
ANALYSIS OF THE AMCACHE
V2

Author Blanche Lagny

Publication date 25/07/2019

Keywords amcache, forensic, program execution, recentfilecache, Windows

For all requests / reply linked to this document, please contact blanche.lagny@ssi.gouv.fr

Analysis of the AmCache

Abstract
The AmCache is an artifact which stores metadata related to PE execution and program installation on Windows 7
and Server 2008 R2 and above.

Frequently overlooked and understudied, this database is rarely fully exploited when doing incident response.
Indeed, its correct interpretation is complex: a lot of special cases can occur that have to be taken into account
when performing an analysis. However, the information collected by the AmCache is extremely useful and the lack
of awareness about this artifact makes it very valuable, since it is easily overlooked by attackers erasing their tracks.

The purpose of this paper is to restore the confidence in the AmCache among digital forensic examiners by
providing an extensive reference of the conclusions that can be drawn when analyzing this artifact.

Relying on existing public research, this paper also depends heavily on tests performed in a controlled environ-
ment. Those tests were used to validate, rectify or refine the conclusions found in the scientific literature and to fill
the gaps in previous researches.

For instance, traces left by the installation of a program in Windows 7 were not explored yet and several changes
in the inner workings of the AmCache in Windows 8 and 10 needed to be documented.

25/07/2019 Page 2 of 66

Analysis of the AmCache

1 Introduction . 5

2 Behavior of libraries originally packaged with Windows 7 and Windows Server 2008 R2 5
2.1 General behavior . 6
2.2 RecentFileCache.bcf . 6
2.3 AEINV_PREVIOUS.xml . 7
2.4 AEINV_WER_{MachineId}_YYYYMMDD_HHmmss.xml . 9
2.5 Examples of possible uses during a forensic investigation . 16

3 Behavior of libraries originally packaged with Windows 8.0 and Server 2012 16
3.1 General behavior . 17
3.2 AmCache.hve . 17
3.3 Install Directory . 21
3.4 AEINV_AMI_WER_{MachineId}_YYYYMMDD_HHmmss.xml . 22
3.5 PropCache.bin . 24
3.6 Examples of possible uses during a forensic investigation . 24

4 Behavior of libraries originally packaged with Windows 8.1 and Server 2012 R2 25
4.1 General behavior . 25
4.2 AEINV_AMI_WER_{MachineId}_YYYYMMDD_HHmmss.xml . 25
4.3 FullCompatReport.xml . 25
4.4 Examples of possible uses during a forensic investigation . 26

5 Behavior of libraries originally packaged with Windows 10 version 1507 (Threshold 1) 26
5.1 General behavior . 27
5.2 AmCache.hve . 27
5.3 Examples of possible uses during a forensic investigation . 28

6 Behavior of libraries originally packaged with Windows 10 version 1511 (Threshold 2) 28
6.1 General behavior . 28
6.2 AmCache.hve . 29
6.3 Examples of possible uses during a forensic investigation . 29

7 Behavior of libraries originally packaged with Windows 10 version 1607 (Redstone 1) 29
7.1 General behavior . 29
7.2 APPRAISER_FileInventory.xml . 29
7.3 AmCache.hve . 30
7.4 Examples of possible uses during a forensic investigation . 32

8 Behavior of libraries originally packaged with Windows 10 version 1709 (Redstone 3) 32
8.1 General behavior . 32
8.2 AmCache.hve . 32
8.3 APPRAISER_Telemetry_UNV.bin . 34
8.4 Examples of possible uses during a forensic investigation . 34

9 Behavior of libraries originally packaged with Windows 10 version 1803 (Redstone 4) and Windows
10 version 1807 (Redstone 5) . 34
9.1 General behavior . 35
9.2 AmCache.hve . 35
9.3 Install Directory . 36
9.4 Examples of possible uses during a forensic investigation . 37

10 Conclusion . 37

Appendix A Artifact location summary . 38

Appendix B AmCache.hve registry keys summary . 39

Appendix C RecentFileCache.bcf structure . 40

Appendix D AEINV_PREVIOUS.xml structure . 40

25/07/2019 Page 3 of 66

Analysis of the AmCache

Appendix E AEINV_WER structure . 42

Appendix F AEINV_AMI_WER structure . 50

Appendix G PropCache.bin structure . 54

Appendix H FullCompatReport structure . 55

Bibliography . 66

25/07/2019 Page 4 of 66

Analysis of the AmCache

1. Introduction
TheApplication Compatibility Infrastructure was introduced inWindows operating systems, starting withWindows
XP. This infrastructure is described both in theMicrosoft docs [5] and in an article by Alex Ionescu [2]. Put simply, it
allows an application to run even if it is no longer fully compatible with the system it is running on, or if the version
of a dependency has changed. This infrastructure, also called the Shim Infrastructure, provides two artifacts for
the digital investigator: the Application Compatibility Cache (also called ShimCache) and, since Windows 7, the
AmCache. Since the Shim Infrastructure is used when an application runs, we can expect these artifacts to store
some information about executed applications and even installed programs. In this article, we provide an in-depth
study of the information available in the AmCache on Windows systems.

The AmCache has currently been seen under two different file formats: a BCF file, called RecentFileCache.bcf,
and a Registry hive, called AmCache.hve. Contrary to other artifacts, the format used does not depend on the version
of the operating system but rather on the version of the libraries in charge of filling the cache. Indeed, Microsoft
is repackaging the current libraries for each OS version, which means that the artifact has the same format on a
Windows 10 and on aWindows 7, provided that both systems are up-to-date. To update those libraries, a user should
apply the Windows Update KB2952664 on a Windows 7 and KB2976978 on a Windows 8 and 8.1. The libraries are
stored in %WinDir%\System32 and start with ae (probably for Application Experience):

• aecache.dll;

• aeevts.dll;

• aeinv.dll;

• aelupsvc.dll;

• aepdu.dll;

• aepic.dll.

It is worth noting that the versioning system is following the Windows Version Number 1, with the build number
appended to it, and that the libraries have not been seen with a version number inferior to that of their host
operating system. This implies that the RecentFileCache.bcf file, which is part of the version 6.1.* of the libraries,
is not present on a Windows 10, which uses a Windows Version Number of 10.0*. At the time of this writing, the
up-to-date version of the libraries is 10.0.17673.1003.

Previous research was already done on the AmCache: in [1], Corey Harrell studies RecentFileCache.bcf and
shows that this file records the path and name of executed applications that need to be shimmed. He also explains
that RecentFileCache.bcf is flushed every night by a scheduled task, ProgramDataUpdater, showing that the
AmCache has amode of operation in two steps. Furthermore, in [6], Maxim Suhanov points out that recent versions
of the libraries comewith a new scheduled task, called Microsoft Compatibility Appraiser, that seems to update
AmCache.hve. Finally, in [3] and [4], Yogesh Khatri demonstrates that AmCache.hve can also be used to know which
programs were installed on a system. As for related tools, RecentFileCache.bcf and AmCache.hve can be parsed
respectively by RecentFileCacheParser2 and AmcacheParser3, both by Eric Zimmerman. There is also a Regripper4
parser for AmCache.hve, created by Harlan Carvey. These are valuable first steps in the interpretation of AmCache,
but this article shows how to dig further. In particular, we show how to tap into the wealth of information available
in the files createdwhen the scheduled tasks are executed. We also focus onwhich pieces of information are updated
in AmCache.hve when the scheduled tasks are executed, in order to understand why the timestamp associated with
this artifact cannot be reliably interpreted as the execution time of the application.

This paper describes the format of the AmCache according to the version of the libraries on the system. When
relevant, formats presenting several similarities are regrouped. This report is split in six chapters, each explaining
the inner workings of the AmCache when running a version of the Shim libraries originally shipped with a given
Windows version. The first chapter explores the artifacts left by the Shim Infrastructure on Windows 7 SP0 and
SP1 and on Windows Server 2008 R2, reviewing in details all the files related to the AmCache. The next chapters
explore along the same lines the behavior of the AmCache on Windows 8, Windows 8.1 and several versions of
Windows 10.

1https://docs.microsoft.com/en-us/windows/desktop/sysinfo/operating-system-version
2https://f001.backblazeb2.com/file/EricZimmermanTools/RecentFileCacheParser.zip
3https://f001.backblazeb2.com/file/EricZimmermanTools/AmcacheParser.zip
4https://github.com/keydet89/RegRipper2.8

25/07/2019 Page 5 of 66

https://docs.microsoft.com/en-us/windows/desktop/sysinfo/operating-system-version
https://f001.backblazeb2.com/file/EricZimmermanTools/RecentFileCacheParser.zip
https://f001.backblazeb2.com/file/EricZimmermanTools/AmcacheParser.zip
https://github.com/keydet89/RegRipper2.8

Analysis of the AmCache

2. Behavior of libraries originally packaged with Windows 7 and
Windows Server 2008 R2

This chapter details the behavior of the versions 6.1.7600.16385 and 6.1.7601.17514 of the libraries, shipped with
Windows 7 SP0 and SP1 ”out-of-the-box”.

2.1. General behavior

When executing a PE, the service AeLookupSvc, which executes %WinDir%\system32\svchost.exe -k netsvcs,
checks whether the PE needs shimming. If it does, the service stores the filename, with its path, in a file named
RecentFileCache.bcf, located under %WinDir%\AppCompat\Programs. The format of this file is described in Ap-
pendix C. The service also stores path of the dependencies of the executed PE which need shimming.

At 00:30 every night, a scheduled task, ProgramDataUpdater, is executed. This task launches ”%WinDir%\system32
\rundll32.exe aepdu.dll,AePduRunUpdate”, which flushes the RecentFileCache.bcf and stores all installed pro-
grams in %WinDir%\AppCompat\Programs\AEINV_CURRENT.xml. It then renames this file as AEINV_PREVIOUS.xml,
overwriting the previous file. On some systems, it also updates a file called AEINV_WER_{MachineId}_YYYYMMDD_
HHmmss.xml, located under the same directory as AEINV_PREVIOUS.xml. This task is only executed if the computer
has been in an idle state for at least 3 minutes. If it is not (or if it is turned off), this task tries to execute for the next
23 hours.

2.2. RecentFileCache.bcf

This file contains the path of binaries executed between the last execution date of ProgramDataUpdater and the
current time, in lowercase. The order in which those paths are stored is not always chronological (i.e. the last path
is not always the last executed PE).

As an experiment, Wireshark v2.6.5 was installed on a virtual machine of a Windows 7 Ultimate 32-bit. The
previous RecentFileCache.bcf contained the following entries:

• c:\windows\system32\mobsync.exe

• c:\program files\oracle\virtualbox guest additions\vboxdrvinst.exe

• c:\windows\system32\vboxservice.exe

• c:\windows\system32\vboxtray.exe

After the execution of C:\Users\User\Downloads\Wireshark-win32-2.6.5.exe, the RecentFileCache.bcf had
the following lines appended to it:

• c:\program files\wireshark\vcredist_x86.exe

• c:\windows\system32\wusa.exe

• c:\windows\system32\wuauclt.exe

• c:\windows\system32\msiexec.exe

And finally, after the first launch of the application, one path was added:

• c:\program files\wireshark\dumpcap.exe

As the experiment shows, RecentFileCache.bcf does not store every binary that was executed: for instance, the
PE which started the installation of Wireshark is not present. The experiment also proves that the PE stored does
not need to be manually executed by the user and can be executed as a consequence of another execution.

Further tests indicate that binaries executed from a USB drive or a network share are not stored, even for PEs
that show in RecentFileCache.bcf when executed from the drive. Tests also highlight that the storage of exe-
cuted PEs in RecentFileCache.bcf depends on where the PE file resides on the system. For example, a PE in
need of shimming appears in RecentFileCache.bcf when located in C:\Users\<username>\Documents\test,
but the very same PE located in C:\Users\<username>\Documents is not registered. Furthermore, occurrence
in RecentFileCache.bcf depends on how long the PE has been on the system. For instance, if a PE is executed as
soon as it appears in the system, it is stored in RecentFileCache.bcf, but not if the user waits several hours before
executing it. This last behavior has only been noticed when the PE is located in a user’s directory.

25/07/2019 Page 6 of 66

Analysis of the AmCache

2.3. AEINV_PREVIOUS.xml

This file contains details about installed programs at the time of the last execution of the ProgramDataUpdater
scheduled tasks. Once again, these entries are not stored in chronological order.

The definition of ”installed programs” is not clear, but it seems to be at least composed of the programs listed
under the following registry keys:

• SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall (if the value SystemComponent of the subkey
associated with the program does not have a value of 1);

• SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall (if the value SystemComponent
of the subkey associated with the program does not have a value of 1);

• SOFTWARE\Microsoft\Windows\CurrentVersion\Run.

As a consequence of the previous experiment, the installation ofWireshark led to changes in the registry: the pro-
gram is now registered under SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall as shown in Fig. 2.1. Af-
ter the execution of ProgramDataUpdater, the AEINV_PREVIOUS.xml file contains information about the program,
as shown in Listing 2.1. Both entries are shown below for comparison.

Fig. 2.1.: Content of HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\Wireshark

<Log Version=” 6 . 1 . 7601 . 17514 ”>
<ProgramList >

[. . .]
<Program Id=” 0000354384 b2dbc2f6b2dc9dec22174dcf510000ff f f ” Name=”Wireshark 2 . 6 . 5 32−b i t ” Publ i sher =

”The Wireshark developer community , h t t p s : / /www. wireshark . org ” Version=” 2 . 6 . 5 ” Source=”
AddRemoveProgram”>

< S t a t i c P r ope r t i e s >
< F i l e s Id =” 00006 ea5b5dae4e85c2b7a0ce4c0e609179961cd09fb ” / >

< / S t a t i c P r ope r t i e s >
< / Program>
[. . .]

< / ProgramList >
[. . .]

< / Log>

������� 2.1: Extract of AEINV_PREVIOUS.xml : Wireshark

In a nutshell, the majority of the information in this file is the same as the information found in the registry.
AEINV_PREVIOUS.xml starts with an attribute Log Version, which is the version of the libraries used to populate
this file. Then, the list ProgramList details every program installed on the machine. For Wireshark, the details
consist of three fields that are also present in the Uninstall key: Name, Publisher and Version, and two that are
not: Id and Source. The Program Id is not yet explained, although according to the Microsoft docs1, it is supposed
to be a hash of the Name, the Version, the Publisher and the Language. This is consistent with the fact that the
Program Id is identical across different systems: the same version of a software installed on two different machines
1https://docs.microsoft.com/en-us/windows/privacy/basic-level-windows-diagnostic-events-and-fields-1803#

inventory-events

25/07/2019 Page 7 of 66

https://docs.microsoft.com/en-us/windows/privacy/basic-level-windows-diagnostic-events-and-fields-1803#inventory-events
https://docs.microsoft.com/en-us/windows/privacy/basic-level-windows-diagnostic-events-and-fields-1803#inventory-events

Analysis of the AmCache

results in the same Program Id. As for the Source attribute, its different values are detailed later, but in this case
it is AddRemoveProgram, because the program is in an Uninstall key and was installed via an exe file. Then, there is
an attribute called StaticProperties which only contains one attribute : Files Id. Much like the Program Id,
this field is not explained but consistent across different machines, even if the program is installed in a different
location on the drive.

Each program has an entry with the following information:

• Id;

• Name;

• Publisher;

• Version;

• Source = three possible values : Msi, AddRemoveProgram and File, which are explained below;

• MsiProductCode (if the program was installed via MSI);

• MsiPackageCode (if the program was installed via MSI) ;

• Language = the Microsoft’s corresponding language identifier2, in decimal (1033 for en-us).

The key Source is used to explain how the program was installed. If the key contains Msi, it means that the
program was installed via MSI. If it contains AddRemoveProgram, it means that it was installed via an exe file and is
in an Uninstall key. Finally, the File value appears to only be used to describe a PE that is listed in the Run key of
the SOFTWARE hive. The other attributes for the Source key are extracted from the details of the PE file.

Another example is provided below: following the installation of the VirtualBox Guest Additions on the virtual
machine, two entries are present in the XML file. The first one, which lists AddRemoveProgram as a Source, corre-
sponds to the entry in the Uninstall key. The second one, which lists File as a Source, corresponds to the Run Key.
This key is shown in Figure 2.2 with the details for the exe file to which it refers. The entry for Oracle VMVirtualBox
Guest Additions in the XML file is shown in Listing 2.2. For the entry in AEINV_PREVIOUS.xml, the values are filled
using the exe file properties : the Name is the Product name, the Version is the Product version... The Publisher
is not listed in the details of VboxTray.exe, however the file is signed by ”Oracle Corporation”, which is probably
where the information in the Publisher key came from.

<Log Version=” 6 . 1 . 7601 . 17514 ”>
<ProgramList >

[. . .]
<Program Id=” 00009056 f81453a3569d36c40c2a6152d96400000904 ” Name=”Oracle VM VirtualBox Guest

Addi t ions ” Publ i sher =” Oracle Corporation ” Version=” 5 . 1 . 3 8 . 22592 ” Language=”1033 ” Source=” F i l e ”>
< S t a t i c P r ope r t i e s >

< F i l e s Id =” 0000286 ba9d8c8ff93b75d0cf3731d3bbd8b5f2db74e ” / >
< / S t a t i c P r ope r t i e s >
< / Program>
[. . .]

< / ProgramList >
[. . .]

< / Log>

������� 2.2: Extract of AEINV_PREVIOUS.xml : Guest Additions

Another sublist, IEAddOnList, is present in AEINV_PREVIOUS.xml. It supposedly contains Internet Explorer add-
ons. Since no way of enumerating all installed add-ons was found, the exhaustiveness of this list cannot be assumed.
It contains the following information for each add-on:

• CLSID;

• Name;

• Type;

• Publisher;

• File Id (SHA1 of the file, preceded by ’0000’);

• File Name.

As an example, the entry for the add-on ”InformationCardSigninHelper Class” is shown in Listing 2.3.

2https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings

25/07/2019 Page 8 of 66

https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings

Analysis of the AmCache

Fig. 2.2.: Content of HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run and details of VBoxTray.exe

<Log Version=” 6 . 1 . 7601 . 17514 ”>
[. . .]
<IEAddOnList >

<IEAddOn CLSID=” {19916E01−B44E−4E31−94A4−4696DF46157B } ” Name=” InformationCardSigninHelper C la s s ”
Type=”ActiveX ” Publ i sher =”Microsof t Corporation ”>
< F i l e Id=” 0000 d8b095849b5172e07dff1562bad89f37037bf951 ” Name=” i c a r d i e . d l l ” / >

< / IEAddOn>
[. . .]

< / IEAddOnList >
< / Log>

������� 2.3: Extract of AEINV_PREVIOUS.xml : IEAddOn

An exhaustive description of the format and content of AEINV_PREVIOUS.xml is provided in Appendix D.

2.4. AEINV_WER_{MachineId}_YYYYMMDD_HHmmss.xml

This file is not present on every system and the conditions of its presence are not yet explained. However, it has
a real forensic value because it records every application that was installed, removed or updated and every PE file
associated with the application. The meaning of ”installed” is the same as the one in AEINV_PREVIOUS.xml.

The filename AEINV_WER_{MachineId}_YYYYMMDD_HHmmss.xml is composed of a field MachineId that is equal to
the data contained in the value ReportMachineId of the key SOFTWARE\Microsoft\Windows NT\CurrentVersion\
AppCompatFlags\ClientTelemetry. The filename also contains a timestamp, which is the date and time the report
was created (in UTC). Since this report is updated every time the scheduled task ProgramDataUpdater is run, and
not replaced by a new one, the timestamp does not change as the scheduled task is executed.

This XML file, which will be referenced as AEINV_WER for simplification, is composed of a header and three lists:
System, ProgramList and IEAddOn which are detailed hereafter. The reader is invited to refer to Appendix E where
the structure of the file is outlined. It can help follow detailed explanations given below.

2.4.1. Header

The Report key, which is the header of the XML file, is composed of a Version, a TimeStamp, a SequenceNumber
and a throttlingRuleSetGuid, both of which are not yet explained. The timestamp corresponds to the time the

25/07/2019 Page 9 of 66

Analysis of the AmCache

report was finished writing after the first execution of ProgramDataUpdater, in UTC. As a result, it usually refers to
a few seconds later than the timestamp found in the filename. An example is shown in Listing 2.4.

<Report Version=” 1 .3 ” TimeStamp=” 12 /06 /2018 09 : 4 3 : 4 0 ” SequenceNumber=”1” Thrott l ingRuleSetGuid =” {
F7D0E8C8−2DA8−4889−A910−3DE830B4148F } ”>

[. . .]

������� 2.4: Extract of AEINV_WER_{49A35C5F-CCE9-48C7-B6EF-577A36E86135}_20181206_094337.xml: Header

2.4.2. System

In this field, information about the operating system is registered. An example of the System field from aWindows
7 Ultimate SP1 32-bit is shown in Listing 2.5.

