
StemJail: Dynamic Role Compartmentalization

Mickaël Salaün
French Network and

Information Security Agency
mickael.salaun@ssi.gouv.fr

Marion Daubignard
French Network and

Information Security Agency
marion.daubignard@ssi.gouv.fr

Hervé Debar
Télécom SudParis

herve.debar@telecom-
sudparis.eu

ABSTRACT
While users tend to indiscriminately use the same device to
address every need, exfiltration of information becomes the
end game of attackers. Average users need realistic and prac-
tical solutions to enable them to mitigate the consequences
of a security breach in terms of data leakage. We present
StemJail, an open-source security solution to isolate groups
of processes pertaining to the same activity into an environ-
ment exposing only the relevant subset of user data. At the
heart of our solution lies dynamic activity discovery, allowing
seamless integration of StemJail into the user workflow. Our
userland access control framework only relies on the ability
of user to organize data in directories. Thus, it is easily
configurable and requires very little user interaction once set
up. Moreover, StemJail is designed to run without intrusive
changes to the system and to be configured and used by any
unprivileged user thanks to the Linux user namespaces.

Keywords
compartmentalization; dynamic policy; role; user activity;
sandbox; Linux; namespaces

1. INTRODUCTION
Our daily use of computing devices leads us to indistinc-

tively use them for both professional and personal activities,
which is even seen as cost effective and promoted through
the “Bring your own device” (BYOD) trend. As a result,
each and every device we own contains all kinds of personal
and professional information, with a wide range of levels of
sensitivity. This information is in turn duplicated for storage
purposes - and sometimes distant backup (e.g. in the cloud).

We tend to download and execute on a same platform
applications originating from sources we do not trust uni-
formly. However, this enables attackers to indiscriminately
access our data. Typically, some compromised multimedia
software can very well upload professional content stored in
the directory next to our music repository.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

ASIA CCS’16, May 30–June 3, 2016, Xi’an, China.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897912

Thus, additional security properties such as separation of
duties seem desirable. Unfortunately, this imposes a signif-
icant burden on unqualified users. This notoriously com-
plicated task relies on informed system management such
as fine-tuning of access controls. It also requires sensitive
privileges on systems that should not be granted to just
anyone.

The problem of protecting information from exfiltration is
not new at all, neither is the need for compartmentalization.
Many sandboxing or virtualization techniques attempt to
address this problem. Some solutions are integrated in the
operating system kernel (e.g. SELinux) while the others
emulate some components of the kernel in userspace [15, 20,
17]. Most kernel-based access control systems are dedicated
to the administrator of the machine whereas the kernel em-
ulation in userland is a workaround to allow unprivileged
users to compartmentalize their processes.

Rather than extending global system security, we advocate
a new approach of user-oriented separation of activities. We
point out that within the context of a given user, every
executed application can access every piece of data owned by
this user. Therefore, if information in itself is the sensitive
target, an adversary does not need to perform a privilege
escalation anymore. Assuming a perfectly well-managed
and secure operating system, we want to provide a practical
solution to allow users to perform their activities in a safe way.
Namely, an attack should only result in leak or loss of data
related to the activity actually executing the compromised
software instance. An activity will then reflect a security
policy formalized with a set of access rules, called user domain.
To implement an unprivileged and non-invasive solution, we
choose a hybrid architecture: a userland engine is used to
define and dynamically update a policy, dedicated to a user,
but enforced by the kernel.

In this paper, we present StemJail [23], a new practical
and open-source security framework that can be applied to
an existing GNU/Linux operating system without major
modifications. StemJail allows automatically inferring the
user activity according to his actions. This is the major
contribution of our solution: dynamically mapping a secu-
rity policy according to the user workflow enables to create
a seamless dynamic access control without bothering the
user with confirmation interruptions (e.g. modal window).
Easily picked up by average users, configurable and usable
without any administrative rights, StemJail provides users
with a way to augment the security of their GNU/Linux
systems with a compartmentalization guarantee which they
can understand. Exhibiting a low performance overhead and

http://dx.doi.org/10.1145/2897845.2897912

compatible with existing applications, we believe that our
implementation constitutes a relevant complementary access
control in addition to classical system-level measures.

Section 2 provides background on some relevant compart-
mentalization and sandboxing solutions including Janus [15],
Ostia [14] and Mbox [17], before presenting our running exam-
ple and requirements imposed on the project. Then, Section 3
explains automatic discovery of user activity. Section 4 de-
tails the architecture choices on which our implementation
relies. The security guarantee provided is expressed and
proved in a formal model in Section 5. In Section 6, we
illustrate the workings of StemJail on our running example
and benchmark its performances. Related work, along with
limitations and future work are covered in Section 7.

2. COMPARTMENTALIZATION OF ACTIV-
ITIES

2.1 State of the Art
Despite different underlying principles, existing virtual-

ization and compartmentalization solutions share the same
purpose: running multiple autonomous systems in isolated
environments while sharing the same hardware. The funda-
mental model is based on a monitor managing subjects (i.e.
kernels or processes). We categorize these isolation solutions
in three main categories: hypervisor-based, kernel-based or
userland-based, ordered by decreasing order of adherence to
hardware. Hardware access level usually impacts the granu-
larity of the control enforced by the monitor. For example,
hypervisors alone are not able to enforce a fine grained file
system access control because they work with raw devices or
memory. The OS kernel is able to make sense of data stored,
which will then be transmitted to processes. In addition,
heavy hardware access requirements increase the invasiveness
of a solution.

With respect to hypervisor-level monitors, Xen is a hypervi-
sor used by security solutions such as Qubes OS [22], a single
end user GNU/Linux/Xen distribution that provides tools to
manage virtual machines (VM/guest) dedicated to a unique
activity. The hypervisor is only a part of the compartmental-
ization mechanism of Qubes OS. Every guest communicates
with the monitor, implemented by the hypervisor and an
administrator VM (dom0). Moreover, the end user is also
the administrator of the machine.

With respect to kernel-based monitors, Linux-oriented
compartmentalization solutions include VServer, OpenVZ,
LXC or Docker. They provide tools to create and manage
light virtualization environments called jails or containers.
These environments use the same kernel which can share
resources grouped by namespaces (network, file system. . .).
Each environment is created by the administrator.

Compared by Schreuders et al. [24], Linux-oriented access-
control mechanisms such as SELinux, AppArmor, Tomoyo,
Smack or grsecurity form another kind of kernel-based mon-
itors. These solutions provide Domain Type Enforcement
(DTE [3, 25]) and Mandatory Access Control (MAC) en-
gines to create and manage fine-grained access policies to
restrict processes. These policies complement the traditional
Discretionary Access Control (DAC); again, they require
administrative access for management purposes.

Newer operating systems, including Android and iOS, pro-
vide control of the applications to the end user. Those require

some administrative rights but not the full control over the
device. The permissions are high-level and meaningful to
the user. However, he cannot express policies to control file
sharing between applications. An orthogonal approach is the
User Account Control (UAC [21]) used in Windows, which
interactively requests the administrator to grant necessary
permissions to an application.

There are many userland-based monitors and sandboxes [24],
most using syscall interposition mechanisms, for example
Janus [15] or Systrace [20]. More recent projects such as
Minijail, Subuser, Firejail or Oz (Subgraph) create a dedi-
cated confined environment to run applications. MAPbox [1]
looks at the MIME-type of files to infer a configuration. Some,
such as Alcatraz [18] or Mbox [17], interact with the user
to validate file changes. Others use a static security policy.
Ostia [14] uses a delegating architecture to outsource and
emulate sensitive syscalls to a trusted process instead of the
traditional filtering architecture. This kind of sandboxing
helps the end user to enforce access rules for unmodified
applications but require administrative privileges (e.g. SUID
binary) or induce a significant performance penalty.

