an instance DTn(x1, . . . , xn) can easily be transformed
in an instance DTn(x1α1, . . . , xnαn), by exponentiating
the appropriate elements in the trigon (less than n2/2
exponentiations). The solution of the first one is S = gx1...xn ,
while the solution of the second one is S ′ = gx1α1...xnαn

= Sα1...αn .

4 The password-based GOKE

In this section, we present the protocol for password-based
authenticated GOKE.

Figure 1 The trigon structure T4

L1 g

L2 gx2 gx1

L3 gx2x3 gx1x3 gx1x2

L4 gx2x3x4 gx1x3x4 gx1x2x4 gx1x2x3

4.1 Preliminaries

Let H0, H1 and H2 denote three hash functions and f denotes
the encryption function (this latter function is in practice
instantiated by a mask-generation function computed as
the product of the message with a constant value raised to
the power of the password (Abdalla and Pointcheval, 2005).)
We will also use the transformation ψ which takes as input
a k-vector X = {X1, . . . , Xk} in G

k , an element x ∈ Zq

and returns a (k + 1)-vector Y = {Y1, . . . , Yk+1}, where
for i = 1, . . . , k − 1, Yi = Xxi , Yk = Xk and Yk+1 = Xxk .

For example, the n-th sequential call is computed as Xi+1 =
ψ(Xi, xi) (starting at X1 = {g}).

4.2 Algorithm

The protocol consists of an up-flow and a down-flow as
depicted on Figure 2. In the up-flow, upon receiving i

values Fi = {Fi1, . . . , Fii}, in addition to a knowledge proof
ValidityProofi , see below, player Ui (for i < n) chooses a
random exponent xi in [1, q−1], computesFi+1 = ψ(Fi, xi)
as the values to be forwarded to the next player.

At the same time, in order to prove consistency in
the generated messages, which is required for the security
analysis, the player also sends Wi = gxi together with
a flow-dependent, signature of knowledge for xi and the
correct computation of the new values from the ones he
received. PlayerUi computes the following knowledge proof
ValidityProof[xi : Wi = gxi ∧ Fi+1 = ψ(Fi, xi)](Fi). This
player then forwards all the received values.

Technical details: it is easy to compute the needed
ValidityProof (non-interactive zero-knowledge proofs of
knowledge), by a Schnorr’s like non-interactive version of the
proof of knowledge (Schnorr, 1990) using the Fiat-Shamir
paradigm (Fiat and Shamir, 1987), in the random oracle
model (Bellare and Rogaway, 1993), as follows. Recall
playerUi has received in the up-flowFi a vector (X1, . . . , Xi)

and holds a fresh, randomly chosen Diffie–Hellman exponent
xi for the group key exchange. In order to generate the
proof of validity for Fi+1 = ψ(Fi) = (Y1, . . . , Yi+1), the
player chooses one random number r in Z

�
q and computes

Tk = Xrk , for k = 1, . . . , i − 1. Then the random oracle is
invoked to produce a value c = H(T − 1, . . . , Tk, Fi, Fi+1)

and the player uses r to compute s = c − xir . The output
ValidityProofi is made of (T1, . . . , Tk, s, Fi). The verification
is simply done by checking that Tk = XskY

c
k for all k ∈

[1, i − 1] and Ti = Xsi Y ci+1 (note that c is easily retrieved by
invoking the random oracle again).

Formally speaking, we assume player U1 to receive
F1 = {g} and ValidityProof1 being the empty string. This
means that each player receives all the values computed by
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Figure 2 An honest execution of the password-authenticated Diffie–Hellman GOKE protocol with four players
U = {U1, U2, U3, U4}. The session key is ski = H0(r1‖...‖rn,K)