<Report Version=” 1 .3 ” TimeStamp=” 12 /06 /2018 09 : 4 3 : 4 0 ” SequenceNumber=”1” Thrott l ingRuleSetGuid =” {
F7D0E8C8−2DA8−4889−A910−3DE830B4148F } ”>

<System MachineId=” {49A35C5F−CCE9−48C7−B6EF−577A36E86135 } ” MajorVersion=”6” MinorVersion=”1”
ServicePackMajor=”1” ServicePackMinor=”0” BuildNumber=”7601 ” Sku=”1” Proce s so rArch i tec ture =”1”
OSPlatform=”1” LocaleId =” 1033 ” GeoId=”244” / >

[. . .]

������� 2.5: Extract of AEINV_WER_{49A35C5F-CCE9-48C7-B6EF-577A36E86135}_20181206_094337.xml: System

Here are the meaning for the different fields :

• MachineId = the ReportMachineIdmentioned previously;

• MajorVersion = the first part of the Windows Version Number;

• MinorVersion = the second part of the Windows Version Number;

• ServicePackMajor;

• ServicePackMinor;

• BuildNumber;

• Sku = integer that seems to reference the version of Windows installed as found in the OperatingSystemSKU
Enum from PowerShell Core SDK3 (tested for Ultimate and Enterprise Editions);

• ProcessorArchitecture (worth 1 for 32-bit and 2 for 64-bit);

• OSPlatform = this value could not be entirely clarified. The first hypothesis was that the value was supposed
to identify the Windows Edition but in test, the values found were not consistent with the hypothesis: for
Windows 7 Enterprise SP1 and Ultimate SP1 32-bit, the value is 1 whereas for a Windows 7 Enterprise SP1
64-bit, it is 2;

• LocaleId = decimal value of LocaleName in HKCU\Control Panel\International;

• GeoId = value Nation in HKCU\Control Panel\International\Geo.

2.4.3. ProgramList

This list keeps a record of every program installed on the system even if it does not need shimming to work on
the system. The list is split into four sublists: Installed, which records programs that were installed on the system
(even if they are not installed anymore), Orphan, which records executed files that do not belong to a program,
Updated, which records some changes made to a program and Removed for uninstalled programs. We recall that
the structure of the file is outlined in Appendix E and can be consulted while reading this section.

Several experiments were conducted to learn more about the behavior of those sublists. Each experiment is
detailed below to help understand what can be found in each sublist, starting with Installed.

3https://docs.microsoft.com/en-us/dotnet/api/microsoft.powershell.commands.operatingsystemsku?view=pscore-6.0.0

25/07/2019 Page 10 of 66

https://docs.microsoft.com/en-us/dotnet/api/microsoft.powershell.commands.operatingsystemsku?view=pscore-6.0.0

Analysis of the AmCache

Installed

The first experiment conducted was the same as for AEINV_PREVIOUS.xml: Wireshark v2.6.5 was installed on a
virtual machine running Windows 7 Ultimate 32-bit. After the execution of ProgramDataUpdater, the information
about the program installation was recorded in the Installed sublist of AEINV_WER. Extracts of the file are provided
below to explain what can be found in the different keys.

The program header is shown in Listing 2.6. Just as in the AEINV_PREVIOUS.xml file, the information provided in
the header of the program is the same as in the corresponding Uninstall key in the SOFTWARE hive. The only new
attributes are OnSystemDrive and EvidenceId. The meaning of the former is not yet explained since it is always
True, even when the program has been uninstalled and the files deleted. The latter is a value in hexadecimal that
is explained later. For now, the reader is invited to note that in this example, the EvidenceId for Wireshark is 0x22.

[. . .]
<ProgramList >

< I n s t a l l e d >
<Program Name=”Wireshark 2 . 6 . 5 32−b i t ” Type=” Appl i ca t ion ” Source=”AddRemoveProgram” Publ i sher =”The

Wireshark developer community , h t t p s : / /www. wireshark . org ” Version=” 2 . 6 . 5 ” OnSystemDrive=” true ”
EvidenceId=”0x22 ” Id=” 0000354384 b2dbc2f6b2dc9dec22174dcf510000ff f f ”>

[. . .]
< / Program>
[. . .]

< / I n s t a l l e d >
[. . .]

< / ProgramList >
[. . .]

������� 2.6: Extract of AEINV_WER_{49A35C5F-CCE9-48C7-B6EF-577A36E86135}_20181206_094337.xml:
Installed Program header

The program has a list of different indicators that were not present in the AEINV_PREVIOUS.xml file, first of
which, AddRemoveProgramIndicators, provided in Listing 2.7. It shows information about the Uninstall key with
a UniqueId which is the EvidenceId previously mentioned. It also includes the name of the subkey in the registry.

[. . .]
<ProgramList >

< I n s t a l l e d >
<Program Name=”Wireshark 2 . 6 . 5 32−b i t ” Type=” Appl i ca t ion ” Source=”AddRemoveProgram” Publ i sher =”The

Wireshark developer community , h t t p s : / /www. wireshark . org ” Version=” 2 . 6 . 5 ” OnSystemDrive=” true ”
EvidenceId=”0x22 ” Id=” 0000354384 b2dbc2f6b2dc9dec22174dcf510000ff f f ”>

< Ind i c a t o r s >
<AddRemoveProgramIndicators>

<AddRemoveProgram DisplayName=”Wireshark 2 . 6 . 5 32−b i t ” CompanyName=”The Wireshark developer
community , h t t p s : / /www. wireshark . org ” ProductVersion=” 2 . 6 . 5 ” RegistrySubKey=”Wireshark ”
UniqueId=”0x22 ” Id=” 00000773 cfd2b58429384da8a9bea4a99e8bbef55402 ” / >

< / AddRemoveProgramIndicators>
[. . .]

< / I nd i c a t o r s >
< / Program>
[. . .]

< / I n s t a l l e d >
[. . .]

< / ProgramList >
[. . .]

������� 2.7: Extract of AEINV_WER_{49A35C5F-CCE9-48C7-B6EF-577A36E86135}_20181206_094337.xml:
Installed Program AddRemoveProgramIndicators

The next indicator, ShellIndicators, is shown in Listing 2.8. It contains information about what can be found in
the Start Menu of the system. ForWireshark, there is an entry in the Start Menu called ”Wireshark” which executes
C:\Program Files\Wireshark\Wireshark.exe, as shown in Fig 2.3.

[. . .]
< I nd i c a t o r s >

[. . .]
< She l l I nd i c a t o r s >

< She l l ShellName=”Wireshark ” TargetFileName=”Wireshark . exe ” UniqueId=”0xa0 ” Id=” 00008
f6fc717280228fa0fe0473fb0c23d38dd23f131 ” / >

< / She l l I nd i c a t o r s >
[. . .]

< / I nd i c a t o r s >
[. . .]

������� 2.8: Extract of AEINV_WER_{49A35C5F-CCE9-48C7-B6EF-577A36E86135}_20181206_094337.xml:
Installed Program ShellIndicators

25/07/2019 Page 11 of 66

Analysis of the AmCache

Fig. 2.3.: Start Menu and details of Wireshark.lnk

The ShellIndicators contains the entry name in the Start Menu (ShellName) and the filename of the PE it
executes (TargetFileName). For this indicator, the meaning of the UniqueId has not yet been identified and is
probably related to the lnk file and not the targeted exe file. Indeed, as shown later, the UniqueId is not the one
associated with Wireshark.exe that is found in the Files sublist.

The DirectoryIndicators tag lists all the directories in the installation directory (itself included), which con-
tains PE files. It is shown in Listing 2.9. Each entry in DirectoryIndicators has two keys: a UniqueId and an Id.
The first key is used to know the location of the folder. For the example of Wireshark, the content of C:\Program
Files\Wireshark is shown in Fig 2.4. Wireshark having an EvidenceId of 0x22, the first folder, which is the installa-
tion folder itself, has a UniqueId of 0x22+1=0x23. Since it contains PE files, it is listed in the DirectoryIndicators.
Then, every PE or folder has a UniqueId associated with it, in alphabetical order, starting with the files. So capin-
fos.exe, the first PE file, is 0x24 and comerr32.dll, the second one, is 0x25. There are 62 (0x3E) PE files in the Wire-
shark folder, so the first folder, audio, has a UniqueId of 0x23+0x3E+0x1=0x62. This folder contains 2 DLLs, which
means that it is listed in the DirectoryIndicators and that the next folder has a UniqueId of 0x62+0x2+0x1=0x65.
As for the Id, its meaning has not been found yet. The first supposition was that it was the SHA-1 of the full path
or of the name of the folder. Several encodings were tested : UTF-16LE, UTF-8, ASCII, but none matched with Id.
Experiments were then made to see what could make the Id change. The first experiment was to install Wireshark
in a different location: C:\Program Files\Wireshark64. This resulted in all the entries in DirectoryIndicators hav-
ing the same Directory Id except the first one, so it is likely that the Id is linked to the name of the folder but
not its path. The second experiment was to install Wireshark on a different system: once again, this resulted in all
the entries in DirectoryIndicators having the same Directory Id. Finally, the 64-bit version of Wireshark was
installed on a third system, resulting in a different ProgramId but still the same Directory Id if the directories
were named the same, which was the case for all but 3 folders.

[. . .]
< I nd i c a t o r s >

[. . .]
<D i r e c to r y Ind i c a to r s >

<Directory UniqueId=”0x23 ” Id=” 00009 afdcc213e845b1ed280a8d118317c363e807da5 ” / >
<Directory UniqueId=”0x62 ” Id=”0000 d02780464c90bf7bc1a299c4b9c9864aabc38041 ” / >
<Directory UniqueId=”0x65 ” Id=” 00000 c1920ddeef6a4453b87d82e9e4bdd7cd7e34cfa ” / >
<Directory UniqueId=”0x6b” Id=”0000 ff985ceec5256e32680e61528e85f1d606039299 ” / >
<Directory UniqueId=”0x6d” Id=” 00001835 aab95f61091a75c2668c32fb3accb6b39f3c ” / >
<Directory UniqueId=”0x77 ” Id=” 00002981 edfd070ae25ff64b46362d1d48ee8bbaa3d3 ” / >
<Directory UniqueId=”0x7b” Id=”0000 fda4622bcc722e71a460e2fc47d59bf7dceb30c5 ” / >

25/07/2019 Page 12 of 66

Analysis of the AmCache

Fig. 2.4.: Partial content of C:\Program Files\Wireshark with the associated UniqueId

<Directory UniqueId=”0x7d” Id=” 00003 e1b0e2dce63403b70b2b64d94406b25a6f9ecf3 ” / >
<Directory UniqueId=”0 x7f ” Id=” 0000 cdff5a8b448d17782e1bc983e7f7abb756a41b34 ” / >
<Directory UniqueId=”0x80 ” Id=” 000089574 cf70870d3b2c43857f917700e91afde8d86 ” / >
<Directory UniqueId=”0x81 ” Id=” 000036247 d333a3c106b173c15a6892dc3613f478636 ” / >
<Directory UniqueId=”0x83 ” Id=” 000054 e02e97208a5a43e9b4b63535fa0a6380512a87 ” / >
<Directory UniqueId=”0x90 ” Id=”0000 ab7ae667b5277a763ef1629b2c3e9b49c41c6a4f ” / >
<Directory UniqueId=”0x92 ” Id=” 0000299 fdc610f46b5395ac83f8ba9501cd4091d87bf ” / >

< / D i r e c to r y Ind i c a to r s >
[. . .]

< / I nd i c a t o r s >
[. . .]

������� 2.9: Extract of AEINV_WER_{49A35C5F-CCE9-48C7-B6EF-577A36E86135}_20181206_094337.xml:
Installed Program DirectoryIndicators

The last indicator is the FileExtIndicators which is shown in Listing 2.10. It contains information about files
that are opened with the program because of their extension. This information can also be found in the registry
under HKLM\SOFTWARE\Classes.

[. . .]
< I nd i c a t o r s >

< F i l e E x t I nd i c a t o r s >
<Fi leExtens ionHandler Extension =” . 5vw” Name=”wireshark−capture−f i l e ” F i l e =”Wireshark . exe ” UniqueId=

”0xa6 ” Id=”0000 f100f0a810d3369fb23078ccfccf2a9ae2342793 ” / >
<Fi leExtens ionHandler Extension =” . acp ” Name=”wireshark−capture−f i l e ” F i l e =”Wireshark . exe ” UniqueId=

”0xa8 ” Id=” 000053 fad4b5cd3a257f5356040dd85aed5dfc94a972 ” / >
<Fi leExtens ionHandler Extension =” . apc ” Name=”wireshark−capture−f i l e ” F i l e =”Wireshark . exe ” UniqueId=

”0xaa ” Id=”0000 e60a8211bfa17705f2b5b3e6f79acbe7e80e8078 ” / >
[. . .]

< / F i l e E x t I nd i c a t o r s >
< / I nd i c a t o r s >
[. . .]

������� 2.10: Extract of AEINV_WER_{49A35C5F-CCE9-48C7-B6EF-577A36E86135}_20181206_094337.xml:
Installed Program FileExtIndicators

25/07/2019 Page 13 of 66

Analysis of the AmCache

Finally, after all the different indicators, the last sublist consists of all the PE files that are in the program directo-
ries. An extract is shown in Listings 2.11. The files are listed in the order of their UniqueId, which is the same as in
the DirectoryIndicators. For instance, for Wireshark, capinfos.exe, which was the first PE file in the first folder,
has a UniqueId of 0x24. Various pieces of information are recorded about the file, the most important being its
SHA-1.

[. . .]
<ProgramList >

< I n s t a l l e d >
<Program Name=”Wireshark 2 . 6 . 5 32−b i t ” Type=” Appl i ca t ion ” Source=”AddRemoveProgram” Publ i sher =”The

Wireshark developer community , h t t p s : / /www. wireshark . org ” Version=” 2 . 6 . 5 ” OnSystemDrive=” true ”
EvidenceId=”0x22 ” Id=” 0000354384 b2dbc2f6b2dc9dec22174dcf510000ff f f ”>

< Ind i c a t o r s >
[. . .]

< / I nd i c a t o r s >
< S t a t i c P r ope r t i e s >

< F i l e s Id =” 00006 ea5b5dae4e85c2b7a0ce4c0e609179961cd09fb ”>
< F i l e Name=” cap in fos . exe ” Id=” 00005 c5ecbf7d4e969ff50b186109b2c18b47f257365 ” ProductName=”

Capinfos ” CompanyName=”The Wireshark developer community” ProductVersion=” 2 . 6 . 5 ”
VerLanguage=”1033 ” SwitchBackContext=”0x0100000000000600 ” F i l eVer s ion =” 2 . 6 . 5 ” S ize =”0
x532a8 ” SizeOfImage=”0x53000 ” PeHeaderHash=” 01012864 b33151873a9ca2d4c0c5e28d87cfb023f0f3 ”
PeChecksum=”0 x5fe24 ” BinProductVersion=” 2 . 6 . 5 . 0 ” BinF i leVers ion =” 2 . 6 . 5 . 0 ”
F i l eDe s c r i p t i on =” Capinfos ” LinkerVers ion =” 14 .12 ” LinkDate=” 11 /28 /2018 18 : 2 3 : 5 9 ”
BinaryType=”32BIT” Created=” 11 /28 /2018 18 : 3 1 : 4 4 ” Modified=” 11 /28 /2018 18 : 3 1 : 4 4 ”
LongPathHash=” 0000058 d47d0b218994a27e38ea102effc68e3b18ed3 ” UniqueId=”0x24 ” / >

< F i l e Name=” comerr32 . d l l ” Id =” 00001 c24f9e44091059fe4df7f37488104d9a84e62e2 ” ProductName=”
comerr32 . d l l ” CompanyName=”Massachusetts I n s t i t u t e of Technology . ” ProductVersion=”1.6−
kfw−3.2.2 ” VerLanguage=”1033 ” SwitchBackContext=”0x0100000000000400 ” F i l eVer s ion =”1.6−kfw
−3.2.2 ” S ize =”0xa4a8 ” SizeOfImage=”0x7000 ” PeHeaderHash=” 0101627
e686207f162c390be2477d9b676b6591217bc ” PeChecksum=”0x180bd” BinProductVersion=” 1 . 6 . 3 . 1 6 ”
BinF i leVers ion =” 1 . 6 . 3 . 1 6 ” F i l eDe s c r i p t i on =”COM_ERR − Common Error Handler fo r MIT
Kerberos v5 / GSS d i s t r i b u t i o n ” LinkerVers ion =” 6 .0 ” LinkDate=” 01 /18 /2010 17 : 0 1 : 3 8 ”
BinaryType=”UNKNOWN” Created=” 11 /28 /2018 18 : 3 1 : 4 4 ” Modified=” 11 /28 /2018 18 : 3 1 : 4 4 ”
LongPathHash=”0000b3d0ba5a55811478c8135b5addde46f63d1bde66 ” UniqueId=”0x25 ” / >

< F i l e Name=” d3dcompiler_47 . d l l ” Id =”0000 ba29e74577085c41637b1ce7a14ea1853264417a ” ProductName
=”Microsoft® Windows® Operating System” CompanyName=”Microsof t Corporation ”
ProductVersion=” 10 . 0 . 16299 . 15 ” VerLanguage=”1033 ” ShortName=”D3DCOM~1 .DLL”
SwitchBackContext=”0x0100000000000600 ” F i l eVer s ion =” 10 . 0 . 1 6299 . 1 5 (WinBuild . 160101 .0800) ”
S ize =”0x37d4a8 ” SizeOfImage=”0x386000 ” PeHeaderHash=”0101
a7f2a4e9e1d7375b13562316f87244c2fa626053 ” PeChecksum=”0x37e544 ” BinProductVersion=”
10 . 0 . 16299 . 15 ” BinF i leVers ion =” 10 . 0 . 16299 . 15 ” F i l eDe s c r i p t i on =”Direct3D HLSL Compiler fo r
Red i s t r i bu t i on ” LinkerVers ion =” 14 .10 ” LinkDate=” 10 /19 /2047 09 : 2 3 : 2 8 ” BinaryType=”UNKNOWN

” Created=” 11 /28 /2018 18 : 3 1 : 4 4 ” Modified=” 11 /28 /2018 18 : 3 1 : 4 4 ” LongPathHash=”0000
ac76002f76c0ce9e6bdee7c392a8d6b246256a0f ” UniqueId=”0x26 ” / >

[. . .]
< / F i l e s >

< / S t a t i c P r ope r t i e s >
< / Program>
[. . .]

< / I n s t a l l e d >
[. . .]

< / ProgramList >
[. . .]

������� 2.11: Extract of AEINV_WER_{49A35C5F-CCE9-48C7-B6EF-577A36E86135}_20181206_094337.xml:
Installed Program Files

In addition to the structure of AEINV_WER, Appendix E contains an exhaustive description of its contents, in
particular, all observed attributes appearing in the different program indicators.

Updated

The recorded information in the Updated sublist is the same as in the Installed sublist. This sublist is populated
when a change occurs in one of the indicators previously mentioned. So for instance, if a new file appears inside a
directory it is recorded in this sublist. As previously mentioned, all the PE files in the program folders are recorded
in the Files sublist, regardless of whether they need shimming or whether they were executed. This is not limited
to binaries that came with the program installation.

To test this, an experiment wasmade where the following scenario was carried out: a PE, malware.exe (which was
a renamed cmd.exe for the experiment), was placed inside C:\Program Files\Wireshark\diameter. Then at the
next execution of ProgramDataUpdater, the change was recorded in AEINV_WER, even though Wireshark was not
executed in the meantime. The entry in the Installed list did not change, although the UniqueId is now incorrect
due to having one more exe file in a folder. However, an entry for Wireshark appeared in the Updated list with the
following differences:

25/07/2019 Page 14 of 66

Analysis of the AmCache

• The EvidenceId changed to 0x75;

• All the UniqueId values changed in accordance with the new EvidenceId;

• There was one more entry in DirectoryIndicators, since the folder diameter did not previously contain a
PE file;

• There was a new entry in the Files list corresponding to a file named malware.exe. This entry can be found
in Listing 2.12

[. . .]
< F i l e Name=”malware . exe ” Id=”0000 ee8cbf12d87c4d388f09b4f69bed2e91682920b5 ” ProductName=”Microsoft®

Windows® Operating System” CompanyName=”Microsof t Corporation ” ProductVersion=” 6 . 1 . 7601 . 17514 ”
VerLanguage=”1033 ” SwitchBackContext=”0x0100000000000601 ” F i l eVer s ion =” 6 . 1 . 7 601 . 17514 (win7sp1_rtm
.101119−1850) ” S ize =”0x49e00 ” SizeOfImage=”0x4c000 ” PeHeaderHash=” 01013
fb8cef24089e6b61cb1bf72c61e223aff261414 ” PeChecksum=”0x57b3d” BinProductVersion=” 6 . 1 . 7601 . 17514 ”
BinF i leVers ion =” 6 . 1 . 7601 . 17514 ” F i l eDe s c r i p t i on =”Windows Command Processor ” LinkerVers ion =” 9 .0 ”
LinkDate=” 11 /20 /2010 09 : 0 0 : 2 7 ” BinaryType=”32BIT” Created=” 12 /17 /2018 09 : 4 3 : 4 1 ” Modified=”
11 /20 /2010 21 : 2 9 : 1 2 ” LongPathHash=” 00005580 c7b910d3e448614e137f71c66fb7aed463de ” UniqueId=”0xbb” / >

[. . .]