Developer-oriented sandboxes, such as Capsicum [26] or
Apple XNU Sandbox [8] (previously Seatbelt), and attack sur-
face reduction mechanisms such as Seccomp-BPF [10], focus
on privilege reduction for applications (e.g. web browsers).
These sandboxes do not require administrative privileges but
their security policies are hard-coded in the software.

2.2 Running Example
Many use cases illustrate the need for compartmentaliza-

tion of data. While the traditional example is the separation
between professional and personal use of the same under-
lying hardware (i.e. BYOD), we choose to present a less
clichéd but potentially more complex use case as a running
example in this paper. Namely, we choose to study the needs
of a consultant adapting a proprietary piece of software for
several customers.

Our consultant has to deal with two customer firms, Open-
Bar and Paranoid, which happen to have very different se-
curity expectations. Both companies entrust the consultant
with their professional data, but security practices enforced at
Paranoid outperform those in place at OpenBar. The idea is
that, whereas it is very likely that OpenBar gets compromised,
it should not result in the leak of data related to Paranoid.
In other words, the software developed for Paranoid should
not be retrievable by a malware originating from OpenBar.
On his machine, the consultant is using generic applications,
including a PDF reader that we call Viewer. In addition to
working directly for clients, our user also carries out certain
tasks only relevant to Company, the consulting firm to which
he belongs.

Two distinct activities naturally emerge from the simple
but realistic example described above. Everything that the
consultant needs to work on the OpenBar project (resp. on
the Paranoid project, or for Company) belongs to an activity
which we call OpenBar (resp. Paranoid, or Company). Any
relevant compartmentalization solution should provide the
consultant with a way to perform both activities simultane-
ously: at a minimum, smooth task switch has to be allowed,
e.g. to answer emails or phone calls.

While involving users with a certain level of computer
literacy, our scenario is really not involving computer security
experts. Hence, the separation between activities introduced

here corresponds to a natural one for the user, one with which
he can come up by himself. Indeed, we do not assume our
user to foresee things like the complexity and buggy nature
of a viewer, or the natural vulnerability of an application
dealing with untrusted data: we do not aim at sandboxing
dangerous applications. We only assume as a requirement
that the user of a confinement solution should be able to
specify legitimate circles for circulation of information.

The problem of deciding to which circle a piece of data
relates is tough to solve (e.g. the files MIME-type [1] is a
partial solution). On the one hand, the user should not be
burdened with troublesome and error-prone data tagging.
On the other hand, we do not aim to implement some in-
volved automatic inference procedure. We find a middle
ground in the fact that a user can put to good use a confine-
ment solution which he understands. Concretely, organizing
data in directories fitting activities seems simple enough to
bootstrap, manage and keep consistent over time. In our
example, we assume that our consultant has created a di-
rectory ~/Clients/OpenBar/ (resp. ~/Clients/Paranoid/,
and ~/Company/) where he stores files related to OpenBar

(resp. Paranoid, or Company). Our hypothesis is that data
in each directory is related to the activity giving its name to
the directory.

Besides, our solution addresses classical problems rising
from compartmentalization of execution environments, such
as the ability to coherently list files pertaining to a given
environment or to safely access common resources.

2.3 Functional and Security Requirements
When the user is the source of information, he is the one

who knows the best what kind of classification or sensitivity
the data should be marked with. With StemJail, empowering
the user with the definition of the security policy does not
put at risk the system security because the policies can only
add more constraints and are only applied to the processes
of this same user. Following our example, the consultant
working on a project for a client can easily tell if his work
can be shared with other partners or should be kept private.

Security policies require clearly stating which parts of a
system are trusted, leaving the rest under the possible control
of an adversary. In our case, the Trusted Computing Base
(TCB) includes the Operating System (OS) kernel, the system
services and the hardware. Moreover, attacks on side or
covert channels are outside the scope of this paper. StemJail
aims to provide users with a way of controlling information
flow amongst their data, by means of compartmentalization
of user activities. Therefore, StemJail supplies a framework
enabling users to ensure the confidentiality and integrity of
activity-specific data w.r.t. other activities. In other words,
confining an activity allows us to mitigate data leaks in
case the activity is compromised by adversaries abiding by
hypotheses defined above.

On top of its core security goal, there are a few other
extern functional and security constraints which StemJail
aims to satisfy:

• To be effective, an access control framework dedicated
to the end user should not bother him with interrup-
tions. By being fully integrated into the user’s workflow,
StemJail is seamlessly enforcing access control.

• To fit the needs of each and every user of a system,
StemJail needs to be accessible and configurable by any
of its users, without administrative rights. Each user

should configure the solution for use within his user
sessions.

• In order to use it properly, users should understand
the confinement underlying the access control solution
which they configure. As a result, they should only
have to influence access controls in a manner which
has concrete meaning to them.

• Adding a new security feature such as StemJail should
not degrade the security level of the system. In particu-
lar, we choose to rule out any modification of the TCB
(e.g. of the kernel), so as to avoid introducing new
critical security vulnerabilities. Moreover, access con-
trol features implemented by StemJail are not meant
to replace system-wide security policies configured by
system administrators. Security features brought by
StemJail should complement those already in place on
a well-managed system.

• Compatibility with currently used applications without
requiring their modification really increases the practi-
cality of a solution. We choose to address this challenge
on current GNU/Linux systems. A Linux distribution
can provide additional packages, if they do not alter
the system too heavily. Hence, we impose on StemJail
not to modify existing system components.

• Eventually, a security solution is expected to have some
impact on performances. However, to be usable in
practice, a solution should be as efficient as possible.

3. OVERVIEW OF STEMJAIL

3.1 Definitions
StemJail articulates its security policy around the idea of

user activities. An activity is in essence quite an informal
notion: it is a set of tasks coherent from the user’s point of
view. In this section, we introduce definitions formalizing
the access control policy enforced in StemJail.

Role.
As introduced by Ferraiolo and Kuhn [11], a role refers

to a job function which yields authority and legitimacy in
performing related tasks. The need for isolation stems from
the fact that users often assume multiple roles. The concept
of user activity introduced above is naturally formalized as
a role defined by the user. In our example, the consultant
has a dedicated role when he works for a specific client
(i.e. role OpenBar or role Paranoid). More generally, as some
accesses can be legitimate for multiple activities, it is possible
that the user assumes any disjunction of user-defined roles.
We call these latter roles intermediate. For instance, the
intermediate role “OpenBar or Paranoid” consists in tasks
indifferently performed with role OpenBar or role Paranoid.

Object.
Following the RBAC [11] vocabulary, we name object the

target of our access control policy, which is user data. Namely,
in the scope of this paper, an object is what is commonly
called a (filesystem) path. It identifies a directory (and its
content) or a file of the filesystem on which StemJail is ex-
ecuted. As a result, the data referenced by a given object
can appear, evolve or disappear over time. In our example,
we assume that our consultant has created a directory ~/-

Clients/OpenBar/ (resp. ~/Clients/Paranoid/) where he
stores files related to OpenBar (resp. Paranoid).

Action and Access.
Actions are labels capturing operations on data referenced

by objects. We only introduce in this paper two actions, read
and write, obviously capturing read and write operations
on underlying resources, but our model could be extended
further. We define an access by an action performed on an
object.

Rule.
A rule is a triple consisting in a role, an object and an

action. Informally, when a user specifies a rule (r, o, a), he
describes that he should legitimately be able to perform
action a on object o when assuming role r. Given elements
introduced above, we expect that our consultant needs to
write on data stored in ~/Clients/OpenBar/ when he is
working on the OpenBar project. This is described by the
rule (OpenBar, ~/Clients/OpenBar/, write).

Domain.
A domain is a set of rules. Like roles, domains fall into

two categories: user and intermediate domains.
User domains are defined by users and consist of rules

which share the same role component. We have said that
a user activity is formalized as a role from the user’s point
of view. For each such role, the user must list the rules
describing rightful actions on objects when carrying out the
activity captured by the role. Each of these lists brings forth
a dedicated configuration file defining a domain. We highlight
here that this is one of the reasons why it is tremendously
important that users of StemJail understand the isolation
which they want to instore.