U1 U2 U3 U4

x1 ∈R Z
�
q x2 ∈R Z

�
q x3 ∈R Z

�
q x4 ∈R Z

�
q

r1 ∈R {0, 1}s r2 ∈R {0, 1}s r3 ∈R {0, 1}s r4 ∈R {0, 1}s

F2 = {g, gx1 ,ValidityProof1}
r1,F2−−−−−−−→

F3 = {gx1 , gx2 ,

gx1x2 ,ValidityProof2}
r1,r2,F3−−−−−−−→

F4 = {gx1x2 , gx1x3 ,

gx2x3 , gx1x2x3 ,

ValidityProof3}
r1,r2,r3,F4−−−−−−−→

Verify ValidityProofi ,∀i
K = gx1···xn
Ki = K1/xi

K ′i = Kαi
i for αi ∈R Z

�
q

K∗i = K ′i · f (pw)
< −−−−−− −−−−−− < −−−K∗i −−−−−−< −−−−−−−

K ′′1 = (K�
1/f (pw))x1

Auth1 = H1(r1‖...‖rn, i,K ′′1 )
−−−−−− > −−−−−−Authi −−− > −−−−−−−−−−−−− >

Authi
?= H1(r1‖...‖rn, i,Kαi )

Auth′i = H2(r1‖...‖rn, i,Kαi , Ki)

< −−−−−− −−−−−−< −−−Auth′i , Ki −−−−< −−−−−−−
Auth′1

?= H2(r1‖...‖rn, 1,K ′′1 ,K1)

K = Kx1
1

previous players, together with their proofs of validity. He
thus has to check all of them before computing his flow.

In the down-flow, upon receiving Fn of length n (as well
as the proof ValidityProofn), the last player Un chooses
a random exponent xn and computes (K1, . . . , Kn,K) =
ψ(Fn, xn). We thus haveK = gx1,...,xn as the last component.
And for each i = 1, . . . , n, we have Ki = K1/xi . Then
the player Un chooses randomly and independently n − 1
elements αi ∈ Z

�
q and setsK ′i = Kαi

i for i < n. These values
are used for the authentication. More precisely, let pwi be the
password common to Un and Ui (in case of a single-shared
password, we have pwi = pw for all i); Un sends to every
other player Ui the challenge K�

i = K ′i · U pwi .
The player authenticates itself to the last player as follows.

Upon receiving a challenge K�
i , each player Ui raises the

‘unmasked’ challenge to the power of its private exponent
xi and sends the resulting hash value as its authenticator:
Authi = H1(r1‖...‖rn, i,K ′′i ) where K ′′i = (K�

i /U
pwi )xi .

The last player in turn authenticates itself to the others
as follows. He first waits for having received all the
authenticators Authi from the others. The authenticator

Authi is verified in a straightforward way: Authi
?=

H1(r1‖...‖rn, i,Kαi ). One notices thatK ′′i should be equal to
Kαi . If all the received authenticators are valid the last player
sends its own authenticator Auth′i to every player Ui as well
as the value Ki to be used to compute the session key. The
value Auth′i is computed as H2(r1‖...‖rn, i,Kαi ,Ki). The
last player then terminates, accepting sk = H0(r1‖...‖rn,K)
as its session key.

The protocol terminates successfully once each player
has checked the validity of the authenticators: Auth′i =
H2(r1‖...‖rn, i,K ′′i , Ki). If the authenticator is valid the
player terminates, accepting sk = H0(r1‖...‖rn,Kxi

i ) as its
session key.

4.3 Rationale

Two ingredients are essential from the security view point:
proofs of validity and key confirmation steps before the last
player communicates theKi’s. Otherwise, an adversary could
send non-valid flows and then introduce redundancy which
could help to perform a dictionary attack: assume that A tries
to impersonate U1 and thus sends incorrect values {g,Ur} to
U2. The latter playing honestly will send {gx2 , Ur, Urx2}.
Knowing r , the adversary learns Ux2 . On top of that, A also
tries to impersonate the group controller and sendsK∗2 = Us ,
for a known s. The authenticator sent back by U2 is derived
from (Ux2)s−pw, a value easily tested by the adversary, for all
the passwords: a dictionary attack.

4.4 Practical considerations

The GOKE protocol can be used with different passwords
shared between each group member Ui and the last member
Un in the group. GOKE can also be made more efficient and
therefore more practical, by allowing Un to verify all the
proofs of knowledge once rather than by letting each player
Ui verifies the proof of knowledge one at a time. This enables
Un to batch the verification of the knowledge proofs and to
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speed-up the verification phase by a factor 2 (Bellare et al.,
1998; M’Raïhi and Naccache, 1996).