������� 2.12: Extract of AEINV_WER_{49A35C5F-CCE9-48C7-B6EF-577A36E86135}_20181206_094337.xml:
malware.exe

As such, by comparing the Files of the Updated and Installed list, an analyst could pinpoint malware.exe,
which is present in the former but not in the latter. This is especially useful, since there should not be a lot of
modifications in the binaries under those folders.

It is worth noting that, if the version number of the program changes (during an upgrade for example), it is not
considered an update but a removal of the previous program followed by an installation of the newer version. This
leads to two entries in the Installed sublist (one for each version) and one in the Removed one.

Removed

The removed sublist only records the program id, name, publisher, version and source of the removed program.
The list StaticProperties is also present but does not list every PE that used to be in the installation folder
(however, this information can be retrieved in the program entry in the Installed sublist). An example is shown
in Listing 2.13.

[. . .]
<Removed>

<Program Id=” 0000354384 b2dbc2f6b2dc9dec22174dcf510000f f f f ” Name=”Wireshark 2 . 6 . 5 32−b i t ” Publ i sher =”
The Wireshark developer community , h t t p s : / /www. wireshark . org ” Version=” 2 . 6 . 5 ” Source=”
AddRemoveProgram”>

< S t a t i c P r ope r t i e s >
< F i l e s Id =” 0000 ff88d3b106df1081a63003d3568f3fccf14c63cd ” / >

< / S t a t i c P r ope r t i e s >
< / Program>

< / Removed>
[. . .]

������� 2.13: Extract of AEINV_WER_{49A35C5F-CCE9-48C7-B6EF-577A36E86135}_20181206_094337.xml:
Removed

Orphan

Finally, the Orphan sublist records executables that were listed in RecentFileCache.bcf but do not belong to a
program, in the sense that they are not part of a program indicator. As an example, the entries for fsstat.exe and
tree.com are shown in Listing 2.14.

[. . .]
<Program Name=” f s s t a t . exe ” Type=”BOE” Source=” F i l e ” OnSystemDrive=” true ” EvidenceId=”0xa ” Id=”0003

dbbf37cd35b9cda595baeb6211ae4bc60000ffff ”>
< Ind i c a t o r s >< / I nd i c a t o r s >
< S t a t i c P r ope r t i e s >

< F i l e s Id =” 0000 e88f46ad7600cdf0ccc84b810188cc03ccce4253 ”>
< F i l e Name=” api−ms−win−core−heap−l1−1−0. d l l ” Id =”0000 c7ce2330265d07d88ad15f80dd88473f3daafcd0 ”

ProductName=”Microsoft® Windows® Operating System” CompanyName=”Microsof t Corporation ”
ProductVersion=” 10 .0 . 10240 .16384 ” VerLanguage=”1033 ” ShortName=”API−MS~1 .DLL”
SwitchBackContext=”0x0100000000000A00 ” F i l eVer s ion =” 10 . 0 . 10240 . 16384 (th1 .150709−1700) ” S ize =”
0x4ac0 ” SizeOfImage=”0x3000 ” PeHeaderHash=” 01014 d5d81337e4e036a1047b8ac4196852ce574dc9c ”
PeChecksum=”0x11bf5 ” BinProductVersion=” 10 .0 . 10240 .16384 ” BinF i leVers ion =” 10 .0 . 10240 .16384 ”

25/07/2019 Page 15 of 66

Analysis of the AmCache

F i l eDe s c r i p t i on =”ApiSet Stub DLL” LinkerVers ion =” 12 .10 ” LinkDate=” 07 /10 /2015 03 : 2 2 : 4 3 ”
BinaryType=”UNKNOWN” Created=” 12 /10 /2018 09 : 2 2 : 0 8 ” Modified=” 11 /09 /2018 09 : 5 7 : 1 8 ”
LongPathHash=” 0000770 c4f7e744ac041a8aea78bd42b74e1fa96ed96 ” UniqueId=”0x13 ” / >

[. . .]
< F i l e Name=” f s s t a t . exe ” Id=” 000089 d756cdffbda5c9ce341c2d69a6edb87e9048f3 ” SwitchBackContext=”0

x0100000000000501 ” Size =”0 x7fc00 ” SizeOfImage=”0x84000 ” PeHeaderHash=”0101
ed6e92b581121cb94845a4cf984586731cf526c2 ” PeChecksum=”0x0 ” LinkerVers ion =” 14 .0 ” LinkDate=”
11 /09 /2018 15 : 5 7 : 1 1 ” BinaryType=”32BIT” Created=” 12 /10 /2018 09 : 2 2 : 0 9 ” Modified=” 11 /09 /2018 09
: 5 7 : 1 8 ” LongPathHash=” 00005 e25446d153b03778abf45fc1371bb2ec43b2a27 ” UniqueId=”0xa ” / >

< / F i l e s >
< / S t a t i c P r ope r t i e s >

< / Program>
[. . .]
<Program Name=”Microsof t Windows Operating System” Type=”BOE” Source=” F i l e ” Publ i sher =”Microsof t

Corporation ” Version=” 0 . 0 . 0 . 0 ” Language=”0” OnSystemDrive=” true ” EvidenceId=”0xa ” Id=”0000
f519feec486de87ed73cb92d3cac802400000000 ”>

< Ind i c a t o r s >< / I nd i c a t o r s >
< S t a t i c P r ope r t i e s >

< F i l e s Id =” 000099 c3139497239b9f697cb73a65ce7d423a980bee ”>
< F i l e Name=” t ree . com” Id=” 00006 b5d28546f358715844fd9946a8785db5df533ba ” ProductName=”Microsoft®

Windows® Operating System” CompanyName=”Microsof t Corporation ” ProductVersion=” 6 . 1 . 7600 . 16385
” VerLanguage=”1033 ” SwitchBackContext=”0x0100000000000601 ” F i l eVer s ion =” 6 . 1 . 7 600 . 16385 (
win7_rtm .090713−1255) ” S ize =”0x4000 ” SizeOfImage=”0x7000 ” PeHeaderHash=” 01013089399
f8d2893e8207a55cf81f51bb14a20c8f4 ” PeChecksum=”0x13156 ” BinProductVersion=” 6 . 1 . 7600 . 16385 ”
BinF i leVers ion =” 6 . 1 . 7600 . 16385 ” F i l eDe s c r i p t i on =”Tree Walk U t i l i t y ” LinkerVers ion =” 9 .0 ”
LinkDate=” 07 /13 /2009 23 : 1 5 : 2 4 ” BinaryType=”32BIT” OsComponent=” true ” Created=” 07 /13 /2009 23
: 1 5 : 2 4 ” Modified=” 07 /13 /2009 23 : 1 5 : 2 4 ” LongPathHash=” 00002
b75b5af4abe6066802a040875c5b8e4d0ae4408 ” UniqueId=”0xa ” / >

< / F i l e s >
< / S t a t i c P r ope r t i e s >

< / Program>
[. . .]

������� 2.14: Extract of AEINV_WER_{49A35C5F-CCE9-48C7-B6EF-577A36E86135}_20181206_094337.xml:
Orphan

These entries follow the same structure as those in the other sublists except that the program name is either the
Product Name of the executables if it has one (like tree.com), or the file name if it does not (like fsstat.exe). In this
example, some DLLs are also registered in the Files sublist for fsstat.exe. The reason that some DLLs get recorded
and others do not is not yet known. Indeed, the recorded DLLs are not in the import table of the PE and the sublist
does not contain every DLL in the folder where the PE is. Moreover, the StaticProperties section records the PE
(and associated DLLs) with the same information as in the Installed sublist (name, SHA-1, size, ...).

2.5. Examples of possible uses during a forensic investigation

During a forensic investigation, RecentFileCache.bcf, AEINV_PREVIOUS.xml and AEINV_WER can significantly help
an analyst. The three files can be used to track executed binaries, installed and deleted programs and the content
of an installation folder.

To prove that a binary was executed, an analyst can look at both RecentFileCache.bcf and AEINV_WER. If the
binary is present in RecentFileCache.bcf, then it was first executed between the last run of ProgramDataUpdater
and the current time. If the binary is present in the Orphan list ofAEINV_WER, then it was first executed before the
last run of ProgramDataUpdater and the analyst can also retrieve important information such as the SHA-1 and
times of creation and modification of the binary, as shown in Section 2.4.3. These pieces of information, however,
are recorded only once, after the first execution of a PE stored in a given path, which means that if an attacker
replaces the PE with another one, AEINV_WER is not updated.

By studying AEINV_PREVIOUS.xml and AEINV_WER, it is possible to determine which programs were installed
on the system when ProgramDataUpdater was last executed. The analyst can also retrieve which programs were
uninstalled when inspecting the sublist Removed of AEINV_WER: those are programs removed before the last launch
of ProgramDataUpdater.

Finally, AEINV_WER records new additions made to a program installation folder, as explained in Section 2.4.3.
Indeed, PE files under an installation folder are recorded in the list StaticProperties of a program entry. When
a new PE appears under one of those folders, it creates a new entry for the program in the Updated list but leaves
the one originally in Installed untouched. By comparing the different StaticProperties of this program, the
analyst can look for PEs that appeared under an installation folder after the installation and retrieve their SHA-1.
This search is easily automated, and should not yield many false positives.

25/07/2019 Page 16 of 66

Analysis of the AmCache

3. Behavior of libraries originally packaged with Windows 8.0 and
Server 2012

This chapter describes the behavior of the version 6.2.9200.16384 of the libraries, shipped with Windows 8 ”out of
the box”. This version comes with a major change : the file RecentFileCache.bcf no longer exists and the informa-
tion it contained is now stored in AmCache.hve, a registry file. It is worth noting that if libraries in this version run
on a machine as a result of an update of a system, the previous artifacts may still be found and operational on the
new system. This entails that if the investigated system is a Windows 7, it is possible to have both the AmCache.hve
and the RecentFileCache.bcf files.

3.1. General behavior

When executing a PE, the service AeLookupSvc, which executes ”%WinDir%\system32\svchost.exe -k netsvcs”,
checks whether the PE needs shimming. If it does, the service stores information about the PE in a registry file
named AmCache.hve, located under %WinDir%\AppCompat\Programs. However, if the executed PE is an installer
for a program, it is handled by a different service : PCASvc, which executes %WinDir%\system32\svchost.exe
-k LocalSystemNetworkRestricted. This service calls the following command : ”rundll32.exe aeinv.dll,
UpdateSoftwareInventory”. This DLL creates a TXT file in %WinDir%\AppCompat\Programs\Install which is
then rewritten into an XML file under the same directory. This XML file records the installation process. Moreover,
it updates AmCache.hve with information about the newly installed program and the files the installation created.

Unlike the previous versions, the scheduled task ProgramDataUpdater is now a maintenance task, which means
that it runs automatically when the computer is in idle state starting at 3AM. The settings of this task makes it run
once every 3 days (parameter Period = P3D) with other maintenance tasks. If the task fails for 6 days (parameter
Deadline = P6D), the user is notified or an emergency maintenance is performed. This task launches ”%WinDir%\
system32\rundll32.exe aepdu.dll,AePduRunUpdate” which deletes all the files under %WinDir%\ AppCompat\
Programs\Install\ and stores all installed programs in %WinDir%\AppCompat\Programs\AEINV_CURRENT.xml. It
then renames this file as AEINV_PREVIOUS.xml, overwriting the previous file. ProgramDataUpdater also updates the
information contained in AmCache.hve, %WinDir%\AppCompat\Programs\AEINV_AMI_WER_{MachineId}_YYYYMMDD
_HHmmss.xml and, if needed (e.g. if a driver was installed), updates %WinDir%\AppCompat\Programs\DevInvCache\
PropCache.bin.

Since AEINV_PREVIOUS.xml has the same structure detailed in Section 2.3, it is not described in further sections.

3.2. AmCache.hve

Starting with this version, Microsoft stores information about shimmed PEs and installed applications in a registry
file. This implies that information described belowmay only be present in transaction logs and not yet in the registry
file itself. At the root of this registry is a key called Root. This key contains four subkeys: File, Programs, Orphan and
Generic and a value Sync which is a FILETIME timestamp and is the last date and time the ProgramDataUpdater
has been launched, in UTC. The four subkeys are described in details below, starting with File.

3.2.1. File

This key is split into several subkeys, each representing a volume GUID. A volume GUID key contains subkeys that
each represent a PE. For an NTFS volume, the name of the PE key is the MFT Sequence Number appended to the
MFT Entry Number (prefix-padded to be 8 bytes long), both in hexadecimal, as found by Yogesh Khatri in [3]. He
also found that for a FAT volume, the name of the PE key is the byte offset of the Directory Entry.

As an example, on an NTFS volume, the key Root\File\b528e029-0e73-11e9-af9b-806e6f6e6963\50000f99c
describes Wireshark.exe and the record in the MFT for the same file is shown in Fig. 3.1. The Sequence Number
and MFT Entry for Wireshark are respectively 5 (0x5) and 63900 (0xf99c). Since the MFT Entry must be padded to
be 8-bytes long, it results in a FileID of 50000f99c.

Much like the Files sublist previously seen in the AEINV_WER, each PE key contains information about the PE
file but the content seems to differ depending on whether the PE is part of a program. Indeed, if the PE is part of
a program, meaning it is under the installation directory of a program, it usually contains about four or five values
whereas if the PE is ”orphan”, it usually contains about twenty values. As an example, the entry for Wireshark.exe
(which is part of a program) is shown in Fig. 3.2 and the entry for fsstat.exe (which is considered ”orphan”) is shown
in Fig. 3.3.

The information found in those two keys is similar to what was found in AEINV_WER described in Section 2.4. The
values have the same meaning whether the key exhibits four or twenty values and are as follows:

25/07/2019 Page 17 of 66

Analysis of the AmCache

Fig. 3.1.: MFT Entry for C:\Program Files\Wireshark\Wireshark.exe

Fig. 3.2.: Content of Root\File\b528e029-0e73-11e9-af9b-806e6f6e6963\50000f99c

• 10 = Unknown;

• 100 = ProgramId. This information was previously found in the attribute Id of the Program the PE belonged
to in AEINV_WER;

• 101 = SHA-1 preceded by ’0000’. This information was previously found in the attribute Id of the PE in the
list Files in AEINV_WER;

• 11 = FILETIME timestamp that seems to be either the date of modification or a few seconds after;

• 12 = The date of creation in the FILETIME timestamp format. This information was previously found in the
attribute Created of the PE in the list Files in AEINV_WER;

• 15 = The full path of the PE;

• 16 = Unknown;

• 17 = The date of modification in the FILETIME timestamp format. This information was previously found in
the attribute Modified of the PE in the list Files in AEINV_WER;

• 3 =Microsoft’s corresponding Language Id, in decimal. This information was previously found in the attribute
VerLanguage of the PE in the list Files in AEINV_WER;

• 4 = The SwitchBackContext. This information was previously found in the attribute SwitchBackContext of
the PE in the list Files in AEINV_WER, only it was in hexadecimal;

25/07/2019 Page 18 of 66

Analysis of the AmCache

Fig. 3.3.: Content of Root\File\b528e029-0e73-11e9-af9b-806e6f6e6963\10000fb80

• 6 = The size. This information was previously found in the attribute Size of the PE in the list Files in
AEINV_WER, only it was in hexadecimal;

• 7 = The SizeOfImage. This information was previously found in the attribute SizeOfImage of the PE in the
list Files in AEINV_WER, only it was in hexadecimal;

• 8 = The PeHeaderHash. This information was previously found in the attribute PeHeaderHash of the PE in
the list Files in AEINV_WER;

• 9 = The PE header checksum. This information was previously found in the attribute PeChecksum of the PE
in the list Files in AEINV_WER, only it was in hexadecimal;

• a = Unknown, although when the value is present, it seems to be 0 for unsigned PE and something else for
signed ones;

• b = Unknown, although when the value is present, it seems to be 0 for unsigned PE and something else for
signed ones (usually the same as a);

• d = Concatenation of the MajorImageVersion and MinorImageVersion as found in the PE optional header
and converted to decimal;

• f = Compilation date in the UNIX timestamp format. This information was previously found in the attribute
LinkDate of the PE in the list Files in AEINV_WER.

Since several services interact with AmCache.hve, and especially with the File key, the meaning of the last write
time of this key is difficult to interpret. During tests, ProgramDataUpdater seemed to only update keys to fill in
the value 100 (ProgramId) and 101 (SHA-1) if they are empty. The first value is often missing for setup and orphan
executables. The second value is always missing for PEs that are part of a program and that were not executed or
did not need shimming when executed. The following algorithm comes from running multiple tests rather than
code analysis and should not be considered as the immutable truth:

• if the PE is part of a program:
– if the PE needed shimming and was executed before ProgramDataUpdater had a chance to run: the last

write time seems to be the time of execution of the PE;
– else, if ProgramDataUpdater was executed since the installation of the program: the last write time

seems to be the time ProgramDataUpdater was first run after the execution of the PE;
– finally, if neither of those cases apply, the last write time seems to be the time of installation of the

program.

• if the PE is part of a setup for a program (for example, Wireshark-win32-2.6.5.exe):

25/07/2019 Page 19 of 66

Analysis of the AmCache

– if ProgramDataUpdater was launched since the execution of the PE: the last write time seems to be the
time ProgramDataUpdater was first run after the execution of the PE;

– else, the last write time seems to be the time the PE was executed.

• if the PE is part of the system (i.e. its ProductName is ”Microsoft Windows Operating System”):
– the last write time does not seem to correspond to anything: it is neither the first nor last time the PE

was executed, it is not the time of a launch of ProgramDataUpdater and nothing in the event logs could
help define what the time was.

• if neither of these cases apply:
– if the PE had no value 100 associated with it and ProgramDataUpdaterwas launched since the execution

of the PE: the last write time seems to be the time ProgramDataUpdaterwas first run after the execution
of the PE;

– else, the last write time seems to be the time the PE was executed.

Eventually, it is important to note that appearance in this subkey does not necessarily mean that the PE was
executed since all PEs under an installation folder are present. Furthermore, if the execution is proven via another
artifact or because the PE is orphaned, the last write time of the key associated with the PE should be considered
as an upper bound to the execution time rather than the execution time itself.

3.2.2. Programs

This key contains every installed program only in this case, the definition of ”installed program” is slightly different
from the one described in Section 2.3: only the programswhich have an entry under SOFTWARE\Microsoft\Windows
\CurrentVersion\Uninstall or SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall are
recorded, the Run key is no longer parsed. Each subkey corresponds to a ProgramId. The subkey corresponding
to Wireshark 2.6.5 is shown in Fig 3.4.

Fig. 3.4.: Content of AmCache.hve\Root\Programs\0000354384b2dbc2f6b2dc9dec22174dcf510000ffff

The information found in a subkey is similar to what was found in AEINV_PREVIOUS.xml and AEINV_WER in the
previous version of the libraries. The values are as follows:

• 0 = The name of the program. This information was previously found in the attribute Name of the program
header in AEINV_WER;

• 1 = The version of the program. This information was previously found in the attribute Version of the pro-
gram header in AEINV_WER;

• 13 = Unknown;

• 2 = The publisher of the program. This information was previously found in the attribute Publisher of the
program header in AEINV_WER;

• 3 = Unknown;

• 5 = Unknown;

• 6 = The installation method of the program, previously found in the attribute Source of the program header
in AEINV_WER;

25/07/2019 Page 20 of 66

Analysis of the AmCache

• 7 = The uninstall key of the program, previously found in the list AddRemoveProgramIndicators in AEINV_WER;

• a = The installation date of the program, in the Unix timestamp format;

• b = The uninstallation date of the program, in the Unix timestamp format, or 0 if the program is still installed;

• d = The installation folder of the program and its subfolders if they contain PEs. This information was previ-
ously found in the list DirectoryIndicators in AEINV_WER;

• Files = The PEs that were created following the installation of the program, meaning the PEs in the installation
folder, but also for example drivers that were created in C:\Windows\System32\Drivers,... The structure of
the data contained in this value is a list of VolumeGUID@FileID, where VolumeGUID and FileID are determined
as described in Subsection 3.2.1 for the File key. Part of this information (only the PEs under the installation
folder) was previously found in the list StaticProperties in AEINV_WER.