Intermediate domains are formed as intersections of user
domains. Intermediate domains are the counterpart of in-
termediate roles: intuitively, if a rule appears in two user
domains, a user conforms to this rule when he is assuming
any one of the roles corresponding to the user domains.

Subjects and Monitors.
When an instance of StemJail is spawned, it creates a

reference process called the monitor, while all other processes
jailed in the new execution environment are called subjects.
The monitor is in charge of controlling actions performed
by subjects so that they conform to a domain. There is
one monitor per instance of StemJail, and all instances of
StemJail execute on behalf of the same user as far as the
operating system is concerned. Architectural details are
further discussed in Section 4.3.

3.2 Automated Role Discovery
The user can explicitly set the role he believes he will

perform but it is error prone, cognitively burdening and
not user friendly. We hence design a way to automate role
discovery.

The monitor uses a state to store a domain, called the
current domain, corresponding to the access control currently
enforced. Intuitively, the idea is to start a subject execution
with an empty set of accessible objects, and proceed by aug-
menting the set of possible accesses on the fly. The monitor
must thus have a strategy to decide whether an access re-
quest from a subject should be granted. This strategy must
guarantee that all legitimate sequences of access requests
of subjects matching at least one of the user domains are
granted. It must also guarantee that only such requests are.

When a subject starts its execution, three cases can arise.

Its first access request on an object can appear in no user
domain, only one of them, or several user domains. In the
first case, it is easy to say that the request should be denied.
The second case is simple enough too: it allows the monitor
to determine at once to which user domain the activity
corresponds. The monitor state, i.e. the current domain,
should be set to this user domain, and all subsequent requests
should conform to this particular domain specification. The
last case is possibly the most frequent, but is a little more
complex. The request should be granted, but the monitor
state cannot transition to a given user domain.

This is where intermediate domains, which consist in ac-
tions on objects appearing in multiple user domains, come
into play. Here, the monitor should set its current domain to
the intermediate domain corresponding to the intersection of
all user domains containing the requested object access. By
doing so, the monitor captures that the activity is necessarily
amongst those corresponding to these user domains. During
the rest of the subject execution, as new object accesses are
granted, the current domain should only be able to evolve to
one of these user domains. Otherwise, no user domain would
authorize the set of accesses to objects performed by the
subject, while this is supposed to be our security guarantee.

Quite intuitively, the monitor strategy outlined here is
implemented as an automaton on intermediate domains. A
transition between a source and target intermediate domains
exists if the target domain contains the source domain. This
formalizes that all accesses deemed legitimate in the source
domain remain so in the target one.

State 1

State 2

State 3

opc

C

O Pop

pcoc

O Pop

P

Authorized rule set
(cache)

Potentially accessible
rule set (user domain)

Rule access request

Unaccessible rule set

Figure 1: Domain Specialization by Transition

We illustrate a possible sequence of domain transitions
in Figure 1. As chosen in Section 2.2, there are three user

domains: OpenBar (O), Paranoid (P) and Company (C). Some
objects and accesses appear in rules of several domains. They
are depicted as overlaps forming intermediate domains: op,
oc, pc and opc. Figure 2 shows all the possible transitions.
The scenario workflow is as follows.

1. A subject initially requests access to an object common
to the three domains. The green dot symbolizes the cor-
responding rule in the intermediate domain formed by
the intersection of the three domains: opc (OpenBar or
Paranoid or Company). At this stage, all intermediate
domains are potentially reachable, which means that
all their files are potentially accessible by the subject.

2. When granting access to an object thanks to rules in do-
mains Paranoid and OpenBar, the monitor transitions
from opc to op (Paranoid or OpenBar). This transition
is allowed because the origin domain (opc) is a subset
of the destination domain (op). The current domain
then describes a new set of rules, which enable the sub-
ject to perform the requested object access. Obviously,
the subject can cache its requests and only query the
monitor when a transition is required (cf. Section 4.4).
The monitor state captures that the current role is not
related to the Company domain, and no object access
authorized only by this latter will be added by the
monitor.

3. When a subject requests an access to an object de-
scribed by a rule in OpenBar but not in op, the monitor
transitions the current domain to OpenBar, which is a
user domain. The previous accesses are still allowed
but no more transitions are accessible.

opc

op pc oc

O P C

State 1

State 2

State 3

Effective
transition

Potential
transition

Reached
domain

Figure 2: Lattice of Domain Transitions

We underline that role discovery does not require all user
domains to have a common intersection. When an access
request does not match any rule from accessible domains
the request is denied. The monitor remains in the current
domain and the subject will not be able to access the object.

Unlike the Bell and LaPadula’s [5] model which reflects the
military restrictions to prevent data leak, the Chinese wall [9]
security policy describes commercial constraints to protect
against conflicts of interest. Our approach is a lattice-based
policy comparable to the Chinese wall model, but in a less
compelling way. Indeed, using well-chosen user domains,
StemJail can be used to implement a Chinese wall policy.

If a subject is compromised while its monitor can tran-
sition to multiple domains (e.g. from opc), all resources

featured in the reachable domains could be compromised
too. Therefore, to benefit the most from StemJail security
guarantees, configurations should conform to the following
guidelines. For each user domain, questionable data should
be quarantined in directories dedicated to the domain before
clean-up. Moreover, the data shared between multiple do-
mains should be trusted and accessible in read-only mode
to avoid the spread of malicious documents. The policy can
then prevent a threat to propagate from a quarantine zone
to other domain via shared read-write resources.

The worst case scenario of intermediate domains is 2n − 1
for n user domains. In practice, this exponential spatial
complexity is not a problem for the monitor because of the
small memory footprint a domain requires and the limited
number of (almost similar) domains a user would need.

Automated role discovery deduces the user role based on
his subjects’ actions. Moreover, the file layout hierarchy is
already understood without additional learning.

4. IMPLEMENTATION OF STEMJAIL

4.1 Architecture Overview
The architecture of StemJail is designed to dynamically

adapt to multiple user activities, each of them being con-
fined in jails. As shown in Figure 3, there are three main
components: a portal, one monitor per jail and one or more
subjects per jail.

Monitor #1

Subject #1

OpenBar Paranoid

Monitor #2

Subject #3Subject #2

Portal

Figure 3: Overview of a StemJail Instantiation

The portal is responsible to initiate a jail creation by spawn-
ing a monitor and maintaining a communication channel to
send commands and receive information.

Every monitor is the initial process of a jail and is hence
dedicated to this jail. A jail’s monitor is the only privileged
process for this environment: it is the only one able to extend
the jail with more accesses according to its policy.

Subjects are instances of user applications for one activity.
Each subject in a jail is a client able to request new accesses
to the monitor. This is its only way to gain new accesses,
since it is unprivileged and remains so. Indeed, we rely on
the kernel, part of the TCB, to prevent privilege escalation.
Further internal details will be described in Section 4.3.

In this example, the OpenBar jail contains two subjects
able to send requests to their monitor which currently fol-
lows the OpenBar security policy. These three processes can
communicate between themselves but are isolated from the
Paranoid jail and its subjects. This second jail can have
private data protected from the view of the first jail.

Thanks to this architecture, StemJail is able to spawn as
many jails as needed while still being able to manage them
consistently.

4.2 Creating an Ecosystem for Subjects
As explained in Section 2.3, StemJail needs to be able to

enforce visibility restrictions on data but it should neither

modify the kernel nor require privileges. To do so, StemJail
relies on the Linux namespaces [6].

There are six namespaces available from the Linux kernel:
mount, UTS, IPC, PID, network and user. Each one exposes
an isolated custom subset of the kernel features to userland.
They can be used to isolate processes from one another.

The mount namespace allows creating isolated filesystem
mount points only visible to userland processes in that dedi-
cated namespace. We can thus limit the filesystem view of
some processes.