It is also straightforward to allow users to join and leave
the group in the course of the GOKE protocol (Bresson
et al., 2001). When one or more players are added to the
group, the last player Un initiates a sequence of up-flows,
(an example for n = 4 is represented on Figure 3) starting
from him (rather than from the first player): he simply
recomputes ψ(Fn, x ′n) with a new, fresh exponent x ′n then
the protocol continues up to the last joining player, who
becomes the subsequent group controller. Note that the values
ψ(Fn, xn) had been previously used in the authentication,
however they were sent in the clear (i.e. were not masked
with the password), so no additional information is leaked
when performing the join operation. Similarly, when players
leave the group, the group controller sends authenticator to
the remaining players, by using fresh, new exponents. Here
again, since the authentication procedures are done pairwise
and independently, the leaving players cannot gain any useful
information.

Figure 3 Up-flows received by the first four players

F1 g gx1

F2 gx2 gx1 gx1x2

F3 gx2x3 gx1x3 gx1x2 gx1x2x3

F4 gx2x3x4 gx1x3x4 gx1x2x4 gx1x2x3 gx1x2x3x4

5 The security analysis

In this section, we prove that the GOKE protocol is secure
against dictionary attacks under the group CDH assumption
and in the random-oracle model (at first we do not, like
Bresson et al., addresses concurrent executions of the
protocol).

Theorem 1: Let A be an attacker against the scheme
described in Figure 2, in which the password is drawn from
a dictionary of size N according to distribution Dpw. Let
qH and qs be the number of Hash and Send-queries the
adversary is allowed to make, respectively. Then we have:

Advake
(A) ≤ 12Dpw(qs)+ 4(q2

H + qH )Advcdh
G
(t ′ + τG)

+ 4qHAdvtgcdh
G

(t ′ + qsτG)+ 2qs
2�
+ 2q2

s

2s

where t ′ ≤ t + qsnτG + 64qHq2
s ln(4qs/ε)/ε3 for a value

ε satisfying Advake
(A) ≤ 2ε and τG is the time needed for

computing an exponentiation in G.

Proof: We consider in the following sequence of games
the event S defined as b = b′, where b is the underlying,
random bit used in the Test-query and b′ is the bit returned
by the adversary. The semantic security aims to make Pr[S]
negligibly close to 1/2.
Game G0: this is the real game, in which we make every
player performing the actions as specified in the protocol
(exponentiations of received flows, hashing, etc.). Also we
simulate the random oracles in a classical way, maintaining

lists of already asked values, together with the corresponding
answers. In this game, we have by definition:

Pr[S0] = Advake
(A)+ 1

2

GameG1: in this game, the simulated authenticators and the
final session key are computed using private random oracles
H′1,H′2 and H′0 in place of H1,H2 and H0, respectively.
More precisely, we do not compute the values ofK ′′i (neither
K) anymore and set:

Authi = H′1(r1‖...‖rn, i)
Auth′i = H′2(r1‖...‖rn, i)

and

sk = H′0(r1‖...‖rn)
We stress that these values are perfectly random for
the adversary, since the random oracles are private to
the simulator. Thus the probability for the adversary of
successfully forging an authenticator is at most qs/2�, unless
a collision appeared on the SID defined as r1‖...‖rn (which is
bounded by q2

s /2
s). Excepted these bad cases, the semantic

security of the session key is now perfect (since it is computed
using a random oracle the adversary has not access to):

Pr[S1] = 1

2
+ qs

2�
+ q

2
s

2s

Moreover, the two games are indistinguishable unless the
attacker asks one of the ‘bad’ values (r1‖...‖rn, i,Kαi ) to the
random oracle,1 which event is denoted AskH. The remaining
of the proof is thus devoted to upper-bound the probability
of such event.

|Pr[S1] − Pr[S0]| ≤ Pr[AskH1]
Game G2: we show how to simulate the instances of
the players without knowing the exponents. We assume we
are given a TG-CDH-instance D(a1, . . . , an). Since we
have access to the extractors associated to any proof of
knowledge (as explained in the Appendix), we can properly
deal with the cases the received values have been built by the
adversary. We make use of this functionality to embed the
instance D in the protocol flows: we simulate the protocol
by answering each Send(Ui,Fi )-query by extracting all
exponents put in it by the adversary (for the players he is
controlling); we then ‘remove’ these exponents and obtain a
line of the trigon. Taking the next line, we then ‘reintroduce’
the adversary’s exponents. On top of that, we randomize
the process by using multiplicative random self-reducibility
(with known randomizing exponents) to process multiple
queries asked to the same player: this essentially adds at most
n exponentiations per Send-query (the Execute-queries
are simulated by simply randomizing the instance D). The
last call (if asked to player Un) provides us with values Ki ,
that we use to compute the challengesK∗i . Recall that we do
not have to compute the valuesK ′′i norK , then the remaining
of the protocol (authentication flows) is easily simulated.