When installing an MSI program, four additional keys can also be present:

• 11 = MSI Product Code. This information was previously found in the attribute MsiProductCode of the pro-
gram header in AEINV_WER;

• 12 = MSI Package Code. This information was previously found in the attribute MsiPackageCode of the pro-
gram header in AEINV_WER;

• f = Product Code. In tests, this information always had the same value of 11;

• 10 = Package Code. In tests, this information always had the same value of 12.

3.2.3. Orphan

As in AEINV_WER, this key records executed PEs that are not part of a program. The format of the subkeys is
VolumeGUID@FileID, where VolumeGUID and FileID are determined as described in 3.2.1 for the File key. Each
subkey only contains one value, c, which is either 0 or 1. It seems that the value 0 means either that the associ-
ated File key does not have a ProgramId (value 100) or that the entry has been added after the last execution of
ProgramDataUpdater.

3.2.4. Generic

TheGeneric key contains one subkey named 0, which in turn contains one subkey per driver installed on the system.
Each of these subkeys is actually named as the SHA-1 of the driver it represents, preceded by ’0000’. Under each of
these subkeys, there seems to always be a value named 0 and worth 1. An example is shown in Fig. 3.5, the entry
for the SHA-1 of the driver named 1394ohci.sys.

Fig. 3.5.: Content of AmCache.hve\Root\Generic\0\000002da97a4940b126c7710d13b431a6e74123f3cc0

At the same level of the SHA-1 subkeys are keys with names that resemble a GUID and that also only have one
value named 0 with associated data 1. Those names are actually values of DeviceModelId of DeviceContainers.
Since there are more details about DeviceContainers in AEINV_AMI_WER, they are explained in the corresponding
section.

3.3. Install Directory

This folder contains an XML file for each program installed with an exe file. An example of the XML file for the
installation of Wireshark 2.6.5 can be found in Listing 3.1.

< I n s t a l l e r CompletionState=”1” CreatedArpEntr ies =”1” StartTime=” 01 /03 /2019 14 : 3 4 : 2 8 ” StopTime=”
01 /03 /2019 14 : 3 6 : 3 1 ”>

25/07/2019 Page 21 of 66

Analysis of the AmCache

< I n s t a l l I n f o Name=”Wireshark−win64−2 . 6 . 5 . exe ” Path=” C: \ Users \ User \ Downloads” ShortName=”WIRESH~1 .EXE”
OsComponent=” f a l s e ” S ize =”0x38c77a0 ” PeHeaderHash=” 010169294005 c024647938d49d9afaf3f f93485269f7 ”
SizeOfImage=”0x7b000 ” PeChecksum=”0x38cd75f ” LinkDate=” 12 /11 /2016 21 : 5 0 : 4 5 ” LinkerVers ion =” 6 .0 ”

BinF i leVers ion =” 2 . 6 . 5 . 0 ” BinProductVersion=” 2 . 6 . 5 . 0 ” BinaryType=”32BIT” Created=” 01 /03 /2019 14
: 3 4 : 1 0 ” Modified=” 01 /03 /2019 14 : 3 1 : 1 7 ” VerLanguage=”1033 ” Id=” 000015
c2819075563b46e8a1a5cc49ee09daffcf85ce ” SwitchBackContext=”0x0100000006020400 ” SigPublisherName=”
Wireshark Foundation , Inc . ” F i l eVer s ion =” 2 . 6 . 5 . 0 ” CompanyName=”Wireshark development team”
F i l eDe s c r i p t i on =”Wireshark i n s t a l l e r fo r 64−b i t Windows” LegalCopyright =”© Gerald Combs and many
others ” ProductName=”Wireshark ” LongPathHash=”0000 e114c123b71a9e0b27f56b4f9b974841b2961b43 ” / >

<Disc Info / >
<ProgramIds>

<ProgramId Id=”0000 a5c8d73a8a4913750a2b7678f38ef28a0000ff f f ” / >
<ProgramId Id=”0000 c16b47f8ca21d3ca3f3ace1abb7c51e40000f f f f ” / >

< / ProgramIds>
< / I n s t a l l e r >

������� 3.1: Content of INSTALL_ffff_6f6309c6-c56f-4e93-a6b1-b95cc246b8fb.xml

The INSTALL file starts with a header that indicates whether the installation was successful. The header contains
4 attributes :

• CompletionState = 1 if the installation was successful;

• CreatedArpEntries = 1 if the installation led to the creation of an Uninstall key in the SOFTWARE hive;

• StartTime = the timestamp, in UTC, of when the installation started. This could be interpreted as the time
of execution of the setup binary;

• StopTime = the timestamp, in UTC, of when the installation process stopped, whether it succeeded or not.

Inside the Installer element, 3 sub-elements can be found. The first one, InstallInfo, stores information
about the setup binary of the program. The different attributes are similar to what was previously recorded in
other XML files such as AEINV_WER. The new attributes are :

• Path = The path of the file, case sensitive;

• OsComponent = Whether the PE is part of the OS;

• SigPublisherName;

• LegalCopyright.

The second sub-element, DiscInfo, contains information about the disc the setup binary was stored on, if there
was one. Since there was none for Wireshark, the element is empty. The third and last sub-element is a list of
ProgramId entries that stores the programs that were installed following the execution of the setup binary. In this
example, the two entries are respectively Microsoft Visual C++ 2017 and Wireshark. In another test, Wireshark was
installed along with WinPCAP, which is an option when installing Wireshark, resulting in an additional ProgramId
entry in this list.

As an example of a program installed with a disc, the install file for the Virtual Box Guest Additions is shown in
Listing 3.2.

<Disc Info Name=”VBOXADDITIONS_5 . ” Id =” 0004021 d62bcd80dc4a5ac67b8fbfdb91516395084b5 ” SetupScriptChecksum
=” 17231136449290210510 ” Size =” 58466304 ”>

< / Di sc Info >

������� 3.2: Extract of INSTALL_ffff_6f6309c6-c56f-4e93-a6b1-b95cc246b8fb.xml

The attribute Name is the name of the disc. The Size is equal to the IpTotalNumberOfBytes parameter from the
GetDiskFreeSpaceEx method of kernel32.dll.

3.4. AEINV_AMI_WER_{MachineId}_YYYYMMDD_HHmmss.xml

AEINV_AMI_WER contains eight sublists, three ofwhich have been seen previously in AEINV_WER : System, ProgramList
and IEAddOn. The only difference that could be found between AEINV_WER and AEINV_AMI_WER in those three sub-
lists is that in AEINV_AMI_WER ProgramList, there never seems to be an Updated or Removed list: once the program
is recorded in Installed, it is never removed or updated. As a consequence, only the new sublists are described
below. The reader is invited to refer to Appendix F where the structure of the file is outlined. It can help follow
detailed explanations given below.

25/07/2019 Page 22 of 66

Analysis of the AmCache

3.4.1. InstallerList

This list contains the information in each INSTALL XML file, described in 3.3, word for word, so it is not redescribed
in this section.

3.4.2. DeviceList

This list contains several entries named DeviceContainer. According to the Microsoft docs1, a device container
is an instance of a physical device that was plugged on a system. Since no relation could be found between this
list and either PE execution or program installation, it was not studied in depth. Although and since it is valuable
in a forensic examination, it is interesting to note that proof of USB usage could be found in this list, such as the
example given in Listing 3.3.

<DeviceContainer DeviceModelId=” {776 d907e−05ed−7eb0−0ef7−6dff88ee1a34 } ” DeviceDataId=” {1 aedc93f−bfeb−9
f36−826e−71bf7ee6fdfe } ” ModelId=” {2 bda71a3−65a7−1c33−dd60−e2630bc8452b } ” ModelName=”USB DISK 2 .0 ”
IsMachineDevice=” f a l s e ” PrimaryCategory=” s torage ”>

<Categor ie s >
<Category Id=” s torage ”>< / Category >

< / Categor ie s >
[. . .]
<Device DeviceId=” {703078 fc−7727−3141− f f51−e7c3fc5f5a21 } ” Enumerator=”usb ” DeviceOrder=”0”>

<HardwareIds>
<HardwareId Id=”usb \ v id_13fe&pid_4200&rev_0100 ” Order=”0”>< / HardwareId>
<HardwareId Id=”usb \ v id_13fe&pid_4200 ” Order=”1”>< / HardwareId>

< / HardwareIds>
<CompatibleIds >

<CompatibleId Id=”usb \ c l a s s _08&subc la s s_06&prot_50 ” Order=”0”>< / CompatibleId >
<CompatibleId Id=”usb \ c l a s s _08&subc la s s_06 ” Order=”1”>< / CompatibleId >
<CompatibleId Id=”usb \ c l a s s _08 ” Order=”2”>< / CompatibleId >

< / CompatibleIds >
< / Device>
[. . .]

< / DeviceContainer >

������� 3.3: Extract of AEINV_AMI_WER_{0516712F-1ED3-44C1-A930-029F1AC8489F}_20180314_082618.xml

This DeviceContainer entry lists the same information as the different Enum registry keys related to the USB
stick that was plugged in (STORAGE, USB, USBSTORE, SWD). The registry entry for Enum\USB is shown in Fig. 3.6 for
comparison.

Fig. 3.6.: Content of SYSTEM\ControlSet001\Enum\USB\vid_13fe&pid_4200

3.4.3. DriverList

DriverList records the exhaustive list of installed drivers. An example for 1394ohci.sys is shown in Listing 3.4

<Driver Dr iver Id =” 000002 da97a4940b126c7710d13b431a6e74123f3cc0 ” Name=”1394 ohci . s y s ” Type=”0x0004001a ”
Version=” 6 . 2 . 9200 . 16384 ” TimeStamp=”0x5010aae6 ” CheckSum=”0x00047021 ” ImageSize=”0x0003d000 ”
PagedSize=”0x00000e00 ” Company=”Microsof t Corporation ” Product=”Microsoft® Windows® Operating
System” ProductVersion=” 6 . 2 . 9200 . 16384 ”>

1https://docs.microsoft.com/en-us/windows-hardware/drivers/install/container-ids

25/07/2019 Page 23 of 66

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/container-ids

Analysis of the AmCache

< / Driver >

������� 3.4: Extract of AEINV_AMI_WER_{0516712F-1ED3-44C1-A930-029F1AC8489F}_20180314_082618.xml

The meaning of the different attributes are as follows:

• DriverId = SHA-1 of the driver, preceded by ’0000’;

• Name = Filename;

• Type = bitfield of driver attributes, explained in the Microsoft docs2;

• Version;

• TimeStamp = Date of compilation in UNIX timestamp format, in hexadecimal;

• CheckSum;

• ImageSize;

• PagedSize;

• Company;

• Product;

• ProductVersion.

3.4.4. DriverPackageList and AitAnalysis

During tests, those two lists were always empty and it is not known if they sometimes contain information, and if
so of what kind.

3.5. PropCache.bin

This file contains the same kind of information about drivers installed on the system as DriverList: Name, SHA-1,
Version.... But it also contains information about the certificate used to sign the driver, such as its location on the
system and the signer.

The structure of this file is described in Appendix G.

3.6. Examples of possible uses during a forensic investigation

On a system using version 6.2.9200.16384 of the libraries, files AmCache.hve, AEINV_AMI_WER, AEINV_PREVIOUS,
PropCache.bin and INSTALL files available in %WinDir%\AppCompat\Programs\Install can be put to good use.

The appearance of a binary in the File key in AmCache.hve is not sufficient to prove binary execution but does
prove the presence of the file on the system. Indeed, files related to a program are also listed in this key. However,
when a binary is referenced under the Orphan key, it means that it was actually executed. In a similar manner, bi-
naries listed under the Orphan list of AEINV_AMI_WERwere executed. Conclusions about execution time are difficult
to draw as explained in Subsection 3.2.1. As for the AEINV_AMI_WER, the referenced binaries were executed before
the last run of ProgramDataUpdater.

Installed programs are indexed both in AmCache.hve and AEINV_AMI_WER. In the hive file, the date of installation
appears in the value a of the program entry. In AEINV_AMI_WER, programs show up if they were installed before
the last run of ProgramDataUpdater. If they were installed after, information about the program can be found in
an INSTALL file.

Removed programs are only present in AmCache.hve, with the date of uninstallation in the value b of the program
entry.

Although the Updated list no longer exists in AEINV_AMI_WER, pinpointing a new file inside an installation folder
remains possible. Both AmCache.hve and AEINV_AMI_WER record the PE files present under an installation folder
around the time of installation. Since this list is never updated, one can compare this list with the PEs currently in
the folder.

Starting with this version, the AmCache can also be used to prove the presence of a driver on a system. The list
of installed drivers and the information related to them can be found both in AEINV_AMI_WER and PropCache.bin,
while only the SHA-1 of the drivers are present in AmCache.hve.
2https://docs.microsoft.com/en-us/windows/privacy/basic-level-diagnostic-events-and-fields-1709#

microsoftwindowsinventorycoreinventorydriverbinaryadd

25/07/2019 Page 24 of 66

https://docs.microsoft.com/en-us/windows/privacy/basic-level-diagnostic-events-and-fields-1709#microsoftwindowsinventorycoreinventorydriverbinaryadd
https://docs.microsoft.com/en-us/windows/privacy/basic-level-diagnostic-events-and-fields-1709#microsoftwindowsinventorycoreinventorydriverbinaryadd

Analysis of the AmCache

Eventually, it is worth noting that plugged-in devices (including USB sticks) are recorded in AEINV_AMI_WER,
provided they were plugged in before the last run of ProgramDataUpdater.

4. Behavior of libraries originally packaged with Windows 8.1 and
Server 2012 R2

For Windows 8.1, two versions of the DLLs were found. The first one, 6.3.9600.16384, exhibits no behavioral differ-
ence from the previous version described in Chapter 3, except that the DriverPackageList in AEINV_AMI_WER is
not empty. Since this behavior is preserved by the next version of the library, 6.3.9600.17415, only changes intro-
duced by this latter version are described here. This version comes with two changes : there is a new XML file and
a new scheduled task. Otherwise, all the other files seen in Chapter 3 are still present on the system.

4.1. General behavior

When executing a PE, this version behaves almost like the previous one, whose behavior was described in Sec-
tion 3.1. The difference is that there is a new scheduled task, Microsoft Compatibility Appraiser, which
launches ”%WinDir%\system32\rundll32.exe aepdu.dll,AePduRunUpdate -nolegacy” and is executed daily at
00:00 if a network connection is available. When executed, this task updates only one file : FullCompatReport.xml.
The previous scheduled task, ProgramDataUpdater, is still present and performs the same actions as previously, on
top of which it updates the new file, FullCompatReport.xml.

4.2. AEINV_AMI_WER_{MachineId}_YYYYMMDD_HHmmss.xml

The content of this file is the same as in version 6.2.9200.16384 described in 3.4, except for the list DriverPackageList,
which was filled during tests. Whether this change occurred because of the new version of the DLLs or if something
different happened on the system is not clear.

4.2.1. DriverPackageList

This list seems to record the drivers setup information file (INF). An example for the acpi.inf file is shown in List-
ing 4.1.

<Dr iverPackageLi s t >
<DriverPackage DriverPackageId=” 00000 c1b98d2c5496ff45687caecb218f5f52e808bc8 ” Date=” 06 /21 /2006 ”

Version=” 6 . 3 . 9600 . 17393 ” C la s s =” {4 d36e97d−e325−11ce−bfc1−08002be10318 } ” Provider =”Microsof t ”>
< / DriverPackage >
[. . .]

< / Dr iverPackageLi s t >

������� 4.1: Extract of AEINV_AMI_WER_{A1990A22-112B-4D0F-BB3B-625E66C092E7}_20180524_083021.xml

The meaning of the different attributes are as follows:

• DriverPackageId = SHA-1, preceded by ’0000’, of the INF file;

• Date = Unknown;

• Version;

• Class = Unknown;

• Provider.

4.3. FullCompatReport.xml

This file contains data about the systemandwhat is currently installed and/or running on it. FullCompatReport.xml
contains mostly the same information as found in other XML files, such as the list of installed applications, the list
of installed drivers and the list of plugged-in devices. However, two interesting new pieces of information appear:
a GeneralTelemetry section that records the installed KB and a list of registered services, and a list that records
the usage of EXE files on the system. The reader is invited to refer to Appendix H where the structure of the file is
outlined. It can help follow detailed explanations given below.

25/07/2019 Page 25 of 66

Analysis of the AmCache

4.3.1. GeneralTelemetry

The field GeneralTelemetry includes a list of installed hotfixes, or updates, with the date of installation. An example
of the data found in this list, for KB2976978, is shown in Listing 4.2.

< Ins ta l l edHot f i xe sQuery >
< In s t a l l edHot f i xe sDa ta HotFixID=”KB2976978” Ins ta l l edOn =” 11 /21 /2014 ”>
< / In s t a l l edHot f i xe sDa ta >
[. . .]

< / In s ta l l edHot f i xe sQuery >

������� 4.2: Extract of FullCompatReport.xml: InstalledHotfixesData

This list can be useful to help determine when the behavior of the AmCache changed on a system since it evolves
by applying Windows Update KB2952664 or KB2976978 depending on what version of Windows is installed.
GeneralTelemetry then lists every service on the system, running or not, at the time FullCompatReport.xml

was last updated. An example is shown in Listing 4.3.

<ServicesQuery >
[. . .]
< Serv icesData Name=”PcaSvc ” State =”Running” StartMode=”Auto” PathName=” svchos t . exe −k

LocalSystemNetworkRestricted ” DisplayName=” Serv i ce de l ’ A s s i s t an t Compat ib i l i té des programmes”>
< / Serv icesData >

[. . .]
< / ServicesQuery >

������� 4.3: Extract of FullCompatReport.xml: ServicesQuery

The attributes for this element provides the analyst with the name of the service (Name), but also which command
it executes (PathName) and the current state of the service (State). Besides the obvious forensic utility, this could
be used to determine if the AmCache was fully functional at the time of FullCompatReport.xml edition, since it
is mainly controlled by two services : AeLookupSvc and PCASvc.

4.3.2. ProgramUseList

This list seems to record the execution count for every EXE file executed on the system, not just the shimmed ones.
Data provided in this list seems reliable according to experiments, provided the analyst keeps in mind that it is
compiled at the time of the last report edition. Everything occuring afterwards is not taken into account. Such
worthy information is not featured in AmCache.hve. An example is shown in Listing 4.4 for cmd.exe, which is not
shimmed and as such not present in AmCache.hve.

<ProgramUseList SnapshotTime=” 01 /15 /2019 10 : 0 2 : 3 5 ”>
[. . .]
<ProgramUse Id=”0000 f519feec486de87ed73cb92d3cac802400000000 ”>

[. . .]
< F i leUse Name=”CMD. EXE” Id=” 00007 c3d7281e1151fe4127923f4b4c3cd36438e1a12 ”>

<LaunchInfo LaunchId=”4A81B364” LaunchCount=”12” FirstLaunchTime=” 05 /24 /2018 08 : 3 1 : 1 7 ”
LastLaunchTime=” 01 /15 /2019 10 : 0 2 : 2 5 ”>

< / LaunchInfo>
< / F i leUse >
[. . .]

< / ProgramUse>
[. . .]

< / ProgramUseList >

������� 4.4: Extract of FullCompatReport.xml: ProgramUseList

In the example, the analyst can determine that at the time of the snaphost, cmd.exe was launched 12 times, the
first time being on the 05/24/2018 at 08:31:17 (UTC) and the last time being on the 01/15/2019 at 10:02:25 (UTC).

4.4. Examples of possible uses during a forensic investigation

The artifacts created by this version of the libraries can be interpreted as detailed in Section 3.6.
The new file, FullCompatReport.xml, features essential data that was absent in previous version of the AmCache:

an analyst can now determine when a hotfix was installed on the system, all registered services and, for every EXE
file, the number of times it was executed, along with the first and last execution time. However, an investigator
studying this file should be aware that FullCompatReport.xml is being updated by both ProgramDataUpdater and
Microsoft Compatibility Appraiser, which implies that the information it contains pertains to the last run of
one of the tasks.

25/07/2019 Page 26 of 66

Analysis of the AmCache

5. Behavior of libraries originally packaged with Windows 10 version
1507 (Threshold 1)

This chapter describes the behavior of the version 10.0.10240.16384 of the libraries, as seen on Windows Thresh-
old 1 ”out-of-the-box”. One change that appeared with this version is the disappearance of both aepdu.dll and the
AeLookupSvc service. The first one seems to have been replaced by generaltel.dll, whereas the second one seems to
have been replaced by the DiagTrack service. Moreover, twofiles aremissing in this version: FullCompatReport.xml
and PropCache.bin.