The user namespace is the only namespace available to
unprivileged users. This allows users to change their ID in
a dedicated environment and hence become a root user in
this namespace. This user can only impact processes in the
same or nested namespaces. While still constrained by the
privileges granted to the original process (UID, GID), a root
process in a user namespace is able to do some restricted
administrative tasks like creating other kinds of namespaces.

In order to avoid the complexity and pitfalls of creating
a new non-root compartmentalization system from scratch,
StemJail relies on user namespaces. They are used to create
custom jails. The root user of a user namespace can create a
dedicated mount namespace. It is then possible to use bind
mounts inside this namespace to expose a suitable subset of
files and directories with read-only or read-write permissions.

A recursive mount point should not be created without
looking at the inherited mount points. Since the mount op-
tions for a bind mount only apply to the first one, StemJail
needs to handle nested mount points to avoid illegitimately
exposing files. Besides, because of the user namespace re-
strictions, it is not possible to only mount a part of the file
hierarchy. To avoid this default behavior, StemJail recur-
sively mounts paths which should legitimately be exposed.
The number of mount points can thus be large because of
the numerous mount points in the host (i.e. more than 20 in
a common GNU/Linux distribution). For any mount point
and exposed file or directory, StemJail must first create the
mount point, then remount it in read-only mode if needed,
and then do the same for all its nested mount points. To
avoid race-conditions, these adjustments are first performed
in a private temporary directory before atomic exposition
of resources to subjects. The exponential growth in bind
mounts is manageable in practice because a mount point
does have a small memory footprint.

Another important aspect of the mount management is to
stay in control of the mount hierarchy. Assuming /a is bind
mounted to /b, the problem is to control whether new mount
points in /a should be propagated to /b. To manage this
behavior, a mount point can be marked as shared, slave or
private. If we did not forbid new mount point propagation,
it would be trivial to bypass the policy, e.g. by mounting an
USB mass storage to /media while this directory is exposed
in read-only domains.

Most applications require access to specific Linux devices
to run correctly. For example /dev/null and /dev/urandom

are widely used. Devices are kernel interfaces which access
potentially sensitive data (e.g. storage devices). Thus, a user
namespace is not allowed to create devices. For this reason,
StemJail bind mounts parent devices into every new domain.
In a defense in depth approach, we choose to only expose a
minimal set of devices. Therefore, we limit them to the strict
minimum of 4 devices (null, full, zero and urandom).

The temporary directory /tmp is widely used by many

applications. This directory is commonly shared between all
users of the machine to store temporary files. To avoid any
risk of misusing temporary files that can help an attacker to
gain more privileges or access unexpected data, we choose to
create one dedicated temporary directory per domain. It is
much safer and still usable by applications. Moreover, this
private directory can be used to store data while being sure
other domains can’t access them (e.g. a UNIX socket).

Subjects often need to list all the processes in their envi-
ronment, but this should not enable them to interfere with
processes executing in other jails. This requires exposing
a proc filesystem in /proc. Thanks to the PID namespace,
StemJail creates a pseudo-filesystem dedicated to each jail.

4.3 StemJail’s Internals
The isolation provided by jails relies on Linux namespaces.

Jails are separated from one another and from the system
using the available namespaces: PID, network (if activated),
IPC and UTS. Each process in a jail is therefore unable to
see or interact with processes outside its jail. The filesystem
view can however be shared in accordance with user-specified
domains.

The communication channels between the subjects and the
monitor are UNIX sockets. They provide trusted peer identi-
fication (PID, UID and GID) by means of SCM_CREDENTIALS
messages, on which the monitor can rely. Moreover, sockets
are opened in the /tmp directory, which is private and dedi-
cated to the jail (cf. Section 4.2). This rules out attacks based
on techniques such as the confused deputy scenario [16].

A filesystem attached to a jail is built incrementally. When
a jail starts, the execution flow is as follows:

1. At first, the monitor (PID 1 in its jail) creates a new
root file hierarchy with a minimal layout (i.e. /dev,
/tmp and /proc). This will be the only file hierarchy
visible and accessible to any other processes (i.e. sub-
jects) in the jail. The monitor is the only process to
keep access to the parent filesystem, in order to extend
the jail file hierarchy with new resources.

2. The monitor then bind mounts the initial executable
file and needed libraries (cf. Section 4.4) in the jail.
The execution of this file then proceeds normally.

3. Throughout the life of the jail, each relevant access
attempt to a resource gives rise to a request to the
monitor. The monitor then enforces the policy and
can extend the jail filesystem when a legitimate access
request is received. If needed, the monitor then bind
mounts in a read-only or read-write mode a new set
of files or directories from the parent filesystem. The
monitor completes the filesystem of the jail to make it
match the most general reachable domain. Any pro-
cesses attempting to access a file or directory without
requesting it to the monitor will not find the resource
if it was not previously mounted.

Access restrictions imposed on subjects rely on two cor-
nerstones. On the one hand, monitor requests must be the
only way to gain new accesses. This is guaranteed by the
Linux kernel (including the user namespace implementation),
which is part of the TCB (cf. Section 2.3). On the other
hand, subjects should not be able to compromise a monitor,
which is then the crux of a jail security.

It is thus desirable for the StemJail monitor to be devel-
oped in a safe system language to avoid common security
pitfalls. We choose Rust, a system programming language
designed for performance but featuring concurrency and mem-
ory safety features [2]. This helps preventing a wide range
of recurring security vulnerabilities (e.g. buffer overflow, use
after free, dangling pointer, uninitialized memory. . .). Rust
offers low level features like direct memory manipulation
or foreign function interface abilities, which are needed to
manage low level interfaces such as Linux namespaces, file
descriptor manipulation or terminal handling. Moreover, the
Rust compiler modularity can include plugins to automati-
cally extend the code, e.g. with serialization. The network
protocols used to exchange data between the user client, the
portal and the monitors are automatically generated from
the program data structure, ensuring a safe parsing.

4.4 Transparent Integration with Applications
When a user logs in to start a session, his shell, be it a

text shell or a graphical shell, is configured to automatically
launch the portal. To integrate smoothly with the user shell,
the easiest way is to replace the existing application shortcuts
with wrappers. The StemJail launcher is a wrapper that takes
an application with its arguments and requests a jail creation
to the portal to launch this application. This way, every
application launched by the user actually starts its primary
process in a new jail. Using StemJail this way removes the
burden of thinking about roles or domains. However, the user
can also choose to launch StemJail manually for dedicated
sensitive tasks, if needed.

To integrate into an existing system without (static) ap-
plication modification, StemJail takes advantage of the hook
feature from the dynamic linker. StemJail uses the preload
functionality to load part of its code into most applications.
This preload feature is meant to override the libc functions.
It applies to dynamically linked ELF binary using the libc
wrappers around syscalls. Relying on dynamically linked
executables is acceptable because classical GNU/Linux dis-
tributions only ship dynamically linked ELF binaries.

Obviously, StemJail security guarantees do not follow from
wrapping syscalls. Indeed, StemJail is based on a deny-
by-default principle: only files which have been explicitly
exposed by the jail monitor are visible to subjects. However,
even though this is not what prevents malicious processes
to access files illegitimately, hooking syscalls provides a con-
venient solution to have complying subjects requesting new
accesses to their monitor.

Monitor #1

Subject #1

shim

OpenBar Paranoid

Monitor #2

Subject #3

shim

Subject #2

shim

Shell

Portal

Access request channelPortal command channelUser interface channel

Figure 4: Details of a StemJail Instantiation

The preloaded code, called shim (cf. Figure 4), is a shared
library including the client part of StemJail and a cache to
limit the number of requests. The purpose of the preloaded
code is to hook all filesystem related functions (e.g. open, stat,
rmdir . . .) to transform generic applications into StemJail
subjects. When a subject performs a syscall via shim, it first
goes through its local cache to determine whether a request
to the monitor is needed. When deemed required, shim
establishes a connection with the monitor through a UNIX
socket dedicated to the current jail (in the private /tmp)
and sends the access request. The monitor can then either
evolve to a new domain and bind mount appropriate files,
or, when no reachable domain allows the requested access,
remain in its current state. The hook then returns and lets
the original application syscall go through the kernel. The
syscall can thus succeed, if the file or directory is present with
appropriate rights, or fail with a “no such file or directory”
error from the kernel otherwise. Similarly, raw syscalls placed
by malicious processes can only be successful when involving
visible resources.