The following (basic) lemma shows that such a simulation
is always possible:
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Lemma 2: For each Send(Ui,Fi )-query asked to a player
instance Ui such that the number of simulated players
(i.e. players not under A’s control) up to index i is equal
to t , the answer is derived from the line Lt in instance D.

The proof uses a simple induction on t . Also we introduce
the notation t = φ(i); this simply means that player Ui is
simulated using the line Lφ(i) of the instance D. In other
words, Ui implicitly makes use of the exponent aφ(i).

We easily see that the simulation is perfectly
indistinguishable from the previous game, if conditioned to
the success probability of correctly extracting the adversary’s
exponents. Then we get (according to section A and letting
ε = Pr[AskH1]):

Pr[AskH2] ≥ Pr[AskH1]
2

However, the simulation is a bit more expensive:

t2 ≤ t + qsnτG + 64qHq2
s ln(4qs/ε)

ε3

for any ε ≥ Pr[AskH1]/2. The former contribution is for the
random-self reduction, while the latter is for the extraction
(see Appendix).

We now derive two games, in order to analyze the
probability of passive or active attacks. We first analyze active
attacks.

Game G3: in this game, we show how to upper-bound
the probability of event AskH. To do so, we modify
the way the challenges K∗i are computed, in such a
way that the password is not used anymore and becomes
information-theoretically hidden to the adversary. Indeed,
we note that the challenges K∗i are independent, random
elements in G, so we just simulate them by choosing a random
exponent αi and setsK∗i = Uαi . Intuitively we study what A
can do/learn on the authentication flows between Un and Ui .

Several cases may then appear, each of them leads to a
specific bounds. These cases correspond to the attacks the
adversary can mount against the two-party authentications
(between the last player and another one). We stress that these
cases are disjoint because we focus on the first occurrence
of the ‘bad’ hash-query; thus the global upper-bound is just
the sum. Much more important, the simulation is identical
in these three cases, so we do not need to condition by
the probability of having correctly ‘guessed’ the case. For
evaluating AskH, we postpone the choice of the password
after the answer of the adversary.

Case AskH1: the value K∗i is sent by the simulator, but
Ui has not been simulated – in this case, A is likely to know
the underlying xi so we just notice the following. If AskH1

happens, the query Kαi asked by A is equal to (Uαi−pw)xi ,
but, as said above, the password can be chosen at the very
end of the protocol. The probability of such an event is thus
upper-bounded by Dpw(qs).

Case AskH2: the value K∗i is sent by the simulator, and
Ui has been simulated as well – as described before, the
challengesK∗i are simulated by random elementsUαi , and the
password is chosen at the very end, being thus independent
from A’s view. Our goal in this last case is to show that, even
if A controls some player Uj (knowing xj ), it cannot learn
useful information from the Ui ↔ Un authentication. More

precisely, because A does not know aφ(i), he cannot ask the
query K ′′i without (implicitly) breaking the CDH problem.
The following lemma formally proves this.

Lemma 3: If there is a query DH(K∗i /U pw,Wi) for a player
Ui not under A’s control, one can solve the CDH problem.

Proof: it is easy to see that since K∗i /U pw = Uαi−pw.
Thus if we retrieve (with probability at least 1/qH ) a value
Z = DH(K∗i /U pw,Wi), then we can compute DH(U,Wi) =
Z1/(αi−pw). Here Wi = gaφ(i) .
Case AskH3: the values K∗i and Auth′i are sent by the
adversary – Of course one cannot prevent the adversary to
test a password by sending to the players’ instances many
challenges he built by himself – and for which he probably
knows the discrete logarithm. The following lemma shows,
however, that A cannot try more than one password when
sending a challenge, then his probability of success reduces
to 1/N (N being the number of passwords) for each Send-
query. More precisely, if he tries to distinguish the simulated
authenticators from the true ones by testing two different
passwords π and π ′ and asking the corresponding queries
Kαi to H1, the solution to a Diffie–Hellman computational
problem can be recovered.