5.1. General behavior

When executing a PE, the service DiagTrack, which executes ”%WinDir%\system32\svchost.exe -k utcsvc”,
checks whether the PE needs shimming. If it does, the service stores information about the PE in AmCache.hve. If
the executed PE is an installer for a program, and whether it needs shimming or not, it is handled by a different
service: PCASvc, which executes ”%WinDir%\system32\svchost.exe -k LocalSystemNetworkRestricted”. This
service runs ”%WinDir%\system32\runddl32.exe aeinv.dll,UpdateSoftwareInventory”. This dll creates a TXT
file in %WinDir%\AppCompat\Programs\Install which is then rewritten into an XML file in the same directory.
This XML file records the installation process. Moreover, it updates AmCache.hvewith information about the newly
installed program and the files the installation created.

With the disappearance of aepdu.dll, the scheduled tasks ProgramDataUpdater and Microsoft Compatibility
Appraiser respectively run ”%WinDir%\system32\rundll32.exe generaltel.dll,RunTelemetry -maintenance”
and ”%WinDir%\ system32\rundll32.exe generaltel.dll,RunTelemetryW”. While Microsoft Compatibility
Appraiser does not seem to do anything related to the AmCache, the XML file it previously updated having disap-
peared, ProgramDataUpdater updates both AmCache.hve and AEINV_AMI_WER. Moreover, it deletes the content of
the Install directory.

5.2. AmCache.hve

In this version, Microsoft added three keys in AmCache.hve: Device, HwItem and Metadata. In our tests, those three
keys are always empty. The Generic key, which previously recorded the drivers, is also empty.

The most significant change made to the File key is that it no longer seems to store non-GUI PEs, except when
they are part of a program or when they exhibit ”Microsoft Operating System” as their ProductName. For the
last case and as opposed to what was described in Subsection 3.2.1, the File key associated with PEs exhibiting
”Microsoft Operating System” as their ProductName does here seem to have a last write time coinciding with their
first execution time.

The Program key has five new possible values: 14, 15, 16, 17 and 18. The new entry for Wireshark is shown in
Fig. 5.1.

Fig. 5.1.: Content of AmCache.hve\Root\Programs\0000921afeb3034fbdd2ab91b80731a65ab20000ffff

None of the meanings of those values have been found yet. The 16 value seems to have different information in

25/07/2019 Page 27 of 66

Analysis of the AmCache

it depending on the program. For Wireshark, the value contains a binary data that is shown in Fig. 5.2. It seems to
contain a SHA-1 that could not be associated with any file on the system.

Fig. 5.2.: Content of the value 16 of AmCache.hve\Root\Programs\0000921afeb3034fbdd2ab91b80731a65ab20000ffff\16

For Microsoft Visual C++, the value contains the same SHA-1 along with a UTF-16 string representing the frame-
work of the application, as shown in Fig. 5.3.

Fig. 5.3.: Content of the value 16 of AmCache.hve\Root\Programs\0000d3fc44d32f67b84f3fb101f050fcdeac00000904

5.3. Examples of possible uses during a forensic investigation

Like in the previous version, proof of the presence of a PE can be found in AmCache.hve under the File key.
Furthermore, for the PE that is not part of a program, this is also a proof of execution. As for the last modification
date of a registry File key, it corresponds with a run of ProgramDataUpdater more often than not. Indeed, and
unlike what was described in previous versions, it seems that the only time when the modification date coincides
with the execution date is if the PE was executed between the last run of ProgramDataUpdater and the retrieval of
AmCache.hve or if the PE has a 16 value equal to 1. While not limited to those, this value is set to 1 for all PEs that
are part of Microsoft Operating System. The meaning of this value remains unknown.

Installed programs are listed under the Programs key in AmCache.hve and can also be found in the Install
directory, if ProgramDataUpdater has not run yet, and in AEINV_AMI_WER.

As for drivers, even though the Generic key inside AmCache.hve is empty, an analyst can rely on AEINV_AMI_WER
to get the list of installed drivers.

6. Behavior of libraries originally packaged with Windows 10 version
1511 (Threshold 2)

This chapter describes the behavior of the version 10.0.10586.71 of the libraries, as seen on Windows Threshold 2
”out of the box”. This version comes with two changes: AEINV_AMI_WER is no longer present on the system, leaving
only the XML files inside the Install directory and AmCache.hve. The second change is the replacement of the dll
launched by the scheduled tasks, generaltel.dll, with an exe file: compattelrunner.exe.

6.1. General behavior

When executing a PE, the service DiagTrack checks whether the PE needs shimming. If it does, the service
stores information about the PE in AmCache.hve. If the executed PE is an installer for a program, and whether
it needs shimming or not, it is handled by a different service: PCASvc. This service runs ”%WinDir%\system32\
compattelrunner.exe -m:aeinv.dll -f:UpdateSoftwareInventory”. TheDLL aeinv.dll updates AmCache.hve

25/07/2019 Page 28 of 66

Analysis of the AmCache

and creates a TXT file in %WinDir%\AppCompat\Programs\Install which is then rewritten into an XML file in the
same directory. This XML file records the installation process.

With the removal of generaltel.dll, the scheduled tasks ProgramDataUpdater and Microsoft Compatibility
Appraiser now respectively launch ”%WinDir%\system32\compattelrunner.exe -maintenance” and ”%WinDir%\
system32\compattelrunner.exe”. Neither AmCache.hve nor any XML file seem to be updated by any of the sched-
uled tasks. They do not delete the content of the Install directory either.

6.2. AmCache.hve

In this version, there does not seem to be a difference in the content of AmCache.hve but there is one in its interpre-
tation. Indeed, the fact that neither ProgramDataUpdater nor Microsoft Compatibility Appraiser update the
subkeys in the File key has two important consequences. Firstly, the SHA-1 of the PEs that are part of a program
is often missing because, as seen in Subsection 3.2.1, this value was most frequently filled by the scheduled tasks.
Secondly, the last write time of the subkey coincides with either the first time of execution of the PE or the time of
installation of the program.

The format of the Orphan key does not change and can still be used to determine if a PE is part of a program or
not, as explained in Section 3.2.3: if it is referenced in this key, it should be considered as a standalone PE.

6.3. Examples of possible uses during a forensic investigation

In this version of the AmCache, all XML files except the ones under %WinDir%\AppCompat\Programs\Install dis-
appeared. This implies that only the uses described in Section 3.6 involving AmCache.hve or the INSTALL files can
apply. These are quickly recalled here. Evidence of the presence of a binary file can be found under the File key
in AmCache.hve. Moreover if the PE is not part of a program, which can be checked with the Orphan key, it proves
that it was executed, as explained in 6.2. AmCache.hve can be used to determine when a program was installed
and when it was removed, the information being recorded in one of the values of the Programs key. Since this key
retains the list of PE files under an installation folder, pinpointing a PE file that has been added to an installation
folder is still possible by comparing the content of the key with the current content of the installation directory.

With the disappearance of PropCache.bin in the previous version and AEINV_AMI_WER in this one, no information
pertaining to driver installation can be retrieved in this version.

Regarding the last write time of subkeys under the File key in AmCache.hve, it coincides with either the time of
execution or the time of installation of the program, since the scheduled tasks no longer update AmCache.hve.

7. Behavior of libraries originally packaged with Windows 10 version
1607 (Redstone 1)

This chapter describes the behavior of the version 10.0.14913.1002 of the libraries, as seen on Windows Redstone
1 ”out-of-the-box”. This version comes with a major change in behavior for AmCache.hve and a new XML file,
APPRAISER_FileInventory.xml.

7.1. General behavior

When executing a PE, the service DiagTrack checks whether the PE needs shimming. If it does, the service stores
information about the PE in AmCache.hve. If the executed PE is an installer for a program and whether it needs
shimming or not, it is handled by the service PCASvc. This service performs exactly the same actions as seen previ-
ously in 6.1.

Unlike the previous version, the two scheduled tasks ProgramDataUpdater and Microsoft Compatibility
Appraiser both updates AmCache.hve. In addition, Microsoft Compatibility Appraiser updates a new file,
APPRAISER_ FileInventory.xml, located under %WinDir%\appcompat\appraiser.

7.2. APPRAISER_FileInventory.xml

APPRAISER_FileInventory.xml contains information about EXE files that are under specific folders. In tests, the
listed folders were always the same and are shown in Fig 7.1, but only two of them actually recorded EXE files:
C:\Program Files and C:\Program Files (x86), even though the other folders did contain EXE files. It is interest-
ing to note however, that the EXE files did not need to be executed to be listed in APPRAISER_FileInventory.xml.

25/07/2019 Page 29 of 66

Analysis of the AmCache

<ScannedPaths>
<PathEntry name=”C: \ ProgramData \ Microsof t \Windows \ S t a r t Menu” / >
<PathEntry name=”C: \ Users \ Publ ic \ Desktop” / >
<PathEntry name=”C: \ Program F i l e s ”>

[. . .]
< F i l e Name=”Wireshark . exe ” BinaryType=”PE64_AMD64” Created=” 11 /28 /2018 18 : 4 0 : 0 2 ” Modified=”

11 /28 /2018 18 : 4 0 : 0 2 ” S ize =”0x0000000000754AA8” LowerCaseLongPath=” c : \ program f i l e s \ wireshark \
wireshark . exe ” LongPathHash=”0000 cf4a8522cabda2c91c44e2510550f58b6983cdd5 ” / >

< / PathEntry >
<PathEntry name=”C: \ Program F i l e s (x86) ”>
< / PathEntry >
<PathEntry name=”C: \Windows \ system32 ” / >

< / ScannedPaths>

������� 7.1: Content of APPRAISER_FileInventory.xml

7.3. AmCache.hve

AmCache.hve contains eight new keys:

• InventoryDriverBinary;

• InventoryDriverPackage;

• DeviceCensus;

• InventoryDeviceMediaClass;

• InventoryDeviceContainer;

• InventoryDevicePnp;

• InventoryApplication;

• InventoryApplicationFile.

Much of the new information could previously be found in FullCompatReport.xml, which no longer exists in this
version, such as data about the OS version installed, recorded in DeviceCensus, and the devices that were plugged
in on the system, recorded in InventoryDeviceContainer and InventoryDevicePnp.

Just as the previous version, described in Section 6.2, the keys Device, HwItem, Metadata and Generic are empty.
However, the drivers, which were previously listed in Generic, are now under InventoryDriverBinary and are
recorded by Microsoft Compatibility Appraiser. In this key, each entry is named after the SHA-1 of the
driver, preceded by ’0000’, and the subkey representing the driver now contains the same data as previously seen in
AEINV_AMI_WER, as shown in Fig. 7.1 for 1394ohci.sys.

Fig. 7.1.: AmCache.hve\Root\InventoryDriverBinary\0000895407cb018368e62fc360b972a8b0da7e729662

25/07/2019 Page 30 of 66

Analysis of the AmCache

Unlike previous versions of AmCache.hve, the values are self-explanatory, except for DriverTimestamp, which is
the compilation date, in UNIX format.

One of the major changes undergone by AmCache.hve is the way it records both binaries and programs. Firstly, a
new key, InventoryApplicationFile, only records EXE files that are part of a program. These files are also included
under the File key. This last key is exclusively updated by Microsoft Compatibility Appraiser. Secondly,
regarding program activity, new programs are added under the key Programs solely when ProgramDataUpdater
runs, while it was previously updated by PCASvc at the time of installation of the program. PCASvc now records
the installation of a program in the key InventoryApplication. This key also contains programs installed via an
AppXPackage. As for the uninstallation of a program, the time of uninstallation is recorded in Programs in the b
value, while the program key is just deleted in InventoryApplication.

As in the previous version of the libraries, the last write time of a key in File coincides with the execution time
of a PE that is orphaned. For a PE that is part of a program, it coincides with either the installation time of the
program or the first execution if the PE needed shimming. However, in InventoryApplicationFile, the last write
time of the keys always coincides with an execution of Microsoft Compatibility Appraiser. For a program
installation, the last write time of a key in Programs always coincides with an execution of ProgramDataUpdater,
while the last write time of a key in InventoryApplication coincides with the installation time of the program.

The format of the two new keys is slightly different than File and Programs. Each EXE file is registered in
InventoryApplicationFile under a key named after the SHA-1 of the full path of the binary (in lowercase and in
UTF-16LE), preceded by ’0000’. Like in InventoryDriverBinary, the meaning of the values describing a binary are
straightforward, as shown in Fig. 7.2

Fig. 7.2.: AmCache.hve\Root\InventoryApplicationFile\0000cf4a8522cabda2c91c44e2510550f58b6983cdd5

As for InventoryApplication, each program entry is named after its ProgramId, and the values are once again
easily understandable, as shown in Fig. 7.3.

Fig. 7.3.: AmCache.hve\Root\InventoryApplication\0000c16b47f8ca21d3ca3f3ace1abb7c51e40000ffff

25/07/2019 Page 31 of 66

Analysis of the AmCache

7.4. Examples of possible uses during a forensic investigation

Presence, execution and installation of PE files or programs can be ascertained exactly as for the previous version
of the libraries, described in Section 6.3.

Fortunately for the forensic investigator, this version of AmCache.hve marks the return of the data that was
missing in the previous chapter. Indeed, AmCache.hve records information about the system (OS version, devices
plugged-in, ...) and about installed drivers. However, this data is only updated when Microsoft Compatibility
Appraiser is run.

Up-to-date information about installed programs is now available in InventoryApplication, while the Programs
key is only updated when ProgramDataUpdater runs.

Hunting for hidden binaries under %SystemDrive%\Program Files and %SystemDrive%\Program Files (x86)
is eased by the exhaustive listing of EXE files stored in those folders in APPRAISER_FileInventory.xml. Such
research in other installation folders still relies on the comparison between the list of binaries around the time
of installation of a program (found in AmCache.hve) and the content of the same folder at the time of analysis of
the system.

8. Behavior of libraries originally packaged with Windows 10 version
1709 (Redstone 3)

This chapter details the behavior of the version 10.0.16299.15 of the libraries, as seen on Windows Redstone 3 ”out-
of-the-box”. Once again in this version, new keys have been added to AmCache.hve and a change in the behavior of
the Microsoft Compatibility Appraiser occured.

8.1. General behavior

When executing a PE, the service DiagTrack checks whether the PE needs shimming. If it does, the service stores in-
formation about the PE in AmCache.hve. If the executed PE is an installer for a program and whether it needs shim-
ming or not, it is handled by the service PCASvc. This service runs ”%WinDir%\system32\ compattelrunner.exe
-m:aeinv.dll -f:UpdateSoftwareInventory”. The DLL aeinv.dll updates AmCache.hve but no longer writes
information inside %WinDir%\AppCompat\Programs\Install.

The two scheduled tasks, ProgramDataUpdater and Microsoft Compatibility Appraiser are still present on
the system. While ProgramDataUpdater does not seem to update any XML file nor the hive, the second task,
Microsoft Compatibility Appraiser, exhibits several changes in its behavior. First, the task does not update
APPRAISER_FileInventory.xml every time it runs, rendering the XML file unreliable. However, the information
previously contained in the XML file, i.e. the list of PEs under specific directories, is not lost since the task now adds
the binaries directly in AmCache.hve. From the list of ”ScannedPaths” present in APPRAISER_FileInventory.xml,
only the user’s Desktop folder, C:\Program Files and C:\Program Files (x86) have their EXE files recorded.
As for the last path previously stored in ScannedPaths, C:\ProgramData\Microsoft\Windows\Start Menu, it is
scanned only for LNK files. Those files are added in a new key in AmCache.hve: InventoryApplicationShortcut.

In addition, Microsoft Compatibility Appraiser updates the key InventoryApplication, which contains
every installed application, by rewriting all the entry in the key every time it runs. Finally, if a driver has been
installed on the system since the last run, the task updates an XML file, APPRAISER_TelemetryBaseline_UNV.bin.

8.2. AmCache.hve

AmCache.hve contains five new keys:

• DriverPackageExtended, which only contains two values: ProviderSyncId and ProviderVersion;

• InventoryDeviceInterface, which contains information about sensors found on the computer (accelerom-
eter, orientation,...);

• InventoryDeviceUsbHubClass, which contains the number of USB slots on the computer;

• InventoryApplicationShortcut, which contains information about LNK files found on the computer in the
Start Menu directory;

• InventoryApplicationFramework, which lists the framework a specific application relies on.

The four keys from the first version of AmCache.hve, File, Programs, Generic and Orphan, are all empty. The
information contained in those keys is respectively inside InventoryApplicationFile, InventoryApplication

25/07/2019 Page 32 of 66

Analysis of the AmCache

and InventoryDriverBinary. As for Orphan, the content of this key is not mapped anywhere in the version of
AmCache.hve.

Some changes occurred in the naming of the keys. Indeed, the subkeys under InventoryApplicationFile are
now of the form filename and a hash, separated by the character ’|’. The algorithm for the hash could not be found
but seems to be based on at least the filename and the path of the binary. Indeed, on two different systems, two
different versions of a binary with the same filename and path results in the same hash. The name of the keys under
InventoryDriverBinary have also changed and is now the full path of the installed driver instead of the SHA-1 of
the driver. Luckily, that information is still inside the hive under the value DriverId, as shown in Fig 8.1.

Fig. 8.1.: AmCache.hve\Root\InventoryDriverBinary\c:/windows/system32/drivers/1394ohci.sys

In addition, several new values have been added to binaries under InventoryApplicationFile, as seen in Fig. 8.2

• Size is now stored as a 64-bit number (REG_QWORD) integer instead of a string representing its hexadecimal
value;

• Name, the filename of the binary;

• Publisher;

• Version;

• BinFileVersion;

• ProductName;

• ProductVersion;

• LinkDate;

• BinProductVersion;

• Language;

• IsPeFile;

• IsOsComponent.

LNK files are now listed in InventoryApplicationShortcut, although the only information contained in each
subkeys is the full path of the LNK. An example is shown in Fig 8.3.

25/07/2019 Page 33 of 66

Analysis of the AmCache

Fig. 8.2.: AmCache.hve\Root\InventoryApplicationFile\wireshark.exe|8f0f02f3

Fig. 8.3.: AmCache.hve\Root\InventoryApplicationShortcut\wireshark.lnk|ee4ba020

8.3. APPRAISER_Telemetry_UNV.bin

The format of this file is not fully understood yet. The file seems to list every installed driver along with information
about the driver like its description, its provider... It does not seem to contain information not already found in
AmCache.hve, which is why the study of this file has not been pushed further.

8.4. Examples of possible uses during a forensic investigation

In this version of the AmCache, all the useful information can be found in one file: AmCache.hve. Since the list
of installed programs and the list of binaries are updated in two very different ways, the usage is slightly different
from previous versions.

The list of installed programs can be found under InventoryApplication. This key is updated every time
Microsoft Compatibility Appraiser runs, which implies that the last modification date of the registry key
is not the date of installation of the program. However, this information can be found inside the hive, in a value
called InstallDate, although its precision is only up to the day. Moreover, deleted programs no longer appear in
AmCache.hve, which implies that all the programs listed were installed at the moment Microsoft Compatibility
Appraiser ran.

The key containing the information related to PEs is InventoryApplicationFile. It seems to list three categories
of PEs: executed shimmed EXE files with a GUI, EXE or SYS files that come with the installation of a program and
EXE files that are present in one of the directories scanned by Microsoft Compatibility Appraiser (Program
Files, Program Files x86 and Desktop). The execution of a PE appearing under this key can only be ascertained
if the PE is in the first category. For these, the last write time of the subkeys corresponds to the first execution date.
For the other PEs, the last write time of the subkeys is either the time of execution or the date of the first run of
Microsoft Compatibility Appraiser after the PE appeared, whichever comes first.

Hunting for illegitimate EXE or SYS files inside Program Files and Program Files (x86) is easier in this
version. An analyst would have to put together all the InventoryApplicationFile entries for binaries under the
same program directory and compare the last modification time of the registry keys to see if one is different.

Finally, information about installed drivers can be found under InventoryDriverBinary. This information is
only updated by Microsoft Compatibility Appraiser.

25/07/2019 Page 34 of 66

Analysis of the AmCache

9. Behavior of libraries originally packaged with Windows 10 version
1803 (Redstone 4) and Windows 10 version 1807 (Redstone 5)

This chapter details the behavior of the version 10.0.17134.1 of the libraries, as seen on Windows Redstone 4 ”out-
of-the-box”. This version ends the transition between the first format of AmCache.hve, with the File and Programs
keys and the new one, with InventoryApplicationFile and InventoryApplication. It also marks the return of
the Install directory.

This version shares exactly the same behavior as the next one: 10.0.17763.1, present on Windows Redstone 5
”out-of-the-box”.

9.1. General behavior

When executing a PE, the service DiagTrack checks whether the PE needs shimming. If it does, the service stores in-
formation about the PE in AmCache.hve. If the executed PE is an installer for a program and whether it needs shim-
ming or not, it is handled by the service PCASvc. This service runs ”%WinDir%\system32\ compattelrunner.exe
-m:aeinv.dll -f:UpdateSoftwareInventory”. The DLL aeinv.dll updates AmCache.hve and records the instal-
lation process in a TXT file located under %WinDir%\AppCompat\Programs\Install.