We emphasize that the monitor does not take into ac-
count client caches, and it analyzes every request to find
out whether it is legitimate. Caches are used to limit the
number of requests placed, in order to improve performances.
Since the monitor does not mount a resource based on its
presence in subject caches, using these latter cannot impact
the security of StemJail.

Existing software routinely uses directory listing, which
StemJail then needs to enable for transparent integration.
This means letting processes retrieve the list of potentially
accessible files, and only those. As a result, this is likely to
leak metadata on files which might not be reachable later on,
but we estimate that it still meets the user security policy.
Here is an example of such a corner case. Consider a jail
in which the monitor is in current domain op (cf. Figure 1),
and a subject listing ~/. Directory ~/Clients/ is visible
and should appear. Files beneath ~/Clients/OpenBar/ and
~/Clients/Paranoid/ are accessible through distinct domain
transitions, so that the directory ~/Clients/ should list both.
However, ~/Company/ should not be listed since it is not
currently visible and cannot become accessible through any
transition.

The dynamic linker preload feature can be used with
an environment variable named LD PRELOAD, with the
ld.so.preload file or even bypassed with ld.so.cache from
the /etc directory. The environment variable does not re-
quire any privileges to be set and is inherited from one
execution to another in most cases. The ld.so.preload file
is located in /etc, which is usually owned by the administra-
tor. However, StemJail creates each part of the filesystem
of a jail and can hence create this file as well. Moreover,
using this file is more convenient than using ld.so.cache,
because system updates can overwrite ld.so.cache. In prac-
tice, there are more than 40 function calls that must be
hooked, each with their own argument specificities. Each
function has been suitably mapped a client request template.

Using the preload feature also accounts for a negligible
performance impact. The client code is part of each process;
every client can compute the minimum amount of requests
to send to the monitor while maintaining a cache of the
previous results. The monitor only gets a small number of
relevant requests. Moreover, there is no context switching
penalty as opposed to other hook methods like ptrace.

4.5 User Interaction
StemJail binaries are either installed for the whole system

by the administrator, or by a single user for his own benefit.
User namespaces need to be activated in the kernel; these are
available since Linux v3.8 (released in 2013). StemJail is, as
Linux namespaces, architecture agnostic. The configuration
is separate from the installation, so any user can use StemJail
as he wishes.

As a user can create a role for each of his activities, Stem-
Jail must then handle the new, existing and deleted roles.
The configuration, including the role and user domain defini-
tions, is taken into account for a domain when it is created
and until the end of its life. Any configuration modifica-
tion is ignored by instantiated domains to avoid inconsistent
monitor states.

StemJail is built for the end user and should then use a
simple configuration. Each domain is described in a dedicated
file in the TOML format. This is a key-value format with
sections to group access authorizations. Each section takes a
path key and a file or directory path as value. By default,
every access is read-only. The user makes it read-write by
setting the write key to true. The domain name is extracted
from the configuration filename.

StemJail handles two kinds of user interfaces:

• command-line interfaces. A Linux terminal device
(TTY) is made up of a master and a slave end. The
master end is the user terminal which can send com-
mands (e.g. key pressed, window resizing, interrupt. . .)
and receive text output. The slave end is used by a
process (e.g. shell) to communicate with the user. The
StemJail portal is used to forward user interactions
to subjects through their jail monitor (cf. Figure 4).
The portal creates a new pseudo-terminal instance and
exposes the slave end into the jail whereas the master
end is forwarded to its client (i.e. user terminal).

• graphical interfaces. Graphical applications should not
have direct access to the display server to protect from
exploiting techniques such as screen grabbing, keyboard
sniffing or clipboard spying [12, 22]. The X Window
System protocol security is focused on client authen-
tication (across the network) but was not designed to
handle multiple untrusted clients. A X proxy such as
Xbox [1] or a seamless virtual desktop such as Xpra can
be used to create a graphic command firewall between
a jail and the user graphic server.

5. FORMAL MODEL OF THE GUARANTEES
PROVIDED BY STEMJAIL

5.1 A Partial Order on Domains
We introduce in our formalization a partial order to com-

pare domains. We want to capture the idea that the policy
underlying a given domain can be more restrictive than that
of another domain. We also use the partial order definition
as a pretext to fix notations for concepts introduced in the
previous sections. A domain is usually denoted d, while the
set of domains is denoted D. For user domains, we rather
use u for elements and DU for the associated set. As DU is
finite, we can write DU = {u1, . . . , uf} .

Let us start by ordering objects. Given two paths o and
o′ in set O, we write o v o′ iff o′ is a prefix of o. Intuitively,

it means that o refers to a file or directory included in the
directory pointed by o′. We recall that accesses are pairs
consisting of an action a ∈ A and an object o ∈ O. The
partial order on objects can be applied to accesses as follows.

(a, o) v (a′, o′) iff a = a′ ∧ o v o′

It follows the intuition that access (a, o) is more restrictive
than access (a′, o′), since elements in o belong to o′. We
underline that read and write actions are not comparable.

In practice, as described in Section 3.2, a monitor decides
to grant access requests to subjects if they respect the policy
specified by a domain. More formally, an access (a, o) is said
to conform to a domain iff there exists a rule of the domain
exhibiting a more general access:

(a, o) v d′ : ∃(r′, a′, o′) ∈ d′ | (a, o) v (a′, o′)

A monitor decision is thus formalized through the following
function, that associates a boolean to a domain and an access.

Access : (d, a, o) 7−→

{
true iff (a, o) v d

false otherwise

An access list is said to conform to a domain d if all accesses
in the list conform to d.

Rules are triples consisting of a role r ∈ R, an action a ∈ A,
and an object o ∈ O. Comparing rules means comparing their
accesses, regardless of the role components: a rule refines
another if the access referred by the first is lesser than that
referred by the second. We can finally provide the definition
of the partial order to compare domains as set of rules.

d v d′ : ∀(r, a, o) ∈ d, (a, o) v d′

When respecting rules specified in the lesser domain, a subject
enjoys less access rights than another subject following rules
contained in the greater domain.

5.2 Automaton for the Evolution of Domains
To perform domain-conforming access control along with

dynamic discovery of activity, the monitor is implemented
as a stateful process. The monitor state stores the current
domain to conform to, which makes it natural to formalize
the monitor as an automaton.

As outlined in Section 3.2, the set of possible domains
used as states of the monitor matches the set of intermediate
domains. Informally, these intermediate domains consist
of accesses conforming to several user domains. Therefore,
we need to formally define the intersection of two domains.
Such an intersection forms a new domain, corresponding
to a role which we call r or r′. A rule appears in the new
domain if the access it describes is listed in a rule of one
of the intersected domains and lesser than accesses listed in
rules of the other domain. Thus, the intersection represents
the maximal set of accesses conforming to both domains.
Formally, the intersection of domains d and d′, denoted
d u d′, consists of rules (r or r′, a0, o0) such that:

• either (r, a0, o0) ∈ d and (a0, o0) v d′,

• or (r′, a0, o0) ∈ d′ and (a0, o0) v d.

According to this definition, any rule of an intersection of
domains is refined by a rule in each intersected domain. As
a result, when a monitor authorizes accesses conforming to
an intersection of domains, we can rightfully deduce that
accesses performed by a subject conform to all domains in
the intersection.