Lemma 4: Let K∗ be a challenge sent by the adversary.
Let us assume that the H-list contains at least two queries
DH(K∗/Uπ,Wi) and DH(K∗/Uπ ′ ,Wi), for π �= π ′, then
one can solve the CDH problem in time t + τG.

Proof: Remind that Wi denotes the quantity gaφ(i) . We first
notice that all flows sent in the protocol are of the form
g

∏
j∈J xj ; this is due to the fact that each flow is sent with

a ValidityProof proof. The consequence is that the discrete
logarithms of U in any of these values remains unknown
(otherwise one could easily get logg U by removing the
exponents embedded by A). Now let us assume that there
exist two queries Z and Z′ in the H-list, satisfying:

Z = DH
K∗

Uπ,Wi

and Z′ = DH
K∗

Uπ ′ ,Wi

By division, we get Z/Z′ = DH(U,Wi)
π ′−π . Since π �= π ′

and the group order is a prime, we can set w= (π ′ −π)−1

mod q. It follows that DH(U,Wi) = (Z/Z′)w. As noticed
above, this value cannot be computed from the flows
themselves. Thus, unless the adversary can solve this
Diffie–Hellman instance, he can test at most one password
when sending a challenge K∗.

If the adversary forges an authenticator Auth′i , one shows
that A cannot guess the password better than at random since
neither the players’ authenticators nor the challenges provide
information on it; indeed, all these values are simulated by
pure random strings or elements. Therefore the probability
that A makes a H2-query that helps to distinguish the games
is upper-bounded by Dpw(qs).

This leads to Pr[AskH3
3] ≤ 2 × Dpw(qs) + q2

H ×
Succcdh

G
(t + τG).

Gathering the three cases, we obtain (for active attacks):

Pr[AskH3] ≤ 3×Dpw(qs)+ (q2
H + qH )

× Succcdh
G
(t + τG)
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GameG4: it remains to deal with passive attacks. In a passive
eavesdropping, we note that all exponents are successively
embedded in the protocol flows using the ψ function
(i.e., φ(i) = i) and that the session key is derived from
the TG-CDH secret (by the random self-reduction known to
the simulator). Also we note that the challenges K∗i as well
as the values Ki can be properly simulated, without any
additional material (these values are included in the last line
of the trigon instance).

In such a game, the probability that A asks the value
(r1‖...‖rn,K) to the random oracle H0 is easily related
to the probability of solving the TG-CDH-problem for the
instance D:

Pr[AskH4] ≤ qH × Succtgcdh
G

(t3 + τG)
Putting all together, we obtain the claimed result.
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(r1‖...‖rn, i,Kαi , Ki) to H2 or (r1‖...‖rn,K) to H0.
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Appendix

A Proofs of validity and extractors

As shown in Section 4, an adversary could make calls with invalid
inputs, we thus need to make sure this cannot happen: we require
proofs of validity. We then denote by NIZKProof(X, Y ) a non-
interactive zero-knowledge proof of knowledge and membership
for x, such that Y = ψ(X, x), where X is a k-vector. Such
proofs can be efficiently done in the random-oracle model Bellare
and Rogaway (1993), with simple indistinguishable simulation
under the decisional Diffie–Hellman assumption (Boneh, 1998) and
with the additional property of simulation-soundness Sahai (1999).
Furthermore, we can extract x with overwhelming probability, using
an improvement of the forking lemma Pointcheval and Stern (2000),
as we now explain with more details.

Main ideas

Each proof NIZKProof(X, Y ) contains a Non-Interactive
Zero-Knowledge (NIZK) proof of knowledge that the sender
‘knows’ the exponent used to build the element. In the Random
Oracle Model (ROM), a truly random hash function is used to
construct such proofs. In order to be able to use the property of ‘proof
of knowledge’, we need to build extractors of knowledge. However
such extractors must be constructed sequentially, otherwise the
complexity grows exponentially with the number of players n. To
achieve such situation, we require the hash function to be called
on the input the previously produced proofs of knowledge. In other
words and very informally speaking, when querying the random
oracle to build proof numbern, the (n−1)-th proof itself must be part
of the query: this ensures that, in a complete list of ValidityProof,
each call to the random oracle is made after the previous proof
of knowledge has been computed. To propagate this property over
all the executions of the GOKE protocol, we restrict our scenario
to non-concurrent executions. As a consequence, the construction
of knowledge extractors can be properly chained and our proof
complexity does not explode.