The two scheduled tasks, ProgramDataUpdater and Microsoft Compatibility Appraiser, exhibit exactly the
same behavior as in Section 8.1.

9.2. AmCache.hve

In this version, the four keys from the first AmCache.hve, File, Programs, Orphan and Generic have been deleted,
marking the end of the transition to their new counterparts: InventoryApplicationFile, InventoryApplication
and InventoryDriverBinary.

Eleven new keys have appeared in this version:

• InventoryApplicationAppV;

• InventoryApplicationDriver;

• InventoryMiscellaneousOfficeAddIn;

• InventoryMiscellaneousOfficeIdentifiers;

• InventoryMiscellaneousOfficeIESettings;

• InventoryMiscellaneousOfficeInsights;

• InventoryMiscellaneousOfficeProducts;

• InventoryMiscellaneousOfficeSettings;

• InventoryMiscellaneousOfficeVBA;

• InventoryMiscellaneousOfficeVBARuleViolations;

• InventoryMiscellaneousUUPInfo.

The InventoryApplicationAppV has always been seen empty.
The InventoryApplicationDriver key lists every driver specifically installed by an application. It contains two

values: DriverServiceName, which is the name of the service the driver installed, and ProgramIds, which is a
list of every program id (the key name under InventoryApplication) that installed this driver. For example, the
installation of Wireshark triggers the installation of the npcap driver. The view of the key related to this driver is
shown in Fig 9.1. The value ProgramIds referenced two different programs: Wireshark and Microsoft Visual C++
2017 Redistributable (x64) that was installed along with Wireshark.

The other keys are for storing information about the Office Suite (the installed add-in, the Office related Internet
Explorer features...) or the Unified Update Platform. As it seems outside the scope of this research, those keys and
the information they contained have not been researched in depth. Some information pertaining the content of
those keys can be found in the Microsoft documentation1.

1https://docs.microsoft.com/en-us/windows/privacy/basic-level-windows-diagnostic-events-and-fields-1803#
inventory-events

25/07/2019 Page 35 of 66

https://docs.microsoft.com/en-us/windows/privacy/basic-level-windows-diagnostic-events-and-fields-1803#inventory-events
https://docs.microsoft.com/en-us/windows/privacy/basic-level-windows-diagnostic-events-and-fields-1803#inventory-events

Analysis of the AmCache

Fig. 9.1.: AmCache.hve\Root\InventoryApplicationDriver\npcap

9.3. Install Directory

This folder contains TXT files that records the installation of some programs. The reasonwhy some installations gets
recorded and some not has not been found yet: tests in a controlled environment did not allow to see a difference
between a program installation that gets recorded (Wireshark, 7Zip) and one that does not (Virtual Box Guest
Additions), but the behavior seems to be consistent across different machines.

For each recorded installation, there seems to be a changing number of files created depending on if the installa-
tion results in one or more Uninstall registry keys. For instance, the installation of Wireshark triggers the creation
of three programs (three Uninstall keys): Wireshark, Npcap and C++. This causes the creation of four TXT files:
one for each newly installed program, whose filenames respectively starts with INSTALL_0000, INSTALL_0001 and
INSTALL_0003 and one to gather everything, whose filename starts with INSTALL_ffff.

The files are plain text files with key-value pairs. In the previous versions where those files existed, although it
was XML files, they contained information about the installer (its path, SHA-1,...), the time the installation process
started and stopped, and the program identifier. Now, the TXT version of those files contain the same information
along with the list of every PE file created on the system related to the installation and the path of the Uninstall
registry key of the program. An example is shown in 9.1. Some keys being reused, the position of the key inside
the file is important: for instance, there are three Id keys in the example, the first being the SHA-1 of the installer
and the other two being undefined.

StartTime=07/01/2019 23:49:22
Name=Wireshark−win64−3.0.1.exe
Path=C:\Users\Lambda\Documents
Size=0x38c5e90
Magic=0x10b
SizeOfImage=0x8c000
PeChecksum=0x38cd22d
LinkDate=01/30/2018 03:57:38
LinkerVersion=6.0
BinFileVersion=3.0.1.0
BinProductVersion=3.0.1.0
BinaryType=PE32_I386
Created=05/09/2019 12:45:21
Modified=05/09/2019 12:45:21
LastAccessed=07/01/2019 16:44:12
VerLanguage=1033
Id=0000a067b99a6acc5dc5b1a6f25ebc3ceabe03d6f0fb
FileVersion=3.0.1.0
CompanyName=Wireshark development team
FileDescription=Wireshark installer for 64−bit Windows
LegalCopyright=© Gerald Combs and many others
ProductName=Wireshark
ProductVersion=3.0.1.0
PeImageType=0x14c
PeSubsystem=2
CrcChecksum=0x4fd2618
FileSize=0x00000000038C5E90
LongName=Wireshark−win64−3.0.1.exe
LongName=Wireshark−win64−3.0.1.exe
Id=00
MsiProductCode={C99E2ADC−0347−336E−A603−F1992B09D582}
MsiPackageCode={1C423F21−E891−44F3−8FE9−E37D44470EF1}
LongName=Wireshark−win64−3.0.1.exe
Id=00
MsiProductCode={2CD849A7−86A1−34A6−B8F9−D72F5B21A9AE}
MsiPackageCode={6D0A1ACD−F1C9−464F−8C70−F10295482CBE}
MsiDetected=1
FileCreate=C:\Program Files\Wireshark\uninstall.exe
FileCreate=C:\Program Files\Wireshark\libwiretap.dll
[...]
FileCreate=C:\Program Files\Wireshark\rawshark.exe
FileCreate=C:\Program Files\Wireshark\mmdbresolve.exe
ArpCreate=SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Uninstall\{e2ee15e2−a480−4bc5−bfb7−e9803d1d9823}
ArpCreate=SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Uninstall\Wireshark
ArpCreate=SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Uninstall\NpcapInst

25/07/2019 Page 36 of 66

Analysis of the AmCache

StopTime=07/01/2019 23:50:44

������� 9.1: Content of INSTALL_ffff_f2fb886d-3422-427b-ab5d-58d0648f6d80.txt

9.4. Examples of possible uses during a forensic investigation

All the uses detailed in the previous version remains effective in this one. They are described in 8.4. In addition,
one of the new key, InventoryApplicationDriver, can provide context on a driver installation and be used to help
alleviate doubts on a suspicious driver.

The fact that the Install files are available once again implies that this version provides a more precise installation
date and information about deleted programs. In those TXT files, the list of every new file added by a program
installation includes DLLs which are not recorded in the key InventoryApplicationFile in AmCache.hve. This
information can help pinpoint malicious DLLs added inside a program install directory by comparing the list to the
current content of the directory.

10. Conclusion
This article is aimed at providing means for an analyst to reliably interpret the AmCache. To do so, it explores in
details the various files left behind by either a service (AeLookupService, PCASvc or DiagTrack) or a scheduled task
(ProgramDataUpdater or Microsoft Compatibility Appraiser). The majority of those files were never publicly
researched even though they do not only show proof of execution, but also of program installation or removal, and
of driver installation. They can even sometimes allow to pinpoint an unusual PE hidden in an installation folder.
Furthermore, the examination of these files provides a mean to retrieve more information than when only looking
at the Amcache hive - which appears with Windows 8. For instance, the list of installed programs was recorded
starting with the first version of AmCache.hve, in Windows 8, but was available before, in AEINV_PREVIOUS.xml or
AEINV_WER. The same goes for the drivers, that were recorded in the AmCache.hve starting with Windows 10, while
their list was already present in Windows 8 and 8.1, in AEINV_AMI_WER.

This article also shows that it is important to keep in mind that the behavior of the AmCache is dictated by
versions of libraries and not by the OS version of the system. This is especially relevant for two reasons. The
first is that, when investigating an older system that could have undergone several upgrades, there could still be
traces of the files of previous AmCache versions. The second is that Microsoft keeps changing the behavior of the
AmCache, and while some changes are minor (like a change in a key name), some have bigger repercussions, like
not storing the non-GUI executables or DLLs anymore. They can also have consequences on the interpretation of
the information: for instance, the last write date of the keys in AmCache.hve. In some versions of the AmCache, it
almost never corresponds to the date of execution of the PE, whereas in recent versions, it does more frequently.
This paper highlights the extreme complexity of the inner workings of the Shim infrastructure, and the difficulties
it yields for a forensic examiner to interpret artifacts in a sound manner. A lot of experiments have been carried
out to confirm the meaning of the presence of an element in a file or a registry key. However, it is important that
the reader keeps in mind two facts. Firstly, they remain experiments rather than source code analysis. Secondly, as
is often the case in forensics, only the presence of an element should be relied on to draw a conclusion according
to these artifacts. Reasoning on the absence of an element seems beyond the scope of the tests performed for this
work.

Finally, as more and more information is stored in recent versions of the AmCache, it no longer only stores
information about executed PE or installed programs. Hence, it seems relevant to continue studying this artifact.
This will certainly prove quite beneficial to the digital forensics community.

25/07/2019 Page 37 of 66

Analysis of the AmCache

A. Artifact location summary

Table A.1.: Artifacts
Version Artifacts
6.1.7600 and 6.1.7601 %WinDir%\AppCompat\Programs\RecentFileCache.bcf

%WinDir%\AppCompat\Programs\AEINV_PREVIOUS.xml
%WinDir%\AppCompat\Programs\
AEINV_WER_{MachineId}_YYYYMMDD_HHmmss.xml

6.2.9200 and
6.3.9600.16384 %WinDir%\AppCompat\Programs\AmCache.hve

%WinDir%\AppCompat\Programs\AEINV_PREVIOUS.xml
%WinDir%\AppCompat\Programs\
AEINV_AMI_WER_{MachineId}_YYYYMMDD_HHmmss.xml
%WinDir%\AppCompat\Programs\Install\INSTALL_ffff_*.xml
%WinDir%\AppCompat\Programs\DevInvCache\PropCache.bin

6.3.9600.17415 %WinDir%\AppCompat\Programs\AmCache.hve
%WinDir%\AppCompat\Programs\AEINV_PREVIOUS.xml
%WinDir%\AppCompat\Programs\
AEINV_AMI_WER_{MachineId}_YYYYMMDD_HHmmss.xml
%WinDir%\AppCompat\Programs\FullCompatReport.xml
%WinDir%\AppCompat\Programs\Install\INSTALL_ffff_*.xml
%WinDir%\AppCompat\Programs\DevInvCache\PropCache.bin

10.0.10240 %WinDir%\AppCompat\Programs\AmCache.hve
%WinDir%\AppCompat\Programs\
AEINV_AMI_WER_{MachineId}_YYYYMMDD_HHmmss.xml
%WinDir%\AppCompat\Programs\Install\INSTALL_ffff_*.xml

10.0.10586 %WinDir%\AppCompat\Programs\AmCache.hve
%WinDir%\AppCompat\Programs\Install\INSTALL_ffff_*.xml

10.0.14913 %WinDir%\AppCompat\Programs\AmCache.hve
%WinDir%\AppCompat\Programs\Install\INSTALL_ffff_*.xml
%WinDir%\AppCompat\Programs\appraiser\
APPRAISER_FileInventory.xml

10.0.16299 %WinDir%\AppCompat\Programs\AmCache.hve
%WinDir%\AppCompat\Programs\appraiser\
APPRAISER_FileInventory.xml
%WinDir%\AppCompat\Programs\appraiser\
APPRAISER_TelemetryBaseline_UNV.bin

10.0.17134 %WinDir%\AppCompat\Programs\AmCache.hve
%WinDir%\AppCompat\Programs\Install\INSTALL_*.txt
%WinDir%\AppCompat\Programs\appraiser\
APPRAISER_TelemetryBaseline_UNV.bin

10.0.17763 %WinDir%\AppCompat\Programs\AmCache.hve
%WinDir%\AppCompat\Programs\Install\INSTALL_*.txt
%WinDir%\AppCompat\Programs\appraiser\
APPRAISER_TelemetryBaseline_UNV.bin

25/07/2019 Page 38 of 66

Analysis of the AmCache

B. AmCache.hve registry keys summary
We recall that in the following table, an installed program is an application that should have either an Uninstall
or a Run key in the SOFTWARE hive.

Table B.1.: AmCache.hve registry keys

Registry key Content Appears
with Changes with

File

Metadata about PEs if they are:
shimmed and executed or the in-
staller of a program or created on
the system following a program in-
stallation.
Described in 3.2.1

6.2.9200.16384 Emptied with 10.0.16299
Deleted with 10.0.17134

Programs
Metadata about installed (and
uninstalled) programs
Described in 3.4 and in 7.3

6.2.9200.16384
Changed with 10.0.14913
Emptied with 10.0.16299
Deleted with 10.0.17134

Orphan
References the executed PEs that
are recorded in File but not part of
a program. Described in 3.2.3

6.2.9200.16384 Emptied with 10.0.16299
Deleted with 10.0.17134

Generic
SHA-1 of installed driver, without
its name.
Described in 3.2.4

6.2.9200.16384 Emptied with 10.0.16299
Deleted with 10.0.17134

Device Always seen empty 10.0.10240 Deleted with 10.0.17134
HwItem Always seen empty 10.0.10240 Deleted with 10.0.17134
Metadata Always seen empty 10.0.10240 Deleted with 10.0.17134

InventoryDriverBinary Metadata about installed drivers.
Described in 7.3 10.0.14913

InventoryDriverPackage 10.0.14913
DeviceCensus Data about the OS 10.0.14913
InventoryDeviceMediaClass 10.0.14913
InventoryDeviceContainer 10.0.14913
InventoryDevicePnp Devices plugged in on the system 10.0.14913

InventoryApplication
Content is the same as Programs
key.
Described in 7.3 and in 8.1

10.0.14913 Changed in 10.0.16299

InventoryApplicationFile

Metadata about EXEs if they are
shimmed, executed and have a GUI
or if they are in scanned directories.
It also records metadata about EXE
and SYS files if theywere created on
the system following a program in-
stallation.
Described in 7.3 and in 8.2

10.0.14913 Changed with 10.0.16299

DriverPackageExtended 10.0.16299

InventoryDeviceInterface Information about sensors found
on the computer 10.0.16299

InventoryDeviceUsbHubClass Lists the USB slots on the computer 10.0.16299

InventoryApplicationShortcut Lists LNK files found on the com-
puter 10.0.16299

InventoryApplicationFramework Lists the frameworks an application
relies on 10.0.16299

InventoryApplicationAppV 10.0.17134

InventoryApplicationDriver
Links a driver with the program
with which it was installed.
Described in 9.2

10.0.17134

InventoryMiscellaneousOffice
AddIn 10.0.17134

25/07/2019 Page 39 of 66

Analysis of the AmCache

InventoryMiscellaneousOffice
Identifiers 10.0.17134

InventoryMiscellaneousOffice
IESettings 10.0.17134

InventoryMiscellaneousOffice
Insights 10.0.17134

InventoryMiscellaneousOffice
Products 10.0.17134

InventoryMiscellaneousOffice
Settings 10.0.17134

InventoryMiscellaneousOffice
VBA 10.0.17134

InventoryMiscellaneousOffice
VBARuleViolations 10.0.17134

InventoryMiscellaneousUUPInfo 10.0.17134

C. RecentFileCache.bcf structure
The general structure of the file is described in Fig. C.1. The Fixed field is always ”0xFEFFEEFF 11220000 03000000
01000000”. The path are in UTF-16 LE and Size is the number of characters (so twice the number of bytes), not
counting the ending ’\00’. This goes on until the end of file, but the number of paths is not present in the header.

0 4 8 12 16

Fixed

Unknown Size PATH 1

· · ·

...

PATH N

· · ·

Fig. C.1.: RecentFileCache.bcf byte structure

D. AEINV_PREVIOUS.xml structure
<Log> <!−− Version of the ae<...>.dll libraries −−>
<ProgramList> <!−− List of installed programs −−>
<Program> <!−− One entry by program. Attributes are described in Table C.1 −−>
<StaticProperties>
<Files /> <!−− Unknown −−>

</StaticProperties>
</Program>
[...]

</ProgramList>
<IEAddOnList> <!−− List of installed add−ons for Internet Explorer −−>
<IEAddOn> <!−− One entry by add−on. Attributes are described in Table C.2 −−>
<File /> <!−− Information about the PE that provides the add−on. Attributes are described in Table C.3 −−>

</IEAddOn>
[...]

</IEAddOnList>
</Log>

������� D.1: Generic structure of AEINV_PREVIOUS.xml

25/07/2019 Page 40 of 66

Analysis of the AmCache

Table D.1.: Program attributes
Attribute Description Example

Id Unknown Id=”0000354384b2dbc2f6b2dc9dec22174dcf510000ffff”

MsiProductCode MsiProductCode=”{C3CC4DF5−39A5−4027−B136−2B3E1F5AB6E2}”

MsiPackageCode MsiPackageCode=”{AE5CF7E6−1FAD−47DF−A41F−3261FBF6B305}”

Name Name=”Wireshark 2.6.5 32−bit”

Publisher Publisher=”The Wireshark developer community, https://www.wireshark.org”

Version Version=”2.6.5”

Language Microsoft Language Id, in dec-
imal (1033 for en-us)1

Language=”1033”

Source

Msi or AddRemoveProgram, de-
pending on whether the pro-
gram was installed by execut-
ing an MSI or a PE.

Source=”AddRemoveProgram”

Table D.2.: IEAddOn attributes
Attribute Description Example

CLSID CLSID=”{19916E01−B44E−4E31−94A4−4696DF46157B}”

Name Name=”InformationCardSigninHelper Class”

Type
Observed values: ActiveX,
BrowserHelperObject and
BrowserExtension

Type=”ActiveX”

Publisher Publisher=”Microsoft Corporation”

Table D.3.: File attributes
Attribute Description Example
1https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings

25/07/2019 Page 41 of 66

https://docs.microsoft.com/en-us/windows/desktop/intl/language-identifier-constants-and-strings

Analysis of the AmCache

Id SHA-1 preceded by ’0000’ Id=”0000d8b095849b5172e07dff1562bad89f37037bf951”

Name Name=”icardie.dll”

E. AEINV_WER structure
<Report> <!−− Information about the file. Attributes are described in Table D.1 −−>
<System /> <!−− Information about the system. Attributes are described in Table D.2 −−>
<ProgramList>
<Installed> <!−− List of installed programs −−>
<Program> <!−− One entry by program. Attributes are described in Table D.3 −−>
<Indicators> <!−− List of installed programs −−>
<RegistryIndicators> <!−− List of Run keys associated with the program −−>
<Registry /> <!−− Information about a Run Key. Attributes are described in Table D.4 −−>

</RegistryIndicators>
<AddRemoveProgramIndicators> <!−− List of Uninstall keys associated with the program −−>
<AddRemoveProgram /> <!−− Information about an Uninstall Key. Attributes are described in Table D.5 −−>

</AddRemoveProgramIndicators>
<ShellIndicators> <!−− List of exe files listed in the Start Menu −−>
<Shell /> <!−− Information about PE. Attributes are described in Table D.6 −−>

</ShellIndicators>
<MsiIndicators> <!−− Information about the MSI file used to install the program −−>
<Msi /> <!−− Information about MSI. Attributes are described in Table D.7 −−>

</MsiIndicators>
<FileExtIndicators> <!−− File extensions that are opened by the program −−>
<FileExtensionHandler /> <!−− Extension. Attributes are described in Table D.8 −−>
[...]

</FileExtIndicators>
<DirectoryIndicators> <!−− Installation folder and sub−folder containing PE file −−>
<Directory /> <!−− Folder. Attributes are described in Table D.9 −−>
[...]

</DirectoryIndicators>
</Indicators>
<StaticProperties>
<Files> <!−− List of PEs under the installation folder and sub−folder. Only contains one attribute: Id −−>
<File /> <!−− PE. Attributes are described in Table D.10 −−>
[...]

</Files>
</StaticProperties>

</Program>
[...]

</Installed>
<Updated> <!−− List of programs where a change occurred in one of its indicators −−>
<Program>
<Indicators>
<RegistryIndicators>
<Registry />

</RegistryIndicators>
<AddRemoveProgramIndicators>
<AddRemoveProgram />

</AddRemoveProgramIndicators>
<ShellIndicators>
<Shell />

</ShellIndicators>
<MsiIndicators>
<Msi />

</MsiIndicators>
<FileExtIndicators>
<FileExtensionHandler />

</FileExtIndicators>
<DirectoryIndicators>
<Directory />

</DirectoryIndicators>
</Indicators>
<StaticProperties>
<Files>

25/07/2019 Page 42 of 66

Analysis of the AmCache

<File />
[...]

</Files>
</StaticProperties>

</Program>
[...]

</Updated>
<Removed> <!−− List of deleted programs −−>
</Removed>
<Orphan> <!−− List of executed PE not in a program install directory −−>
<Program>
<Indicators></Indicators>
<StaticProperties>
<Files>
<File />
[...]