As f denotes the number of user domains, we can now
define the set E ⊆ D of states of our automaton as the set
of all possible intersections of user domains:

E =

 l

i∈J,ui∈DU

ui, J ∈ ℘([0, f])


The initial state d0 of the automaton is the empty domain.
We note that d0 ∈ E, as the intersection of zero user domains.

Let us move on to the transition function between domains
implemented in the monitor. When a subject requires access
to an object in practice, the monitor must decide whether it
grants the request of the subject. As explained in Section 3.2,
this decision depends on whether the access conforms to the
domain currently stored in the monitor state. If it does, the
subject is allowed to proceed. Otherwise, the monitor checks
whether there exists a less restrictive intermediate domain
to which the access would conform. The set of such domains
is described using the following function.

Next : (d, (a, o)) 7−→
{
d′ ∈ E | d v d′,Access(d′, a, o)

}
If the access is not in any intermediate domain, the set

Next(d, a, o) is empty but the monitor remains in its cur-
rent state, which we choose to formalize by a possible loop
transition. The monitor then refuses the access request from
the subject. If the access can legitimately be performed, the
monitor transits to the less restrictive intermediate domain
amongst Next(d, a, o), and that is its minimal element. We
notice that if (a, o) conforms to the current domain d, then
this minimal element is d. This yields the following definition
for the transition function.

Transit : (d, a, o) 7−→Max({d,Min(Next(d, a, o))})

We also use the common infix notation d
(a,o)−−−→ d′ for this

transition function.

5.3 Proven Security Guarantees
When the monitor transition from one domain to another,

all accesses conforming to the source domain remain con-
forming to the target domain. This property is formalized
nicely using the partial order on domains by remarking that
traces form ascending chains.

Lemma 1 (Augmenting Transition). If there exists

a trace d0
(a1,o1)−−−−→ d1

(a2,o2)−−−−→ ...
(ai,oi)−−−−→ di then d0 v d1 v

... v di.

Proof. Let d′′ ∈ Next(d, a, o), then by definition we
have d v d′′. Hence, d v Min(Next(d, a, o)). As a re-
sult, d vMax({d,Min(Next(d, a, o))}) = Transit(d, a, o).

Then, d
(a,o)−−−→ d′ implies d v d′, and the conclusion fol-

lows.

Any access belonging to an intermediate domain, formed
by the intersection of several domains, conforms to each
intersected domains. The intersection is then lesser than any
of its composing domains.

Lemma 2 (Domain Intersection Ordering). A do-
main is always lesser than its intersection with another do-
main: ∀d, d′ ∈ D, (d u d′) v d

Proof. Let (a, o) ∈ dud′, by definition of the intersection
of domains, we get that either (a, o) v d and (a, o) ∈ d′ or
(a, o) v d′ and (a, o) ∈ d. In both cases, (a, o) v d.

We can now state the theorem capturing that the monitor
enforces the intended security policy. Intuitively, as the
monitor is implemented so as to only transition between
intersections of user domains, it yields that accesses it may
allow to subjects necessarily belong to some user domain.
However, this is not sufficient in itself: we want subjects
to perform accesses conforming to at least one given user
domain all along its execution. Thus, we check that there
exists at least one user domain where all accesses granted to
a subject obey the policy. Therefore, the monitor soundly
guarantees that the execution of a subject respects access
control restrictions corresponding to at least one user domain,
even though the monitor cannot determine which user domain
it is from the start of the execution.

Theorem 1 (User Domain Conformance). Given a

trace d0
(a1,o1)−−−−→ d1

(a2,o2)−−−−→ ...
(an,on)−−−−−→ dn, there exists a user

domain ∆ ∈ DU such that ∆ is greater than all the states of
the trace:

∃∆ ∈ DU , ∀i ∈ [0, n], di v ∆

Proof. Consider a trace of length n, d0
(a1,o1)−−−−→ d1

(a2,o2)−−−−→
...

(an,on)−−−−−→ dn. Lemma 1 yields d0 v d1 v ... v dn. Two
cases can arise.

• We can first have dn = ∅. It follows that d0 = · · · =
dn = ∅. In this case, we can choose any user domain
∆ ∈ DU , since ∀d ∈ D, ∅ v d.

• Otherwise, we have dn 6= ∅. Since dn ∈ E, we know
that dn =

d
i∈J ui for some set J ∈ ℘([0, f]). Moreover,

since we know dn 6= ∅, then J 6= ∅. We let ∆ = ui0

for i0 ∈ J. We know ui0 ∈ DU so ∆ ∈ DU . Since
dn = ui0u(

d
i∈J,i6=i0

ui), Lemma 2 yields dn v ui0 = ∆.
The conclusion follows for the whole chain: d0 v d1 v
... v dn v ∆.

6. VALIDATION

6.1 Use Case Scenario
We go back to our running example to illustrate how

different activities are impacted by the presence of StemJail.
We sketch out a simple and classical user workflow scenario:
the consultant starts a file explorer and browses to the file
of a specific client he wants to work for. He then opens the
client file with the PDF reader Viewer. Later on, Viewer gets
compromised, and a malicious process then tries to exfiltrate
data from his system. Traces 1 through 5 show extracts of
logs generated by StemJail components during this scenario.

Trace 1 shows the user launching the file explorer through
the StemJail launcher, as described in Section 4.4. The
launcher connects to the portal daemon and requests a jail
creation. Consequently, it spawns a monitor instance with
the most general current domain as a current state, namely
opc, which stands for the disjunction OpenBar or Paranoid

or Company. This monitor then creates a working directory
to prepare the filesystem initially exposed in the jail. This

1 Loaded configuration: profiles: [" OpenBar", "Paranoid", "Company "]

2 Portal got request: Run(DoRun(RunRequest { profile: None , command: ["/usr/

↪→ bin/file -explorer "] }))

3 Running jail: OpenBar || Paranoid || Company

4 Child jailing

5 Creating tmpfs in /proc/fs/nfsd

6 Bind mounting from /usr to /proc/fs/nfsd/usr

7 [...]

8 Creating tmpfs in /tmp

9 Populating /dev

10 Creating tmpfs in /dev

11 Bind mounting from /dev/null to /proc/fs/nfsd/dev/null

12 [...]

13 Creating tmpfs in /dev/shm

14 Pivot root

15 Got jail PID: 2

16 Waiting for child 2518 to terminate

Trace 1: Jail Initialization

hierarchy is built on a temporary filesystem (tmpfs) to be
able to add files or directories when needed. The monitor
then populates the jail filesystem with the necessary files
(/tmp, /dev. . .) as explained in Section 4.3. Finally, the
file explorer runs as a new process in the newly created jail.
The user is now able to access documents from all domains
through a domain transition.

1 Monitor got request: Shim(Access(AccessRequest { data: AccessData { path:

↪→ "/home", write: false } }))

2 No domain reachable: access denied

3 Monitor got request: Shim(Access(AccessRequest { data: AccessData { path:

↪→ "/home/user", write: false } }))

4 No domain reachable: access denied

Trace 2: Denied Access Requests Before Subject Compromise

Trace 2 shows access requests which the monitor does not
honor by the requested mount operation. Here, the monitor
does not mount directories /home or /home/user because
there is no domain amongst those defined in which these
accesses are allowed.

1 Monitor got request: Shim(Access(AccessRequest { data: AccessData { path:

↪→ "/home/user/Clients/OpenBar", write: false } }))

2 Bind mounting from ./ parent/home/user/Clients/OpenBar to ./

↪→ tmp_mount_zLpqpb2ojEGn/

3 Moving bind mount from ./ tmp_mount_zLpqpb2ojEGn to /home/user/Clients/

↪→ OpenBar

4 Removed ./ tmp_mount_zLpqpb2ojEGn

5 Domain transition: OpenBar || Paranoid || Company -> OpenBar

6 Access granted to [AccessData { path: "/home/user/Clients/OpenBar", write

↪→ : true }]

Trace 3: Domain Transition

Trace 3 shows the user browsing to open a document
in ~/Clients/OpenBar/. The Viewer application sends an
access request for this path to the monitor. This time, there
exists a domain, OpenBar, reachable from the monitor current
domain, in which this access is listed. Moreover, since the
access is only available in this particular domain, it is the most
general possible transition. The monitor therefore triggers
the transition to the OpenBar domain and bind mounts all
the new available paths (which at least include the requested
path) from the parent filesystem to the jail filesystem. As
mentioned in Section 4.2, to avoid race-conditions, the mount
operations are first performed in a temporary directory and
then moved to the jail.