Details

We now show that from a correct proof (submitted to the random
oracle when building further proofs of validity) we can extract
the underlying exponent, with non-negligible probability. We then
consider that the adversary has constructed a correct

NIZKProof(X, Y ) = ValidityProof[x : Y = ψ(X, x)](Z)

where Z is itself a proof of knowledge for a correct computation
of X. We emphasize that there may be several rounds of
communication between the computation of this correct proof and
the moment it is queried to the random oracle.

Let us assume that the adversary A is able to produce such a
proof with probability ν = ε + 1/2k , where k is the output size of
the random oracle and thus measures the probability of correctness
by chance.

We denote by S the set of choices for the random coins
ω of A and the random oracle H (restricted to queries which
include Z). Moreover for each of them we denote by Ind(ω,H) the
index of the H-query which corresponds to the crucial query: the
one in the final proof. With probability ε, this index is between 1
and qH .

By replaying the adversary A with the same random tape ω,
and by simulating another random oracle H′ that is the same as H

up to the Ind(ω,H)th query (excluded), we can extract the value
x whose knowledge is proved. What remains to show is that this
strategy succeeds with overwhelming probability (over the possible
choices of (ω,H)) and after a polynomially bounded number of
replays.

For any i, we define the set of the random values which
leads to index i: Si = {(ω,H) ∈ S|Ind(ω,H) = i}. We define
the good indices i, in I = {i|Pr[Si |S] ≥ α/2qH }, for an
appropriate α we will define later. Finally, we define the good
beginnings:


i = {(ω,H)|Pr
H′
[(ω,H′) ∈ Si |H′ ≡i H] ≥ α2ε/4qH }

where the relation H′ ≡i H means that we restrict the choice of H′
to the random oracles providing the same answers as H for the first
i queries. For any i ∈ I , using the Bayes’ law:

Pr[(ω,H) /∈ 
i |(ω,H) ∈ Si]
= Pr[(ω,H) ∈ Si |(ω,H) /∈ 
i]
× Pr[(ω,H) /∈ 
i]/Pr[(ω,H) ∈ Si]

< α2ε/4qH × 1/(αε/2qH ) = α/2

And thus, Pr[
i |Si] ≥ 1− α/2. Furthermore, since all the subsets
Si are disjoint,

∑
i∈I

Pr[Si |S] = 1−
∑
i /∈I

Pr[Si |S] ≥ 1−qH×α/2qH = 1−α/2

and consequently

Pr
ω,H
[∃i ∈ I, (ω,H) ∈ 
i ∩ Si |S]

= Pr[∪i∈I , 
i ∩ Si |S]
=

∑
i∈I

Pr[
i ∩ Si |S] =
∑
i∈I

Pr[
i |Si] Pr[Si |S]

≥ (1− α/2)
∑
i∈I

Pr[Si |S] ≥ (1− α/2)2 ≥ 1− α

Then, when A outputs a valid proof, with probability greater than
1 − α, i = Ind(ω,H) ∈ I and (ω,H) ∈ 
i ∩ Si . In this case, we
know that we can have a second success with probability greater than
α2ε/4qH . And thus, after −4qH (ln α)/α2ε replays, the probability
of failure is less than α: the probability of success is more than 1−α.

Globally, the probability of extraction is more than 1−2α, within
time bounded by 4qH (ln 1/α)/α2ε.

Chaining the extractors

In fact, we built a black-box extractor in the sense that extracting
a witness for a given proof of knowledge is feasible independently
from the other proofs submitted by the adversary. If we suppose that
the advantage of the adversary is greater than ε, it means that it can
complete an attack with probability greater than ε (independently of
its success since an incomplete game cannot lead to any advantage).
Now let us denote by qs the number of Send-queries (active attacks)
the adversary is allowed to make. By taking α = ε/4qs , all the
extractions are successful with probability greater than 1−ε/2, and
thus there is at least one failure with probability bounded by ε/2.
Excluding these executions just reduces by one half the advantage
of the adversary: we can assume that all the proofs built by the
adversary are given with the witness.