</Files>
</StaticProperties>

</Program>
</Orphan>

</ProgramList>
<IEAddOnList> <!−− Only one attribute : InstanceVersion, which is the version of Internet Explorer installed −−>
<Installed> <!−− List of installed Internet Explorer add−ons −−>
<IEAddOn> <!−− One entry by add−on. Attributes are described in Table D.11 −−>
<File /> <!−− Information about the PE that provides the add−on. Attributes are described in Table D.12 −−>

</IEAddOn>
[...]

</Installed>
</IEAddOnList>
<Installations /> <!−− Always seen empty −−>

</Log>

������� E.1: Generic structure of AEINV_WER

Table E.1.: Report attributes
Attribute Description Example

Version Unknown Version=”1.3”

Timestamp

Finished writing time of the
report after the first execu-
tion of ProgramDataUpdater
in UTC

Timestamp=”12/06/2018 09:43:40”

SequenceNumber Unknown SequenceNumber=”1”

ThrottlingRuleSetGuid Unknown ThrottlingRuleSetGuid=”{F7D0E8C8−2DA8−4889−A910−3DE830B4148F}”

Table E.2.: System attributes
Attribute Description Example

MachineId Same ID that the one in the
filename

MachineId=”{49A35C5F−CCE9−48C7−B6EF−577A36E86135}”

MajorVersion First part of the Windows Ver-
sion Number

MajorVersion=”6”

25/07/2019 Page 43 of 66

Analysis of the AmCache

MinorVersion Second part of the Windows
Version Number

MinorVersion=”1”

ServicePackMajor ServicePackMajor=”1”

ServicePackMinor ServicePackMinor=”0”

BuildNumber BuildNumber=”7601”

Sku
Version of Windows installed
as found in the OperatingSys-
temSKU Enum

Sku=”1”

ProcessorArchitecture 1 for 32-bit, 2 for 64-bit ProcessorArchitecture=”1”

OSPlatform Unknown OSPlatform=”1”

LocaleId decimal value of LocalName LocaleId=”1033”

GeoId GeoId=”244”

Table E.3.: Program attributes
Attribute Description Example

Name Name=”Wireshark 2.6.5 32−bit”

Type Only value seen: ”Applica-
tion”

Type=”Application”

Source

Msi or AddRemoveProgram, de-
pending on whether the pro-
gram was installed by execut-
ing an MSI or a PE

Source=”AddRemoveProgram”

Publisher Publisher=”The Wireshark developer community, https://www.wireshark.org”

Version Version=”2.6.5”

25/07/2019 Page 44 of 66

Analysis of the AmCache

OnSystemDrive Unknown OnSystemDrive=”True”

EvidenceId Starting point for indicators
described below

EvidenceId=”0x22”

Id Unknown Id=”0000354384b2dbc2f6b2dc9dec22174dcf510000ffff”

InstallDate
Date of installation. Only
present for MSI programs and
the time is always 00:00:00

InstallDate=”10/27/2015 00:00:00”

MsiPackageCode MsiPackageCode=”{AE5CF7E6−1FAD−47DF−A41F−3261FBF6B305}”

MsiProductCode MsiProductCode=”{C3CC4DF5−39A5−4027−B136−2B3E1F5AB6E2}”

Table E.4.: Registry attributes
Attribute Description Example

Name Value of the Run key Name=”VBoxTray”

File Filename contained in the
data of the value <Name>

File=”VBoxTray.exe”

RegistryRun
Location of the autostart en-
try: Run, RunOnce, RunOn-
ceEx

RegistryRun=”Run”

UniqueId Unknown UniqueId=”0x2e”

Id Unknown Id=”000000e4ecea2abfce5ca7602d5815f5fe8809e1e59d”

Table E.5.: AddRemoveProgram attributes
Attribute Description Example

DisplayName
Data contained in the
DisplayName value of the
Uninstall key

DisplayName=”Wireshark 2.6.5 32−bit”

CompanyName
Data contained in the
Publisher value of the
Uninstall key

CompanyName=”The Wireshark developer community, https://www.wireshark.org”

25/07/2019 Page 45 of 66

Analysis of the AmCache

ProductVersion
Data contained in the
DisplayVersion value of
the Uninstall key

ProductVersion=”2.6.5”

RegistrySubKey Name of the Uninstall key RegistrySubKey=”Wireshark”

UniqueId
Unknown but same data as
the UniqueId in the Program
attribute

UniqueId=”0x22”

Id Unknown Id=”00000773cfd2b58429384da8a9bea4a99e8bbef55402”

Table E.6.: Shell attributes
Attribute Description Example

ShellName Name displayed in the Start
Menu

ShellName=”Wireshark”

TargetFileName Filename of the file executed TargetFileName=”Wireshark.exe”

UniqueId Unknown UniqueId=”0xa0”

Id Unknown Id=”00008f6fc717280228fa0fe0473fb0c23d38dd23f131”

Table E.7.: MSI attributes
Attribute Description Example

ProductName ProductName=”Python 2.7.6”

CompanyName CompanyName=”Python Software Foundation”

ProductVersion ProductVersion=”2.7.6150”

Language Microsoft Language Id, in dec-
imal (1033 for en-us)

Language=”1033”

ProductCode ProductCode=”{C3CC4DF5−39A5−4027−B136−2B3E1F5AB6E2}”

25/07/2019 Page 46 of 66

Analysis of the AmCache

PackageCode PackageCode=”{AE5CF7E6−1FAD−47DF−A41F−3261FBF6B305}”

InstallDate Installation date, but time is
always 00:00:00

InstallDate=”10/27/2015 00:00:00”

UniqueId Unknown UniqueId=”0xa”

Id Unknown (not the SHA-1 of
the MSI)

Id=”0000f58476f702201e0706cb40cd350aad5cc387c133”

Table E.8.: FileExtensionHandler attributes
Attribute Description Example

Extension Extension=”.5vw”

Name Data in the default value of
HKCR\Classes\<Extension>

Name=”wireshark−capture−file”

File
Filename of the binary that
reads the files with this exten-
sion

File=”Wireshark.exe”

UniqueId Unknown UniqueId=”0xa6”

Id Unknown Id=”0000f100f0a810d3369fb23078ccfccf2a9ae2342793”

Table E.9.: Directory attributes
Attribute Description Example

UniqueId

Records where the folder is lo-
cated in the installation direc-
tory, starting with the installa-
tion directory itself

UniqueId=”0x23”

Id Unknown Id=”00009afdcc213e845b1ed280a8d118317c363e807da5”

Table E.10.: File attributes in the StaticProperties list
Attribute Description Example

25/07/2019 Page 47 of 66

Analysis of the AmCache

Name Filename Name=”capinfos.exe”

Id SHA-1 of the PE, preceded by
’0000’

Id=”00005c5ecbf7d4e969ff50b186109b2c18b47f257365”

ProductName The ”Product name” field
from the file metadata

ProductName=”Capinfos”

CompanyName CompanyName=”The Wireshark developer community”

ProductVersion The ”Product version” field
from the file metadata

ProductVersion=”2.6.5”

VerLanguage Microsoft Language Id, in dec-
imal (1033 for en-us)

VerLanguage=”1033”

ShortName Short name as found in the
MFT

ShortName=”API−MS~1.DLL”

SwitchBackContext Unknown SwitchBackContext=”0x0100000000000600”

FileVersion FileVersion=”2.6.5”

Size Size of the PE in bytes Size=”0x532a8”

SizeOfImage The SizeOfImage field from
the optional header of the PE

SizeOfImage=”0x53000”

PeHeaderHash PeHeaderHash=”01012864b33151873a9ca2d4c0c5e28d87cfb023f0f3”

PeChecksum The Checksum field from the
optional header of the PE

PeChecksum=”0x5fe24”

BinProductVersion BinProductVersion=”2.6.5.0”

BinFileVersion BinFileVersion=”2.6.5.0”

FileDescription The ”Description” field from
the file metadata

FileDescription=”Capinfos”

25/07/2019 Page 48 of 66

Analysis of the AmCache

LinkerVersion

The ”MajorLinkerVersion”
and ”MinorLinkerVersion”
fields combine from the
optional header of the PE

LinkerVersion=”14.12”

LinkDate Compile date in UTC LinkDate=”11/28/2018 18:23:59”

BinaryType 32BIT or 64BIT BinaryType=”32BIT”

Created Creation date in UTC Created=”11/28/2018 18:31:44”

Modified Modification date in UTC Modified=”11/28/2018 18:31:44”

LongPathHash SHA-1 of the full path in low-
ercase, encoded in UTF-16LE

LongPathHash=”0000058d47d0b218994a27e38ea102effc68e3b18ed3”

UniqueId
Records where the file is lo-
cated in the installation direc-
tory

UniqueId=”0x24”

Table E.11.: IEAddOn attributes
Attribute Description Example

Name Name=”XSL Template 3.0”

Type

Values seen : ”ActiveX”,
”BrowserHelperObject”,
”BrowserExtension”, ”Tool-
bar”

Type=”ActiveX”

Publisher Publisher=”Microsoft Corporation”

CLSID CLSID=”{f5078f36−c551−11d3−89b9−0000f81fe221}”

UniqueId Unknown UniqueId=”0x35”

The attributes for the File element in the IEAddOn list are the same as those found in the StaticProperties and
described in Table E.10. The only additional attributes is described in Table E.12

Table E.12.: File attributes in the IEAddOn list
Attribute Description Example

25/07/2019 Page 49 of 66

Analysis of the AmCache

OsComponent OsComponent=”true”

F. AEINV_AMI_WER structure
<Report> <!−− Information about the file. Attributes are described in Table E.1 −−>
<System /> <!−− Information about the system. Attributes are described in Table E.2 −−>
<ProgramList>
<Installed> <!−− List of installed programs −−>
<Program> <!−− One entry by program. Attributes described previously in Table D.3 −−>
<Indicators> <!−− List of installed programs −−>
<RegistryIndicators> <!−− List of Run keys associated with the program −−>
<Registry /> <!−− Information about a Run Key. Attributes described previously in Table D.4 −−>

</RegistryIndicators>
<AddRemoveProgramIndicators> <!−− List of Uninstall keys associated with the program −−>
<AddRemoveProgram /> <!−− Information about an Uninstall Key. Attributes described previously in Table D.5 −−>

</AddRemoveProgramIndicators>
<ShellIndicators> <!−− List of exe files listed in the Start Menu −−>
<Shell /> <!−− Information about PE. Attributes described previously in Table D.6 −−>

</ShellIndicators>
<MsiIndicators> <!−− Information about the MSI file used to install the program −−>
<Msi /> <!−− Information about MSI. Attributes described previsouly in Table D.7 −−>

</MsiIndicators>
<FileExtIndicators> <!−− File extensions that are opened by the program −−>
<FileExtensionHandler /> <!−− Extension. Attributes described previsouly in Table D.8 −−>
[...]

</FileExtIndicators>
<DirectoryIndicators> <!−− Installation folder and sub−folder containg PE file −−>
<Directory /> <!−− Folder. Attributes are described in Table D.9 −−>
[...]

</DirectoryIndicators>
</Indicators>
<StaticProperties>
<Files> <!−− List of PEs under the installation folder and sub−folder. Only contains one attribute: Id −−>
<File /> <!−− PE. Attributes described previously in Table E.3 −−>
[...]

</Files>
</StaticProperties>

</Program>
[...]

</Installed>
<Removed> <!−− List of deleted programs −−>
</Removed>
<Orphan> <!−− List of executed PE not in a program install directory −−>
<Program>
<Indicators></Indicators>
<StaticProperties>
<Files>
<File />
[...]

</Files>
</StaticProperties>

</Program>
</Orphan>

</ProgramList>
<IEAddOnList>
<Installed> <!−− List of installed add−ons for Internet Explorer −−>
<IEAddOn> <!−− One entry by add−on. Attributes are described in Table D.11 −−>
<File /> <!−− Information about the PE that provides the add−on. Attributes described previously in Table D.12 −−>

</IEAddOn>
[...]

</Installed>
</IEAddOnList>
<InstallerList> <!−− Installation process for each program −−>
<Installer> <!−− Date and time the installation started and finished. Attributes are described in Table E.4 −−>
<InstallInfo> <!−− Information about the setup exe. Attributes are described in Table E.5 −−>
</InstallInfo>
<DiscInfo> <!−− Information about the disc the setup exe was on, if any. Attributes are described in Table E.6 −−>
</DiscInfo>
<ProgramIds> <!−−List the programs that were installed by the setup exe −−>

25/07/2019 Page 50 of 66

Analysis of the AmCache

<ProgramId> <!−− Program installed by the setup exe. Only contains one attribute: Id −−>
</ProgramId>

</ProgramIds>
</Installer>
[...]

</InstallerList>
<DeviceList>
<DeviceContainer> <!−− List of physical devices that were plugged on the system. −−>
<Categories>
<Category>
</Category>

</Categories>
<Device>
<HardwareIds>
<HardwareId>
</HardwareId>
[...]

</HardwareIds>
<CompatibleIds>
<CompatibleId>
</CompatibleId>
[...]

</CompatibleIds>
</Device>
[...]

</DeviceContainer>
[...]

</DeviceList>
<DriverList> <!−− List of drivers installed on the system −−>
<Driver> <!−− Information about the driver. Attributes are described in Table E.7 −−>
</Driver>
[...]

</DriverList>
<DriverPackageList> <!−− Always seen empty in tests −−>
</DriverPackageList>
<AitAnalysis> <!−− Always seen empty in tests −−>
</AitAnalysis>

</Log>

������� F.1: Generic structure of AEINV_AMI_WER

The attributes for the Report element are the same as those found in AEINV_WER and described in Table E.1. The
only additional attribute is described in Table F.1.

Table F.1.: Report attribute
Attribute Description Example

ClientVersion Unknown, seems similar to
the Version

ClientVersion=”1.12.0”

The attributes for the System element are the same as those found in AEINV_AMI and described in Table E.2. The
two additional attributes are described in Table F.2.

Table F.2.: System attributes
Attribute Description Example

VirtualMachine
Unknown: the tests on virtual
machine all had false for this
value.

VirtualMachine=”false”

PortableWorkSpace WindowsToGo or other USB
booted environment

PortableWorkSpace=”false”

25/07/2019 Page 51 of 66

Analysis of the AmCache

The attributes for the File element are the same as those found in AEINV_AMI and described in Table E.10. The
three additional attributes are described in Table F.3.

Table F.3.: File attributes
Attribute Description Example

CrcChecksum Unknown CrcChecksum=”0xcb05168e”

PeImageType Unknown PeImageType=”0x8664”

PeSubsystem Unknown PeSubsystem=”2”

Table F.4.: Installer attributes
Attribute Description Example

CompletionState 1 if the install was successful,
0 if not

CompletionState=”1”

CreatedArpEntries Always 1 CreatedArpEntries=”1”

StartTime Timestamp, in UTC, the instal-
lation started

StartTime=”08/21/2018 12:57:00”

StopTime Timestamp, in UTC, the instal-
lation finished

StopTime=”08/21/2018 12:58:47”

The attributes for the InstallInfo element are similar to those found in AEINV_WER and described in Table E.10
except that there is no UniqueId and two additional attributes, described in Table F.5.

Table F.5.: InstallInfo attributes
Attribute Description Example

OsComponent Unknown OsComponent=”false”

SigPublisherName The signer of the PE certificate SigPublisherName=”Wireshark Foundation, Inc”

Table F.6.: DiscInfo attributes

25/07/2019 Page 52 of 66

Analysis of the AmCache

Attribute Description Example

Name Name of the Disc Name=”VBOXADDITIONS_5.”

Id Unknown Id=”0004021d62bcd80dc4a5ac67b8fbfdb91516395084b5”

SetupScriptChecksum
CRC64 for INF, INI, ISS and
OSD files content from the
root of an installation media

SetupScriptChecksum=”17231136449290210510”

Size
IpTotalNumberOfBytes from
the GetDiskFreeSpaceEx
method of kernel32.dll

Size=”58466304”

Table F.7.: Driver attributes
Attribute Description Example

DriverId SHA-1 preceded by ’0000’ of
the driver

DriverId=”000002da97a4940b126c7710d13b431a6e74123f3cc0”

Name Filename Name=”1394ohci.sys”

Type Bitfield of driver attributes1 Type=”0x0004001a”

Version Version=”6.2.9200.16384”

TimeStamp Compilation date in UNIX
timestamp format

TimeStamp=”0x5010aae6”

CheckSum CheckSum=”0x00047021”

ImageSize ImageSize=”0x0003d000”

PagedSize PagedSize=”0x00000e00”

Company Company=”Microsoft Corporation”

Product Product=”Microsoft® Windows® Operating System”

1https://docs.microsoft.com/en-us/windows/privacy/basic-level-diagnostic-events-and-fields-1709#
microsoftwindowsinventorycoreinventorydriverbinaryadd

25/07/2019 Page 53 of 66

https://docs.microsoft.com/en-us/windows/privacy/basic-level-diagnostic-events-and-fields-1709#microsoftwindowsinventorycoreinventorydriverbinaryadd
https://docs.microsoft.com/en-us/windows/privacy/basic-level-diagnostic-events-and-fields-1709#microsoftwindowsinventorycoreinventorydriverbinaryadd

Analysis of the AmCache

ProductVersion ProductVersion=”6.2.9200.16384”

G. PropCache.bin structure
The general structure of the file is described in Fig. G.1. The Size field is the size of the file, in bytes. I is the
number of path listed in PropCache.bin.

0 4 8 12 16

Unknown Size I

PATH 1

· · ·

PATH 2

· · ·

...

PATH I

· · ·

Fig. G.1.: PropCache.bin byte structure

The structure of a PATH field is described in Fig. G.2. The Size field is the size of the PATH field, in bytes. J is the
number of driver listed in PropCache.bin, which are drivers located under the PATH previously identified. str_len
is the number of bytes in folder_name (which is in UTF-16 LE), including the final ”\00”.

0 4 8 12 16

Size Unknown

J str_len folder_name · · ·

DRIVER 1

· · ·

DRIVER 2

· · ·

...

DRIVER J

· · ·

Fig. G.2.: PATH byte structure

The structure of a DRIVER field is described in Fig. G.3. The Size field is the size of the DRIVER field, in bytes. K
is the number of INFO field.

The structure of an INFO field is described in Fig. G.4. The meaning of the first four bytes is unclear but seems to
indicate the data type of the information: for a string it is always equal to ’0’, for a FILETIME timestamp it is always
equal to ’2’ and for every other data type, it is ’1’ (int, UNIX timestamp, ...). The info_type indicates what kind of
information about the driver follows. The size_info field is the size of driver_info, in bytes.

The different value for info_type are as follows:

25/07/2019 Page 54 of 66

Analysis of the AmCache
0 4 8 12 16

Size K

INFO 1

· · ·

INFO 2

· · ·

...

INFO K

· · ·

Fig. G.3.: DRIVER byte structure
0 4 8 12 16

Unclear info_type size_info

information · · ·

Fig. G.4.: INFO byte structure

• 0x0 = Filename in lowercase;

• 0x1 = SHA-1, preceded by ’0000’;

• 0x2 = Windows Driver Framework version;

• 0x3 = Version;

• 0x4 = Company;

• 0x5 = ProductName;

• 0x6 = ProductVersion;

• 0x7 = Full path of the certificate on the system;

• 0x8 = Signer;

• 0x9 = MajorImageVersion appended to the MinorImageVersion;

• 0xa = Compilation date in Unix format;

• 0xb = Checksum found in the Optional Header of the driver;

• 0xc = Size of image;

• 0xd = Paged size;

• 0xe = Architecture type (first three bits of the Type field in Table F.7);

• 0xf = Djb2 hash of the filename;

• 0x10 = Name of the associated service;

• 0x11 = Date of Modification, in FILETIME format;

• 0x12 = State;

• 0x13 = Driver Type (bits 17 to 23 of the Type field in Table F.7);

• 0x14 = Signature type (bits 4 to 16 and 24 of the Type field in Table F.7)

H. FullCompatReport structure

25/07/2019 Page 55 of 66

Analysis of the AmCache

<CompatReport> <!−− Information about the report. Attributes are described in Table G.1 −−>
<System> <!−− Information about the system. Attributes are described in Table G.2 −−>
<Version> <!−− Information about the OS Version. Attributes are described in Table G.3 −−>
</Version>
<Machine>
</Machine>
<SdbInfo> <!−− Information about the sdb files. For each file, attributes are FileSize and CreationDateTime −−>
<SysMain32Sdb>
</SysMain32Sdb>
<SysMain64Sdb>
</SysMain64Sdb>
<DrvMainSdb>
</DrvMainSdb>
<DrvMainSdb64>
</DrvMainSdb64>
<DrvMainSdArm>
</DrvMainSdbArm>

</SdbInfo>
</System>
<Hardware> <!−− Information about the hardware (processor type, vendor, ...). −−>
<HardwareItem>
<CompatibilityInfo>
</CompatibilityInfo>

</HardwareItem>
[...]