1 Monitor got request: Shim(Access(AccessRequest { data: AccessData { path:

↪→ "/home/user/Clients/OpenBar /.", write: false } }))

2 Current domain already allows this access

3 Access granted to []

4 Monitor got request: Shim(Access(AccessRequest { data: AccessData { path:

↪→ "/home/user/Clients/OpenBar/malicious.pdf", write: false } }))

5 Current domain already allows this access

6 Access granted to []

Trace 4: Authorized Access Requests

Trace 4 shows legitimate access requests which are already
granted by the OpenBar domain. The subjects caches (cf.
Section 4.4) are stored by thread, so access requests can be
sent to the monitor before these caches are filled. We see
that a subject (Viewer) successfully requests for access to a
PDF file.

1 Monitor got request: Shim(Access(AccessRequest { data: AccessData { path:

↪→ "/home/user/Clients /.", write: false } }))

2 No domain reachable: access denied

3 Monitor got request: Shim(Access(AccessRequest { data: AccessData { path:

↪→ "/home/user/Clients/Paranoid", write: false } }))

4 No domain reachable: access denied

Trace 5: Denied Access Requests After Process Hijacking

We emphasize that StemJail does not detect malicious
processes. It is rather treating all processes as potentially
malicious. Trace 5 illustrates what happens after the Viewer

get compromised by a malicious file within the OpenBar do-
main. The compromised process can then access the OpenBar

data (to leak it or encrypt it if it is a ransomware). The logs
show the attempts of the malware at having the monitor
mount resources of Paranoid, on behalf of the StemJail client
which was hijacked. Since there is no possible transition to a
domain which would enable these bind mounts, the monitor
declines the requests. We recall that the malware would not
be more successful in performing raw syscalls: the files are
not exposed within the jail in which it runs.

The monitor stops when all its subjects end or when the
user explicitly sends a request to the portal. The user can
thus kill all the processes from a jail at will.

6.2 Review of Common Security Issues
As explained by Garfinkel [13], some typical security issues

are commonly found in sandbox implementations. This list
summarizes interesting pitfalls and explains how StemJail
addresses them.

Common defects in sandboxes include the incorrect mir-
roring of the OS state, incorrect replication of OS code and
unexpected side effects of denying system calls. Contrary
to what is classically done in sandboxes, StemJail security
does not rely on filtering out syscalls or tampering with their
arguments based on decisions taken while maintaining a lo-
cal copy of the OS state. Indeed, our implementation does
not forbid syscalls to go through with their original argu-
ments. StemJail rather has the side effect of extending the
filesystem view of subjects based on their requests. As the
current jail filesystem representation and reachable domains
constitute the only information relevant to our security policy
enforcement, it yields a fairly simple state to maintain in the
monitor. In addition to that, the monitor is the only process
modifying this filesystem view, and does so atomically. Last
but not least, the monitor is the only piece of code responsi-
ble for enforcing its policy, in the following sense. Firstly, all
visible resources in a jail have been mounted by the monitor
via syscalls it placed itself. Secondly, the monitor does not
emulate the kernel. The only way in which it relies on the
kernel behavior is in that a non-visible resource should not
be accessible.

Another kind of flaws stems from overlooking indirect paths
to resources. This is used to create unwarranted communi-
cation channels between subjects supposedly restricted by
security policies. StemJail somehow indirectly addresses this
kind of issues, by guaranteeing that the filesystem created
by the monitor is the only shared resource between jails. As

a result, shared resources that subjects can acquire depend
on the user policy expressed by the domains. For example,
the policy should not share UNIX sockets between domains
that should not be able to cooperate.

Other common oversights such as time-of-check-time-of-
use-based vulnerabilities (TOCTOU [7]) are due to race
conditions. StemJail prevents this kind of flaws by using
a unique monitor thread to manage and ensure consistent
domain transitions sequentially and reliably, thanks to Rust
built-in concurrency properties. In this thread, as explained
in Section 4, a special attention has been taken to perform
atomic operations. Other races like argument races are irrel-
evant to StemJail because there is neither syscall interposi-
tion nor manipulation for access requests, which are entirely
copied to the monitor. A syscall will naturally return an
error if no previous request has made the requested resource
visible.

6.3 Performance Impact
To evaluate the performance of StemJail, we present in

Table 1 benchmarks comparable to those used by Potter et
al. [19] and Kim et al. [17]. The methodology used is de-
scribed in a script provided with the StemJail source code1.
The system used for the experiments is an Intel Xeon 2GHz
using 2 cores with hyper-threading enabled (i.e. 4 logical
cores), 4GB RAM (DDR2, 667 MHz), running Debian Linux
with a 4.4 kernel. For each benchmark, we provide perfor-
mance figures related to execution on a mechanical hard drive
(HDD column – to enable comparison with other benchmarks)
and execution in a tmpfs mount point (RAM column – to
remove the impact on the results of mechanical hard drive
and cache).

The results are consistent with the expected behavior of
StemJail. The most important overhead of StemJail is related
to the use of the subject caches.

The Gunzip benchmarks (line 1 of Table 1) stress the
filesystem for read operations from the archive and write
operations to the original file. Except for the first accesses
(including the archive file), there is no communication with
the monitor, hence no visible penalty.

The Untar benchmark (line 2 of Table 1) exhibits a low
performance penalty except when launched on a tmpfs filesys-
tem. Indeed, extracting a lot of files to the filesystem requires
intensive use of the subject’s cache. However, the overhead
due to StemJail remains low in the HDD case, where the
mass storage device is the real performance bottleneck.

The Zip benchmark (line 3 of Table 1) involves a lot of
file operations like Untar, but implies browsing and reading
the content of all files. The intense computation related to
the decompressing (which is not present with Untar) is the
bottleneck and masks the filesystem read operations, even
for a tmpfs filesystem.

Building a kernel with consecutive processes (line 4 of
Table 1) creates a lot of short-lived processes accessing a
lot of different files. We use the default configuration for
the x86_64 architecture. The results show a minimal impact
while compiling in a jail. The fifth benchmark (line 5 of
Table 1) is obtained by building a kernel with one parallel
job per logical CPU core. Thanks to an efficient cache in
each process, the StemJail monitor does not get a lot of
requests and the performance penalty remains constant.

1 https://github.com/stemjail/stemjail/blob/master/tools/
bench.sh

According to the performance benchmark from recent
ptrace-based sandboxing [17] (optimized with Seccomp-BPF),
which seems to have been run on a hard drive, the StemJail
mechanism is three to five times more efficient. This practi-
cal result confirms the benefit of loading some code on the
subject side to avoid unnecessary transactions.

7. PERSPECTIVES

7.1 Related Work
SELinux and the other current Linux Security Modules

(LSM) are designed to be managed by administrators, which
does not match our requirements. The same goes for Linux
compartmentalization solutions, such as LXC, Docker or
VServer. Even if they employ user namespaces, root helpers
are still required for a full container because user namespaces
do not provide all the features they need.

Qubes OS has a good security architecture and can reduce
the attack surface of the machine by using stubdomains [22].
However, its main drawbacks are that it cannot be integrated
in a common GNU/Linux distribution and that it is designed
for a single end user, which is also an administrator.

Unlike Ostia [14], StemJail uses a shared library (shim)
to send requests to an external trusted process but does not
emulate syscalls for access control, only for some directory
listing (cf. Section 4.4). Moreover, the StemJail shim uses
a cache to only send requests when strictly needed, which
significantly lowers the overhead. Dynamic user-oriented
sandbox such as Mbox [17] helps to isolate some dangerous
activities but are designed for power users. The other sand-
box mechanisms such as Oz or Subuser are promising, but
request significant user interaction.

While a few interesting user-oriented projects do exist,
up to our knowledge, none of them provides an automatic
dynamic compartmentalization feature like that of StemJail.
Moreover, the programming language properties brought by
Rust are essential for secure compartmentalization software.

7.2 Limits of the Approach and Future Work
Activities can overlap. If one domain is strictly included in

another, the monitor will never enforce the most restrictive
policy. For example, we suppose that an activity requires
access to /a/b, whereas another requires access to /a. Since
accessing /a/b is possible in both domains, such a request
will not make the monitor transition to the first domain once
in the second one. The solution to this problem is to provide
more input than paths to the monitor (e.g. coming from the
user).

StemJail deals with paths to match files in the policy.
These objects could be generalized further to add other kind
of resources like network objects to the security policy. To
define these access rules, an interesting generic approach
could be to define objects with URI in place of paths. This
could help expressing a wide range of possible access control.

A web browser is nowadays a shell able to access a wide
range of diverse information through websites. Some browsers
(e.g. Chromium [4]) benefit from a compartmentalized ar-
chitecture, which renders them compatible with the use of
StemJail components. Though some integration efforts still
remain before these web browsers feature StemJail, we be-
lieve that it constitutes a particularly relevant use case for
our approach.

https://github.com/stemjail/stemjail/blob/master/tools/bench.sh
https://github.com/stemjail/stemjail/blob/master/tools/bench.sh

Normal StemJail
Task HDD RAM HDD RAM Description
Gunzip 16.04s 6.13s 16.03s 0.0% 6.13s 0.0% Decompressing the Linux 4.4 archive
Untar 68.30s 1.57s 69.95s 2.4% 1.97s 25.4% Extracting the Linux 4.4 archive
Zip 36.36s 31.76s 38.42s 5.6% 33.49s 5.4% Compressing all files of Linux 4.4
Build (-j1) 1137.38s 1134.10s 1190.16s 4.6% 1188.02s 4.7% Compiling Linux 4.4 with 1 job
Build (-j4) 320.96s 315.09s 344.69s 7.3% 330.37 4.8% Compiling Linux 4.4 with 4 parallel jobs

Table 1: Results of Performance Benchmarks (StemJail 0.4.0)

8. CONCLUSION
This paper presents StemJail, a userland isolation mecha-

nism that automatically enforces separation of information
according to user-specified needs.

Our first objective is to seamlessly integrate relevant access
control in the user workflow, to improve usability over tra-
ditional static policies. This objective is met by automated
role discovery, which progressively deduces a user activity
and creates custom jails accordingly. Moreover, our solution
aims to allow any user of the system to create and use his
security policies to mitigate the consequences of the execu-
tion of malwares. Thus, policies must be simple enough to
be set up and understood by the user. This second objective
is achieved thanks to our proposal based on the organization
of his storage space in directories. We have formalized our
approach to carry out a proof of the security guarantees
enforced throughout the life of the jailed processes.

We avoid an increase of the attack surface by taking advan-
tage of the Linux user namespaces, instead of adding more
code to the kernel. Only introducing a low performance over-
head, the open source project StemJail can be efficiently used
to secure machines running on Linux, since compatibility
with current applications is ensured.

9. REFERENCES

[1] A. Acharya and M. Raje. MAPbox: Using
parameterized behavior classes to confine untrusted
applications. In USENIX Security Symposium, 2000.

[2] B. Anderson, L. Bergstrom, M. Goregaokar,
J. Matthews, K. McAllister, J. Moffitt, and S. Sapin.
Engineering the Servo Web Browser Engine using Rust.
In ICSE, 2016.

[3] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker,
and S. A. Haghighat. A domain and type enforcement
UNIX prototype. In USENIX Security Symposium,
1995.

[4] A. Barth, C. Jackson, C. Reis, and Google Chrome
Team. The Security Architecture of the Chromium
Browser, 2008.

[5] D. E. Bell and L. J. LaPadula. Secure computer
systems: Mathematical foundations. Technical report,
MITRE Corp., 1973.

[6] S. Bhattiprolu, E. W. Biederman, S. Hallyn, and
D. Lezcano. Virtual servers and checkpoint/restart in
mainstream Linux. ACM SIGOPS Operating Systems
Review, 2008.

[7] M. Bishop and M. Dilger. Checking for race conditions
in file accesses. Computing systems, 1996.

[8] D. Blazakis. The Apple Sandbox. In Black Hat DC,
2011.

[9] D. F. Brewer and M. J. Nash. The Chinese Wall
Security Policy. In Security and Privacy, 1989.

[10] W. Drewry. Dynamic seccomp policies (using BPF
filters), 2012. https://lwn.net/Articles/475019/.

[11] D. Ferraiolo and R. Kuhn. Role-Based Access Control.
In NIST-NCSC, 1992.

[12] N. Feske and C. Helmuth. A Nitpicker’s guide to a
minimal-complexity secure GUI. In ACSAC, 2005.

[13] T. Garfinkel. Traps and Pitfalls: Practical Problems in
System Call Interposition Based Security Tools. In
NDSS, 2003.

[14] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A
Delegating Architecture for Secure System Call
Interposition. In NDSS, 2004.

[15] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer.
A secure environment for untrusted helper applications
(Confining the wily hacker). In USENIX Security
Symposium, 1996.

[16] N. Hardy. The Confused Deputy (or why capabilities
might have been invented). ACM SIGOPS Operating
Systems Review, 1988.

[17] T. Kim and N. Zeldovich. Practical and Effective
Sandboxing for Non-root Users. In USENIX Annual
Technical Conference, 2013.

[18] Z. Liang, V. Venkatakrishnan, and R. Sekar. Isolated
program execution: An application transparent
approach for executing untrusted programs. In ACSAC,
2003.

[19] S. Potter and J. Nieh. Apiary: Easy-to-Use Desktop
Application Fault Containment on Commodity
Operating Systems. In USENIX Annual Technical
Conference, 2010.

[20] N. Provos. Improving Host Security with System Call
Policies. In USENIX Security Symposium, 2003.

[21] M. Russinovich. Inside windows vista user account
control. Microsoft TechNet Magazine, 2007.

[22] J. Rutkowska and R. Wojtczuk. Qubes OS architecture.
2010.

[23] M. Salaün. StemJail source code, 2015.
https://github.com/stemjail.

[24] Z. C. Schreuders, T. McGill, and C. Payne. The state
of the art of application restrictions and sandboxes: A
survey of application-oriented access controls and their
shortfalls. Computers & Security, 2013.

[25] K. M. Walker, D. F. Sterne, M. L. Badger, M. J.
Petkac, D. L. Shermann, and K. A. Oostendorp.
Confining root programs with domain and type
enforcement. In USENIX Security Symposium, 1996.

[26] R. N. Watson, J. Anderson, B. Laurie, and
K. Kennaway. Capsicum: Practical Capabilities for
UNIX. In USENIX Security Symposium, 2010.

https://lwn.net/Articles/475019/
https://github.com/stemjail

	Introduction
	Compartmentalization of Activities
	State of the Art
	Running Example
	Functional and Security Requirements

	Overview of StemJail
	Definitions
	Automated Role Discovery

	Implementation of StemJail
	Architecture Overview
	Creating an Ecosystem for Subjects
	StemJail's Internals
	Transparent Integration with Applications
	User Interaction

	Formal Model of the Guarantees Provided by StemJail
	A Partial Order on Domains
	Automaton for the Evolution of Domains
	Proven Security Guarantees

	Validation
	Use Case Scenario
	Review of Common Security Issues
	Performance Impact

	Perspectives
	Related Work
	Limits of the Approach and Future Work

	Conclusion
	References