</Hardware>
<Plugins> <!−− Plugin for the system (SecureBoot for example) −−>
<Plugin>
<CompatibilityInfo>
</CompatibilityInfo>

</Plugin>
[...]

</Plugins>
<Devices> <!−− List of physical devices that were plugged on the system. −−>
<DeviceInventoryPerfData>
</DeviceInventoryPerfData>
<Device>
<HardwareIds>
<HwId>
</HwId>
[...]

</HardwareIds>
<CompatibleIds>
</CompatibleIds>
<InstalledDriver>
</InstalledDriver>
<CompatibilityInfo>
</CompatibilityInfo>

</Device>
[...]

</Devices>
<Programs> <!−− Information about the installed programs. −−>
<Program> <!−− Information about the program. Attributes are described in Table G.4 −−>
<CompatibilityInfo> <!−− Supposedly information about compatibility for the program. No significant data found in tests −−>
</CompatibilityInfo>
<ClrVersionsFound> <!−− Always empty in tests −−>
</ClrVersionsFound>

</Program>
[...]

</Programs>
<Usage>
</Usage>
<Performance>
</Performance>
<ProgramBlockList>
</ProgramBlockList>
<DeviceBiosBlockList>
</DeviceBiosBlockList>
<Drivers> <!−− List of drivers installed on the system −−>
<Driver> <!−− Information about the installed driver. Attributes are described in Table G.5 −−>
</Driver>
[...]

</Drivers>
<DeviceContainers> <!−− List of physical devices that were plugged on the system. −−>
<Container>
</Container>
[...]

25/07/2019 Page 56 of 66

Analysis of the AmCache

</DeviceContainers>
<IEAddOnList> <!−− List of Internet explorer add−ons −−>
<IEAddOn> <!−− Information about the installed add−on. Attributes are described in Table D.11 −−>
<File> <!−− Information about the PE that provides the add−on. Attributes are described in Table D.12 −−>
</File>

</IEAddOn>
[...]

</IEAddOnList>
<DriverPackages> <!−− List of drivers installation files −−>
<DriverPackage> <!−− Information about the installation file. −−>
<InfSection> <!−− Optional. Information about the service that uses the driver. −−>
</InfSection>
[...]

</DriverPackage>
[...]

</DriverPackages>
<GeneralTelemetry> <!−− Telemetry information −−>
<AdvertisingID>
<TelemetryData>
</TelemetryData>

</AdvertisingID>
<ChromeOSLaunchMode>
<TelemetryData>
</TelemetryData>

</ChromeOSLaunchMode>
<DVDTelemetrySessionStartDate>
<TelemetryData>
</TelemetryData>

</DVDTelemetrySessionStartDate>
<OTHER−CDROM−DVDTelemetrySessionCount>
<TelemetryData>
</TelemetryData>

</OTHER−CDROM−DVDTelemetrySessionCount>
<OTHER−CDROM−DVDTelemetrySessionDuration>
<TelemetryData>
</TelemetryData>

</OTHER−CDROM−DVDTelemetrySessionDuration>
<OTHER−DISK−DVDTelemetrySessionCount>
<TelemetryData>
</TelemetryData>

</OTHER−DISK−DVDTelemetrySessionCount>
<OTHER−DISK−DVDTelemetrySessionDuration>
<TelemetryData>
</TelemetryData>

</OTHER−DISK−DVDTelemetrySessionDuration>
<TelemetryData>
</TelemetryData>
[...]
<UserDefaultBrowser>
<TelemetryData>
</TelemetryData>

</UserDefaultBrowser>
<UserHttpHandler>
<TelemetryData>
</TelemetryData>

</UserHttpHandler>
<UserUILanguages>
<TelemetryData>
</TelemetryData>

</UserUILanguages>
<WMC−CDROM−DVDTelemetrySessionCount>
<TelemetryData>
</TelemetryData>

</WMC−CDROM−DVDTelemetrySessionCount>
<WMC−CDROM−DVDTelemetrySessionDuration>
<TelemetryData>
</TelemetryData>

</WMC−CDROM−DVDTelemetrySessionDuration>
<WMC−DISK−DVDTelemetrySessionCount>
<TelemetryData>
</TelemetryData>

</WMC−DISK−DVDTelemetrySessionCount>
<WMC−DISK−DVDTelemetrySessionDuration>
<TelemetryData>
</TelemetryData>

</WMC−DISK−DVDTelemetrySessionDuration>
<WMP−CDROM−DVDTelemetrySessionCount>
<TelemetryData>

25/07/2019 Page 57 of 66

Analysis of the AmCache

</TelemetryData>
</WMP−CDROM−DVDTelemetrySessionCount>
<WMP−CDROM−DVDTelemetrySessionDuration>
<TelemetryData>
</TelemetryData>

</WMP−CDROM−DVDTelemetrySessionDuration>
<WMP−DISK−DVDTelemetrySessionCount>
<TelemetryData>
</TelemetryData>

</WMP−DISK−DVDTelemetrySessionCount>
<WMP−DISK−DVDTelemetrySessionDuration>
<TelemetryData>
</TelemetryData>

</WMP−DISK−DVDTelemetrySessionDuration>
<InstalledHotfixesQuery> <!−− Information about the installed hotfixes. −−>
<InstalledHotfixesData> <!−− Attributes are HotFixID and date of installation (InstalledOn) −−>
</InstalledHotfixesData>
[...]

</InstalledHotfixesQuery>
<ServicesQuery> <!−− List of services −−>
<ServicesData> <!−− Information about the service. Attributes are described in Table G.6 −−>
</ServicesData>
[...]

</ServicesQuery>
<DiskInfoQuery>
<DiskInfoData>
</DiskInfoData>

</DiskInfoQuery>
<VolumeInfoQuery> <!−− Information about the mounted volumes (drive letter, space, ...). −−>
<VolumeInfoData>
</VolumeInfoData>
[...]

</VolumeInfoQuery>
<DiskPartitionInfoQuery>
<DiskPartitionInfoData>
</DiskPartitionInfoData>
[...]

</DiskPartitionInfoQuery>
<PhysicalDiskInfoQuery>
<PhysicalDiskInfoData>
</PhysicalDiskInfoData>
[...]

</PhysicalDiskInfoQuery>
<PrimaryMonitorQuery>
<PrimaryMonitorData>
</PrimaryMonitorData>

</PrimaryMonitorQuery>
<VolumeLicenseQuery>
</VolumeLicenseQuery>
<ProcessorInformationQuery>
<ProcessorInformationData>
</ProcessorInformationData>

</ProcessorInformationQuery>
<PCSystemTypeQuery>
<PCSystemTypeData>
</PCSystemTypeData>

</PCSystemTypeQuery>
<CurrentPowerPolicyQuery>
<CurrentPowerPolicyData>
</CurrentPowerPolicyData>

</CurrentPowerPolicyQuery>
<WifiTelemetryDaya>
</WifiTelemetryData>
<InstalledUILanguages>
<UILanguage>
</UILanguage>
[...]

</InstalledUILanguages>
<WindowsGenuineTelemetryData>
</WindowsGenuineTelemetryData>
<BootConfig>
<BootEntry>
</BootEntry>
[...]

</BootConfig>
<SupportedGraphicsDXVersion>
</SupportedGraphicsDXVersion>
<CpuIdData>

25/07/2019 Page 58 of 66

Analysis of the AmCache

</CpuIdData>
<UserBrowserSearchSettings>
<TelemetryData>
</TelemetryData>

</UserBrowserSearchSettings>
<UserBrowserHomepage>
<TelemetryData>
</TelemetryData>

</UserBrowserHomepage>
<WiDiConnection>
</WiDiConnection>
<LastSyncTimeItems>
</LastSyncTimeItems>
<RedirectedProfiles>
<Directory>
</Directory>
[...]

</RedirectedProfiles>
<ChromeApps>
</ChromeApps>
<StartupApplications> <!−− List of startup applications −−>
<Application>
</Application>
[...]

</StartupApplications>
<FirmwareTypeData>
</FirmwareTypeData>
<WinSAT>
<Metrics>
<CPUMetrics>
<CompressionMetric>
</CompressionMetric>
<EncryptionMetric>
</EncryptionMetric>
<CPUCompression2Metric>
</CPUCompression2Metric>
<Encryption2Metric>
</Encryption2Metric>
<CompressionMetricUP>
</CompressionMetricUP>
<EncryptionMetricUP>
</EncryptionMetricUP>
<CPUCompression2MetricUP>
</CPUCompression2MetricUP>
<Encryption2MetricUP>
</Encryption2MetricUP>
<DshowEncodeTime>
</DshowEncodeTime>

</CPUMetrics>
<MemoryMetrics>
<Bandwidth>
</Bandwidth>

</MemoryMetrics>
<GamingMetrics>
<BatchFps>
</BatchFps>
[...]
<AlphaFps>
</AlphaFps>
[...]
<TexFps>
</TexFps>
[...]
<ALUFps>
</ALUFps>
[...]
<GeomF4>
</GeomF4>
<GeomV8>
</GeomV8>
<CBuffer>
</CBuffer>

</GamingMetrics>
<GraphicsMetrics>
<DWMFps>
</DWMFps>
<VideoMemBandwidth>
</VideoMemBandwidth>

25/07/2019 Page 59 of 66

Analysis of the AmCache

<MFVideoDecodeDur>
</MFVideoDecodeDur>

</GraphicsMetrics>
<VideoDecodeMetrics>
<DecodeFrameCount>
</DecodeFrameCount>
[...]

</VideoDecodeMetrics>
<DiskMetrics>
<AvgThroughput>
</AvgThroughput>
[...]

</DiskMetrics>
</Metrics>

</WinSAT>
<WindowsLicensing>
</WindowsLicensing>
<SleepStatesSupported>
</SleepStatesSupported>
<TelemetryData>
</TelemetryData>
<ChromeRlz>
<Rlz>
</Rlz>

</ChromeRlz>
<MicrophoneInfo>
</MicrophoneInfo>
<CBSErrorInfo>
</CBSErrorInfo>
<PreviousUpgradesInfo>
</PreviousUpgradesInfo>
<CompatibilityImpactData> <!−− Information about programs that needed compatibility fixes −−>
<CITRecord>
<SystemData>
</SystemData>
<ProgramData>
<ProgramImpact>
<FileImpact> <!−− Information about the exe file. Attributes are described in Table G.7 −−>
</FileImpact>
[...]

</ProgramImpact>
[...]

</ProgramData>
</CITRecord>
[...]

</CompatibilityImpactData>
</GeneralTelemetry>
<ProgramUseList> <!−− Information about programs usage. Only attribute is SnapshotTime −−>
<ProgramUse> <!−− Information about the program. Only attribute is Id. −−>
<FileUse> <!−− Information about the exe file launched. Attributes are described in Table G.8 −−>
<LaunchInfo> <!−− Information about the launches. Attributes are described in Table G.9 −−>
</LaunchInfo>

</FileUse>
[...]

</ProgramUse>
[...]

</ProgramUseList>
</CompatReport>

������� H.1: Generic structure of FullCompatReport.xml

Table H.1.: CompatReport attributes
Attribute Description Example

MID Unknown MID=”A1990A22−112B−4D0F−BB3B−625E66C092E7”

ReportScenario Unknown ReportScenario=”PDU_WICA”

25/07/2019 Page 60 of 66

Analysis of the AmCache

CensusId Unknown CensusId=”{BB91F828−924E−4EBF−9EF3−63D97DF630EF}”

Version Unknown Version=”1.6”

UpgradeEligible Unknown UpgradeEligible=”1”

OfflineScan Unknown OfflineScan=”1”

IeVersion Version of installed Internet
Explorer

IeVersion=”9.11.9600.17416”

SqmId Unknown SqmId=”{C70723D9−91ED−4AA4−9EF6−E0FB9035C335}”

RacId Unknown RacId=”{819CA618−5513−405F−99BD−880AAF707895}”

WuId Unknown WuId=”dd0fd1d3−1288−4914−bb3e−e17c8b03613d”

GeoId GeoId=”84”

Table H.2.: System attributes
Attribute Description Example

X64Capable X64Capable=”True”

X64Running X64Running=”True”

KnownWorkingCount Unknown KnownWorkingCount=”54”

WontWorkIssueCount Unknown WontWorkIssueCount=”0”

RequireActionIssueCount Unknown RequireActionIssueCount=”0”

ComplianceIssuesCount Unknown ComplianceIssuesCount=”0”

25/07/2019 Page 61 of 66

Analysis of the AmCache

BlockUpgradeIssueCount Unknown BlockUpgradeIssueCount=”0”

BlockUpgradeCanReinstall
Count Unknown BlockUpgradeCanReinstallCount=”0”

BlockUpgradeUntilUpdate
Count Unknown BlockUpgradeUntilUpdateCount=”0”

DismissableIssueCount Unknown DismissableIssueCount=”0”

HardBlockedDevicesCount Unknown HardBlockedDevicesCount=”0”

TotalIssueCount Unknown TotalIssueCount=”0”

TotalAppCount Number of installed programs TotalAppCount=”4”

TotalDeviceCount TotalDeviceCount=”57”

SocBlock Unknown SocBlock=”false”

OSArch OSArch=”x64”

UserLocale
User settings for dates,
times,... based on the lan-
guage pack identifier1

UserLocale=”1036”

TargetBuild TargetBuild=”9600”

Edition Edition=”Microsoft Windows 8.1 Professionnel”

Manufacturer Manufacturer=”innotek GmbH”

Model Model=”VirtualBox”

1https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-8.1-and-8/hh825678(v=win.10)
#language-packs

25/07/2019 Page 62 of 66

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-8.1-and-8/hh825678(v=win.10)#language-packs
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-8.1-and-8/hh825678(v=win.10)#language-packs

Analysis of the AmCache

Table H.3.: Version attributes
Attribute Description Example

Major Major=”6”

Minor Minor=”3”

ServicePackMajor ServicePackMajor=”0”

ServicePackMinor ServicePackMinor=”0”

Build Build=”9600”

Table H.4.: Program attributes
Attribute Description Example

Name Name=”Wireshark 2.6.5 64−bit”

Version Version=”2.6.5”

Publisher Publisher=”The Wireshark developer community, https://www.wireshark.org”

Type Only value seen: ”Applica-
tion”

Type=”Application”

Source ”AddRemoveProgram” or
”Msi”

Source=”AddRemoveProgram”

Id ProgramId Id=”0000c16b47f8ca21d3ca3f3ace1abb7c51e40000ffff”

Table H.5.: Driver attributes
Attribute Description Example

DriverName DriverName=”1394ohci.sys”

25/07/2019 Page 63 of 66

Analysis of the AmCache

DriverCompany DriverCompany=”Microsoft Corporation”

DriverId SHA-1 of the driver, preceded
by ’0000’

DriverId=”0000f000843ae742b251f0f3b2dd3629fd4803d1609b”

DriverCheckSum DriverCheckSum=”294388”

DriverTimeStamp Compilation date, in UNIX
format

DriverTimeStamp=”1377171494”

DriverType Unknown DriverType=”8650778”

DriverVersion DriverVersion=”6.3.9600.16384”

Table H.6.: ServicesData attributes
Attribute Description Example

Name Name=”AeLookupSvc”

State Running or Stopped State=”Running”

StartMode StartMode=”Manual”

PathName PathName=”svchost.exe −k netsvcs”

DisplayName Display name in the User-
Locale language

DisplayName=”Expérience ’dapplication”

Table H.7.: FileImpact attributes
Attribute Description Example

Name File name in upper case Name=”WIRESHARK.EXE”

Id SHA-1, preceded by ’0000’ Id=”00003c742e7d9ff40c291d5c1d2a9aa6c9d3b2023a34”

25/07/2019 Page 64 of 66

Analysis of the AmCache

TimeStamp Date of compilation in UNIX
format and in hexadecimal

TimeStamp=”5bfee034”

Checksum Checksum=”75a2e7”

Type Unknown Type=”0”

ImpactData1 Unknown ImpactData1=”AAAAAAQAAAAAAAAAAAAEAAEAAAAAAAAA”

ImpactData2 Unknown ImpactData2=”AQAAAG51AAABAAAA+0
EAAAAAAAD7QQAAAAAAAPtBAAAAAAAAAAAAAAEAAADGQgAA”

ImpactData3 Unknown ImpactData3=”AAAAAAAAAAAAAAAAAAQAAAAAAAAA”

Table H.8.: FileUse attributes
Attribute Description Example

Name File name, in uppercase Name=”ICAT.EXE”

Id SHA-1, preceded by ’0000’ Id=”00006b0c143e12d71685e752d8119219632281d3194b”

Table H.9.: LaunchInfo attributes
Attribute Description Example

LaunchId Unknown LaunchId=”474BABE2”

LaunchCount LaunchCount=”14”

FirstLaunchTime FirstLaunchTime=”01/11/2019 09:14:59”

LastLaunchTime LastLaunchTime=”01/15/2019 09:58:32”

25/07/2019 Page 65 of 66

Analysis of the AmCache

Bibliography
[1] Harrell, C (2013). Revealing the RecentFileCache.bcf File, http://journeyintoir.blogspot.com/2013/12/

revealing-recentfilecachebcf-file.html.

[2] Ionescu, A (2007). Secrets of the Application Compatibility Database (SDB) - Part 1, http://www.alex-ionescu.
com/?p=39.

[3] Khatri, Y (2013). Amcache.hve inWindows 8 - Goldmine for malware hunters, http://www.swiftforensics.com/
2013/12/amcachehve-in-windows-8-goldmine-for.html.

[4] Khatri, Y (2013).Amcache.hve - Part 2, http://www.swiftforensics.com/2013/12/amcachehve-part-2.html.

[5] Microsoft (2012).Understanding Shims, https://docs.microsoft.com/en-us/previous-versions/windows/
it-pro/windows-7/dd837644(v=ws.10).

[6] Suhanov, M (2018). The CIT database and the Syscache hive, https://dfir.ru/2018/12/02/
the-cit-database-and-the-syscache-hive/.

25/07/2019 Page 66 of 66

http://journeyintoir.blogspot.com/2013/12/revealing-recentfilecachebcf-file.html
http://journeyintoir.blogspot.com/2013/12/revealing-recentfilecachebcf-file.html
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.swiftforensics.com/2013/12/amcachehve-in-windows-8-goldmine-for.html
http://www.swiftforensics.com/2013/12/amcachehve-in-windows-8-goldmine-for.html
http://www.swiftforensics.com/2013/12/amcachehve-part-2.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-7/dd837644(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-7/dd837644(v=ws.10)
https://dfir.ru/2018/12/02/the-cit-database-and-the-syscache-hive/
https://dfir.ru/2018/12/02/the-cit-database-and-the-syscache-hive/

	Introduction
	Behavior of libraries originally packaged with Windows 7 and Windows Server 2008 R2
	General behavior
	RecentFileCache.bcf
	AEINV_PREVIOUS.xml
	AEINV_WER_{MachineId}_YYYYMMDD_HHmmss.xml
	Examples of possible uses during a forensic investigation

	Behavior of libraries originally packaged with Windows 8.0 and Server 2012
	General behavior
	AmCache.hve
	Install Directory
	AEINV_AMI_WER_{MachineId}_YYYYMMDD_HHmmss.xml
	PropCache.bin
	Examples of possible uses during a forensic investigation

	Behavior of libraries originally packaged with Windows 8.1 and Server 2012 R2
	General behavior
	AEINV_AMI_WER_{MachineId}_YYYYMMDD_HHmmss.xml
	FullCompatReport.xml
	Examples of possible uses during a forensic investigation

	Behavior of libraries originally packaged with Windows 10 version 1507 (Threshold 1)
	General behavior
	AmCache.hve
	Examples of possible uses during a forensic investigation

	Behavior of libraries originally packaged with Windows 10 version 1511 (Threshold 2)
	General behavior
	AmCache.hve
	Examples of possible uses during a forensic investigation

	Behavior of libraries originally packaged with Windows 10 version 1607 (Redstone 1)
	General behavior
	APPRAISER_FileInventory.xml
	AmCache.hve
	Examples of possible uses during a forensic investigation

	Behavior of libraries originally packaged with Windows 10 version 1709 (Redstone 3)
	General behavior
	AmCache.hve
	APPRAISER_Telemetry_UNV.bin
	Examples of possible uses during a forensic investigation

	Behavior of libraries originally packaged with Windows 10 version 1803 (Redstone 4) and Windows 10 version 1807 (Redstone 5)
	General behavior
	AmCache.hve
	Install Directory
	Examples of possible uses during a forensic investigation

	Conclusion
	Appendix Artifact location summary
	Appendix AmCache.hve registry keys summary
	Appendix RecentFileCache.bcf structure
	Appendix AEINV_PREVIOUS.xml structure
	Appendix AEINV_WER structure
	Appendix AEINV_AMI_WER structure
	Appendix PropCache.bin structure
	Appendix FullCompatReport structure
	Bibliography

